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The long wavelength scaling properties of the Kardar-Parisi-Zhang equation have been studied
using a field-theory renormalization technique. The perturbation expansions are carried out to two-

loop order for both 1 + 1 and 2 + 1 dimensions. In substrate dimension d = 1, we find that the
perturbation formalism obeys the auctuation-dissipation theorem order by order so that the exact
results y = 1/2, z = 3/2 are recovered in every order. For substrate dimension d = 2, which is

the critical dimension of this equation, an infrared stable strong coupling fixed point is found and
the dynamic scaling exponents of this fixed point are obtained to be y 0.16, z 1.84, which are
roughly halfway between the free field exponents and those determined by simulations of discrete
models. The possible reasons for this discrepancy are discussed.

PACS number(s): 05.40.+j, 05.70.Ln, 64.60.Ht, 68.35.Fx

I. INTRODUCTION

The origin of the dynamic scaling properties and
the identification of the universality classes in far from-
equilibrium growth processes have been extensively stud-
ied in the past decade. It has been found [1—13] that
in a wide class of growth processes, such as ballistic de-
position [8—10], the Eden growth process [6, 7, 11], and
the restricted solid-on-solid (SOS) models [13],the height
Huctuations in the interface behave as

(2)

where A characterizes the lateral growth velocity, v is
an e8'ective surface tension, and the noise rl(x, t) mimics
the Buctuation in the deposition rate and satisfies the
Gaussian distribution (rl(x, t)) = 0, and

(rl(x:, t)rl(x', t')) = 2Db (x —x')b(t —t') (3)

Indeed, Eq. (2) provides a quantitive understanding of
the fascinating morphology generated in a broad range
of nonequilibrium processes [1—5]. Moreover, the under-
standing of the long wavelength scaling properties of Eq.
(2) goes far beyond the interest of interface physics itself;
it is of relevance to many applied fields, including the
long-time behavior of randomly stirred Quids, directed
polymers in random media, the evolution of Sivashinski

(ih( xt) — (h'xt')i ) - ix —x'i ~ fi, , i, (1)&lx-x'I') '

where h(x, t) is the interface height variable at space-
time point (x, t), y and z are respectively the roughening
exponent and dynamic exponent for the interface, and
the scaling function f (z) has the well-known asymptotic
behavior f(z) ~const as z —i 0 and f(z) z~/' as
ZMoo.

It is generally believed that, for driven interface sys-
tems where growth is locally perpendicular to the exist-
ing surface, the growth process can be described by the
Kardar-Parisi-Zhang (KPZ) equation [14, 15]

Game fronts, and so on. A plausible explanation for this
wide range of applications is that the KPZ equation is
the simplest generalization of the diffusion equation that
contains relevant nonlinearities [14, 15].

The widespread applicability of the KPZ equation and
the technical importance of the processes being modeled
have prompted much analytical [16—22, 28—30] and nu-

merical [23—27] work on the KPZ equation. In fact, Eq.
(2) can be mapped to the Burgers equation describing
the Quid How velocity in the presence of a random force
by a transformation v = —V'h [14, 15]. Forster, Nelson,
and Stephen (FNS) first studied this stochastic version of
the Burgers equation by dynamic renormalization group
techiuques [16]. KPZ argued that the FNS results can
be directly taken over to get the dynamic scaling form
and the dynamic scaling exponents of Eq. (2) for 1+ 1

dimensions [14]. According to these theories, the KPZ
equation (2) satisfies a Galilean invariance, leading to a
scaling relation

X+z =2 (4)

for all dimensions. In 1 + 1 dimensions, a Quctuation-
dissipation theorem also holds, which allows one to cal-
culate the exponents y = 2, z =

2 exactly. The 2+ 1
dimension is the critical dimension of Eq. (2), at which
only an unstable Gaussian fixed point is found in the
one-loop approximation and the scaling exponents are
therefore not obtained at this level of approximation.

Due to its practical importance, the subject of scal-
ing properties of the KPZ equation in 2 + 1 dimensions
has aroused a tremendous amount of interest in the con-
densed matter physics community. Indeed, shortly af-
ter the KPZ theory was established, a number of groups
employed direct numerical solution of Eq. (2) to get in-

formation about the values of the dynamic scaling expo-
nent. However, their results are not in agreement with
each other. The first two groups, Chakrabarti and Toral
(CT) [23], and Guo, Grossmann, and Grant (GGG) [24,
25] found that g 0.18 0.24, while later two other
groups, Amar and Family (AF) [26], and Moser, Kertesz,
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and Wolf (MKW) [27] found that y 0.39, close to the
conjecture of Kim and Kosterlitz based on numerical sim-
ulations of restricted SOS models [13]. To obtain the dy-
namic scaling exponents analytically, some approxima-
tion methods have also been proposed recently [28—30].
According to these studies, the roughening exponent in
2+ 1 dimensions is in the range of y 0.29 —0.33, which
is close to the earlier numerical solutions presented by
CT and GGG.

Although these studies do not agree well with one an-
other in predicting the values of the dynamic scaling ex-
ponents, they do have one point in common: There ex-
ists a stable strong coupling fixed point governing the
rough phase of the interface growth. Obviously, to ob-
tain this strong coupling fixed point, a natural proce-
dure is to extend the perturbation theory to higher order,
i.e., a two-loop calculation in the renormalization group
analysis. We have undertaken a systematic treatment of
this model by means of the field-theoretic renormaliza-
tion group. The perturbation expansion of the response
function and the two-point correlation function have been
performed to two-loop order in order to obtain the strong
coupling fixed point in the critical dimension. In 1+ 1
dimensions, the existence of the Quctuation-dissipation
theorem is veri6ed for every order in the perturbation ex-
pansion so that the exact results can be recovered within
each order of approximation. For the (2+ 1) dimensional
case, we apply a minimal-renormalization [31—33] proce-
dure to calculate the Wilson function and exponents. We
6nd that, to the present order of approximation, y 0.16

II. PERTURBATION EXPANSION OF VERTEX
FUNCTIONS

A. Martin-Siggia-Rose Lagrangian

Using the formalism developed by De Dominicis
and Peliti [33], one can obtain a Martin-Siggia-Rose
(MSR) [34] generating functional corresponding to the
KPZ equation (2)

Z(l, () = J 17(hih) exp f, [ h(kw)l( k—e, —),
+h(k, ~)l(—k, —e )] + A(h, h) ), (5)

where h is the conjugate 6eld of 6, l and L are sources,
and the MSR action A(h, h) is given by

and z 1.84. The purpose of this paper is to report on
these calculations in some detail.

This paper is organized as follows. In Sec. II we illus-
trate the perturbation expansion of relevant vertex func-
tions for both 1+1 and 2+1 dimensions. In Sec. III, we

develop the renormalization group program to obtain the
Wilson function and the dynamical scaling exponents.
The strong coupling fixed point is exhibited and its in-
&ared stability is discussed. Finally, our conclusions and
some discussion of the results are given in Sec. IV.

A(h, h) = [
—(—iv) + vk )h(k, ~)h( —k, —(d) + Dh(k, (d)h( —k, —(u)]

Je,~

+
~

— ~, ~
[q. (k —q)]h( —k, —~)h(q, O)h(k —q, (d —0) .

E 1l2') ~. ,n

Here k and q stand for the d-dimensional wave vectors
and we have adopted a standard convention by de6ning

(7)

From the generating functional (5) one can generate ex-
actly the same correlation functions and other quantities
as those directly computed from Eq. (2).

In the MSR formalism, it is convenient to de6ne gen-
eralized correlation functions of h and h, which can be
written as

G~N((k, )N, (k', ') - )

= (h(kg, (ug). ..h(kN, &N)h(k~, ~~). . .h(kN, (dN')), (8)

where (k, ur) means (kq, (dq', ...., kN, uN) and the angu-
lar bracket means the average taken with the weight
Z (0)expA. In effect, GNN can be obtained from the
generating functional (5) by taking derivatives with re-
spect to the sources l and l. Namely,

I'((h), (h)) = —lnZ(l, l) + [(h(k, (d))l( —k, —u)
k,~

+(h(k, (d))l( —k, —(u)], (10)

where l and I are considered as functionals of (h) and (h)
satisfying the following equations:

((» )N (k' ') ) = (2 )"'"'"' Z '(0)
b(N+N)

X
bl q

. blN big blN

xZ(l~l)[~ I o ~ (9)

where lq stands for l(kq, wq), and so on. Note that the
two functions Gqq and G20 are identified as the usual re-
sponse function and the usual two-point correlation func-
tion, respectively.

Since the standard renormalization procedures take
the one-particle irreducible (1PI) vertex function I'NN,
not the G~g functions, as basic functions, it is con-
venient to introduce the generating functional of I'~~
through a Legendre transformation
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hlnZ — blnZ
hl

The vertex functions are then given by
(b)

I' - ((k, j,(k',
h(h(k;, ur;))i=1

I' IG. 1. Zero-order graphic representations of the response
function (a), the correlation function (h), and the vertex func-
tion (c).

N
~ ~ b

..";h(h(k,', ~,'))

«((t ) (~)) l(h) =(hi=0 .

(i2)

In fact, as we shall see below, it is suKcient to calculate
three vertex functions I'~q, I'p2, and I'2~ to study the scal-
ing behavior of the KPZ equation. At zero-loop order,
we have

I'~~ = —iu) + vk, I'p2 ———2D,(o) . 2 (p)

r» —
—, [q. (k-q)],(p)

from which a classical version of the action (6) is re-
covered. Beyond the tree approximation, ultraviolet di-
vergences appear when the cutoK A w oo for d & 2.
Equivalently, ultraviolet divergences will appear as poles
at e = 0 when the theory is dimensionally regularized in
d = 2 —e dimensions.

B. Graph representation of vertex functions

X&0&)&&) =
,exp( J [G„[k,~)&[k, ~)&[—k, —~)

+)Gio&[k, ~)&[)., ~)&(—&.', —~)]}, [14)

where Gyp and G2~ are given by(o) (o)

G, r (k, cu) = [ ice + vk —
]

G2o (k, a)) = 2D[(—ice+ vk )(i(u+ vk )] (16)

Thus, only two of the G functions defined in (8), i.e. ,

G~q and G2p, have zero-order terms. In the language of
Feynman graphs, Gyp and Gp2 are called propagator line(o) (p)

and correlation line, respectively. These are schemati-
cally shown in Figs. 1(a) and 1(b).

For the case of nonzero A, making use of Eq. (14), the
generating functional Z can be conveniently expressed as

We now proceed to discuss the perturbation expansion
of the vertex functions I'qq, I'p2, and I'2~ in number of
loops. Setting A = 0, the &ee part of the generating
functional (5) can be obtained exactly after carrying out
the Gaussian integrals

Z(l, l) = exp~ (2vr)
"+ A„) —,= ~Z (l, l),Sl' hl

where the interacting action operator

$3
[q (k —q)1-

k qn bt(ka)) b'l( —k + q, —~ + 0)bl (—q, —0)
(18)

Schematically, it is expressed in Fig. 1 (c). Note that the
line without a cross is pointing in and the other two lines
with a cross are pointing out. The momentum conserva-
tion law holds at the vertex. With these expressions, we
are ready to discuss the perturbation expansion of vertex
functions by means of graph representations.

Let us begin with I'qq. From Eqs. (10) and (ll), it is
easy to show that F~~ ——

G&& . That is, the graphs of I'z~
can be obtained by drawing all 1PI graphs of Gqq and
omitting the external lines. Applying standard graphical
techniques [31], the rules for constructing n-loop graphs
of I'qI can be summarized as follows:

(a) Draw 2n vertices without any connections.
(b) Choose one pointing-in line in one vertex and one

pointing-out line (with cross) in the remaining vertices.
(c) Join all remaining end points with a cross in pairs

to form the correlation lines (with a circle); join all lines
with a cross to those without a cross in pairs to form
propagator lines.

Note that there is in general more than one way to join
the lines. Each way gives a separate term and all of them
must be accounted for. Using the rules (a)—(c), one can
construct all Feynman graphs of I'qq easily. As shown
in Fig. 2, there are one one-loop graph and 11 two-loop
graphs for the vertex function I'qq.

Next, we discuss graph representations of I'p2. SlII11-

larly to I z~, the diagraxnmatic representation of I'02 can
be obtained by drawing all 1PI graphs of G2p without
external lines. Therefore, the rules constructing the re-
sponse function can be taken over with the following
change in (b).

(b') Choose two pointing-in lines among the vertices.
In this way, as shown in Fig. 3, we have one one-loop
graph and six two-loop graphs for the vertex function
I'o2.

Finally, because of the existence of Galilean invariance,
the vertex function I'2q remains tree-order unchanged.
Therefore, we take advantage of this and do not perform
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the perturbation expansion of I'2q. In fact, the two-loop
order calculation of I'2q seems to be barely feasible.

Next we summarize the rules that convert the graphs
into algebraic expressions. From Eqs. (15), (16), (17),
and (18), it is easy to determine the following rules:

(d) Label each line with a wave vector and frequency.
The wave vectors and &equencies must obey conservation
laws at each vertex, i.e., the incoming one must equal the
sum of the outgoing two.

(e) Write a factor [1/(2n)!] for an n-order graph. Write

a factor Gyp for each propagator line and a factor G2p
(p) (o)

for a correlation line. The values of k and u are given
for each line by the labels. Write (—~,z, A[q . (k —q)]) for
each vertex, k and q being respectively the wave vector
for the incoming line and one of those for the outgoing
lines.

(co)

(c&)

(c, )

(c3)

(c4) (c5)

(ro)

(c6)

FIG. 3. One-loop and two-loop Feynman graphs of the
two-point correlation function. The corresponding symmetry
factors are 2 for co, 8 for cq, 32 for c2 and c4, and 16 for c5
and c6.

(I 4) (r 5)

(f) Integrate over all wave vectors and frequencies
which are not fixed by the conservation laws mentioned
in (d). A factor (2m) goes with each wave-vector-
&equency integral.

The rules (a)—(f) form a complete set of rules for con-
structing graphs and writing down their contributions to
the vertex functions I'qq and I'p2. The integrals over &e-
quency are easy to carry out by means of the method
of residues. All expressions of the Feynman graphs after
performing the &equency integrals are listed in Appendix
A and Appendix B.Next we discuss the calculation of the
momentum integrals.

C. Calculation of vertex functions: d=1

(r 8)

X

FIG. 2. One-loop and two-loop Feynman graphs of the
response function. The corresponding symmetry factors are
4 for ro, 8 for r3, and 16 for all the remaining graphs.

It is well known that, in d = 1, the Buctuation-
dissipation theorem holds for the KPZ equation [16]. To-
gether with the Galilean invariance, the dynamic scaling
exponents can be obtained exactly, i.e., y = 1/2, z = 3/2,
independent of the order of the perturbation expansion.
In this sense, the perturbation expansion and renormal-
ization group program are superfiuous for the case of
d = 1, and any further discussion is unnecessary. How-
ever, if the perturbation program is performed in this di-
mension, the Buctuation-dissipation theorem should hold
order by order in the perturbation expansions. This fact
can be used to check the Feynman graph system and
the corresponding symmetry factors. In Appendix C, we
show that the relation
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2DI'qq(ku) = —vk I'o2(ku) (19) where the two coefficients are given by

holds order by order. Therefore, we conclude that (i) the
Feynman graph system developed in Sec. IIB is consis-
tent with the fluctuation-dissipation theorem in d = 1;
(ii) the exact results y = 1/2 and z = 3/2 for this dimen-
sion can be recovered at both one- and two-loop order
approximations.

D. Calculation of vertex functions: d= 2

AD1/2

~3/2 (20)

the external momentum k, and the external frequency ~.
Summing up all contributions to the vertex function I'11
to O(1/e), we finally have

I'~g(k, ur) = iu) 1 + —KqA k

k' 1+ K'A'k "A2
(21)

where the factor X~ ——2vr+2/[I'(d/2) (2n )"] is introduced
for convenience and the two coefficients are given by

In the higher dimensional case, the calculations become
much more complicated. In particular, for the two-loop
order terms, the two-variable integrals over momentum
make the algebra itself quite tedious. However, since the
minimal-renormalization procedure [31—33] only concerns
the terms with poles in e, one can ignore the finite part
of the integrals and the calculation is substantially sim-
plified.

First we consider I'qq(k, u). The one-loop graph is easy
to calculate. As shown in Appendix A, it turns out that
the divergent terms cancel each other so that there is no
contribution to the renormalization group program from
this order. For the 11 two-loop graphs, after the integrals
over frequencies are performed, one has only 8 nonzero
graphs to be computed. In Appendix A, we list all 6nal
results for the graphs in terms of the reduced coupling
constant defined by

(25)

Note that B1 ——B2 which ensures that the so called magic
cancellation occurs. In eH'ect, this is one of the intrinsic
features of the 6eld-theoretic renormalization program,
following directly from the fact that the KPZ theory is
renormalizable at its critical dimension [31]. This point
will be discussed further in the next section.

Finally, we discuss the vertex function I'21. As men-
tioned in Sec. II 8, since the KPZ equation (2) is invari-
ant under Galilean transformation, the vertex function
I'21 will remain unchanged from its zero order, i.e. ,

I'2g(k, ur; q, 0) = —[q (k —q)] .
2

(26)

III. RENORMALIZATION GROUP AND
SCALING PROPERTIES

A. Dimensional analysis

We briefly list here the canonical dimensions of various
quantities in the theory. These will be used in the dis-
cussion of the scaling behavior of the vertex functions.
The dimension of the quantities can be determined by
requiring that [A] = 0 and expressing the dimensionality
in wave-vector units.

(i) Coe@cients, frequency, and the reduced coupling
constant.

[v] =d„, [D] = d~

This concludes the calculation of the vertex functions
I'11, I'02, and I'21 up to two-loop order. All terms beyond
the tree approximation in the expressions involve poles in
e. To remove these divergences and obtain the dynamic
scaling properties of the KPZ equation, one has to apply
the renormalization group theory. This is the content of
the next section.

A1 ————+ —ln 21 1
16 16

A2 ——
16 ln 2.

(22)

(23)
3 1

[A] = dg = —+ —d„——d~,
2 2

"
2

(27)

Note that the leading term here is O(1/e) rather than
O(1/e ).

Now we turn to calculation of I.'O2. The calculation is
similar to that of I'11 but with three main differences.
First, the external frequency cu can be set to zero, which
makes the calculation easier. Next, there is a contribu-
tion from the one-loop graph. Finally, the leading term
is O(l/e ), as expected. From the results listed in Ap-
pendix B and Eq. (13), we have the vertex function I'o2
to O(1/~),

[cu] =2 + d„, [A]

(ii) Height fields in Fourier space

6+0 3 I
[h(k, (u)] =— 8 + —do

2 2
"

2

2+d 1 1
[h(k, (u)] =— —0 ——dD.

2 2" 2

(29)

I o2(k (u) = 2 D 1 + KgA k

K A k
B2
~2 d (24)

(iii) Vertex functions in Fourier space. In view of Eqs.
(12), (29), and (30), after the overall momentum con-
serving b function is removed, we have

where
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d~N = d+2+ N — N + d„
2 —d 2+d - N —N+2

2 2 2

N —N
dD .

2

In particular,

2+ dv& doz = dD.

(32)

The canonical dimensions of v and D, i.e., the values of
d„and dD, cannot be determined by the theory. As we
shall see later, the final dynamic scaling properties do not
depend on their exact values. However, they are relevant
for the derivation of the dynamic scaling form.

renormalization functions. That is, the divergences ap-
pearing in the perturbation expansion series can be re-
moved by redefining the height fields and the coeKcients.
Nevertheless, the most important usage of the renormal-
ization program lies in the fact that it leads to a very
beautiful formalism, i.e., the renormalization group the-
ory, which enables us to study the scaling behavior of the
system. We begin with the derivation of the renormal-
ization group equation of the KPZ model. Consider first
Eq. (38). Since the bare vertex function in the right-
hand side of Eq. (38) is independent of the reference
wave number e, we have

B. Renormalisation of vertex functions

To remove the divergences that appear in the pertur-
bation expansions of the vertex functions, we introduce
five renormalization functions, which are listed below.

(i) Hei ght geld ren-onnalization.

(42)

where (rB/Br)o means that the derivatives are taken at
fixed bare parameters. After performing the derivatives,
Eq. (42) can be rewritten as

Z1/2 hr I Zy/2 hz

(ii) Cocci eat mnormalization.

(34) 8 8 ~ 8
+p(u) +) ( o" N N

'7 y
2 2

0=Z ~", o = vDA. (35) xI'" -({k, ){"), ; ) = 0, (43)

(iii) Reduced coupling constant. It is convenient to in-
troduce two dimensionless constants

K A =u r'/ K A" —= ur'/

where the Wilson function

p(u)=l ~—
I

r Bu)
'E ~") o

(44)

where e is a reference wave number. Using the three
renormalization functions {Z ) introduced above, the
coupling constant can be renormalized as, from Eqs. (20)
and (35),

3
2 ZR/ 2

Z'ZD

(iv) Vertex functions. Similar to the coupling constant,
the vertex functions can also be renormalized without
introducing new Z functions,

r" -({k ) {") )

=z"~'z"~'r -({k ) { ) w) (38)

where 0 = v, D, A. In particular,

r~~(k, u);{o."),u;~) = (ZZ) ~ rqq(k, (u; {cr),uo, P),
(39)

and the five exponents are given by

(45)

(46)

(47)

r81 u, )
2( Bu

rBlnz 'l

, o=v, D, A,
)o

rBlnzl
)o

rainz)
BK

Equation (43) is the Callan-Symanzik equation, or some-
times called the renormalization group equation, of the
KPZ model. Note that the Wilson function P(u) and all
exponents are finite when A m oo at d = 2 due to the
fact that I'~N is finite in this limit. The Wilson function
can be expressed in a convenient form

r;, (k, ~;{~"),u;~) =Zr„(k, ~;{~),u, ;A), (40)
r"„({k, );{"),u; ) =ZZ'~'r„({k, );{~),u„.~) .

(41)

We now have five renormalization functions, namely Z,
Z, and Z (o = u, D, A), to be determined by the condi-
tions given in Eqs. (37)—(41).

Similarly, for the exponents, we have

Oln Z=P(u), o. = v, D, A,
t9u

Bin Z
au

Bin Z
Btc

(49)

(50)

(51)

C. Callan-SymanF ik equations
and Wilson function

The renormalization program discussed above assures
that a finite theory can be obtained by introducing the

These expressions will be used in the calculation of the
fixed point and its dynamic scaling exponents.

By means of the standard method of characteristics,
the differential equation (43) can be solved and the vertex
function I'~~ reads
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1'" - ((» ) ( "(p)) (p) p)

~dx N N= exp ——p(x) + —p(x)
1 X 2 2

xr.„„((k, j;~~"), ; ),
where the characteristic equations are

(52)
From Eq. (55), the asymptotic form of the vertex func-
tion is given by

("-(u(p)) = p

&(u(p)) =p
d

du(p)

d lna" (p)
dp

(53)

(54)

( k ) —
~~ (NP'+NP')r-- = INN

(62)

with the initial conditions u(l) = u and a"(1) = o".
Since the vertex function I'NN has dimension dNN given
in Eq. (32), it is convenient to define a dimensionless
function 4~g by [35]

I'" ~ ((k, (u ); (0'), u; r.)

In particular, we consider the cases of N = N = 1 and
K = 0, N = 2. From Eq. (62), we have

(~'+~')
I', ;(k, ur) = k""

/

—
f

4ii
/

&&) (v~k2( —")& )
(63)

Therefore, by Eq. (52), it follows that

r;;(k, )=k"-
~

—
~

C„
& "k'(-"„)&-') (64)

A few algebraic manipulations yield the asymptotic form
of the two-point correlation function,

~dz N N= p' exp — ——7(x) + —7(x) )1 x 2 2 Rom which the dynamic scaling exponents can be iden-
ti6ed as

( (x)eed ) ((x)e ) (p)l ( ) & = 2+(:, X = —2(W"+() (66)

In order to obtain scaling relations, we assume that
there exist fixed points at which the reduced coupling
constant u reaches a value u* such that any change in
the scale of the momenta does not affect it. Therefore,
from Eq. (53), the fixed points are determined by

P(u') = 0 .

The asymptotic form of the vertex function is given by
the vertex function taken at the 6xed point. Correspond-
ingly, we have

Making use of Eq. (56), we obtain

@as d~~ —21-(N~ +Np )
NN

Kp' (pr.)'+'- '
(pr.)"-

%e shall devote the following part of this section to the
calculation of these exponents.

D. Dynamic scaling exponents

According to the discussion presented in Sec. IIB,
there are six renormalization constants, Z, Z, Z (0
v, D, A), and uo, to be calculated. These quantities
are not universal in the sense that they remove all di-
vergences &om the perturbation expansion of the ver-
tex functions. They depend on the particular nor-
malization conditions one applies. But the universal
quantities describing the physics of the system, such
as the dynamic scaling exponents, are identical for all
renormalization programs used. Here we apply the
minimal-renormalization procedure [31—33] to determine
the renormalization constants. That is, they are obtained
by deciding that the renormalization constants just re-
move the poles in e of the divergent vertex functions.

First of all, we express the renormalization constants
formally in terms of power series in the variable u,

Setting

v"p&- D"p~~
p= —, „=1, „=1,r ' (pr)~- ' (p~)"~

we have

(60)

uo=u(1+G2u +G4u )
Z~ = 1+b~2tC +6~4'll ) t7 = V~D)~ )

Z = 1 + c2tt + c4'll

Z = 1 + d2ZC + d4Q

{67)
(68)

(69)

(70)



49 FIELD-THEORY RENORMALIZATION APPROACH TO THE. . . 5053

Thus the task is to calculate the coeKcients a2, a4, and
so on by the requirement that poles in e be minimally
subtracted. Further inspections reveal that there are only
6ve conditions available in our minimal-renormalization
program, which can be found from Eqs. (37), (39), (40),
and (41). This implies that the coefficients a2 —d4 cannot
be completely obtained. However, from Eqs. (48), (49),
and (66), we see that to obtain the scaling exponents all
we need to know are the quantities uo and Z„. After some
simple algebraic manipulations, we find that these two
renormalization constants can be determined uniquely,
and can be written as

Bg
tip ='ll 1 — Q +

26

Ai+ 3A2 1

2

7B~2 —4' 1 4+ — tC
8

(71)

Z„=1+0 x u — (Ai —A2) —u2 1 4 (72)

(„=2 (Ai —Az) u (74)

Now let us consider Eq. (73). As mentioned before, the
Wilson function p(u) must be finite in the limit e

0. This requires that the coeKcients of the terms with
poles in ~ must cancel each other. Namely, we must have
Bi2 —B2 ——0. Equation (25) shows that this relation is
satisfied, as mentioned in the previous section.

Now we are ready to calculate the fixed point and its
dynamic scaling exponents. Setting the right-hand side
of Eq. (73) to zero, the strong coupling fixed point for
d = 2 is found to be

(u')' =
2(A, + 3A, ) 41n2 —1

(75)

It is easy to show that "~&" . & 0, so that this 6xed
point is infrared stable. Substituting the above expres-
sion into Eqs. (66) and (74), we obtain the dynamic
exponent at this 6xed point

z=2 1
1.84,

2(4 ln 2 —1)
(76)

which implies the roughening exponent

0.16 . (77)

The value of y is smaller than the values found from
simulations of discrete models. In the next section, we
shall comment on the difference.

where the coeKcients Ai, A2, Bq, and B2 are given in
the previous section.

Substituting these expressions into Eqs. (48) and (49),
one obtains the Wilson function P(u) and the exponent
(„(u) as power series of u. To the order required, we have

Bi, ( Bi2 —B2 5
p(u) =u ——— u'+

~

Ai+3A, + '
lu

2 2 )
(73)

rv. DrscUssrom wxo eoxcLUsroN

We have studied the long wavelength properties of the
Kardar-Parisi-Zhang equation using 6eld-theoretic renor-
malization techniques. In substrate dimension d = 1, the
perturbation expansion series of the response function
and the two-point correlation function are found to obey
the Quctuation-dissipation theorem order by order, indi-
cating that the exact results y = 1/2, z = 3/2 can be
obtained perturbatively to both one- and two-loop or-
der approximations. In substrate dimension d = 2, a
renormalization group program has been developed and
a stable strong coupling 6xed point has been found. This
fixed point governs a rough state of the driven interface
with the dynamic scaling exponents y 0.16, z 1.84.

Even though the relationship between the KPZ equa-
tion and the discrete models has not been rigorously es-
tablished yet, it is generally believed that these models
belong to the saxne universality class. However, the dy-
namic scaling exponents obtained in our study are clearly
different from the results of numerical simulations on the
discrete models. If we accept the universality conjecture,
then the difference must arise from the perturbation ex-
pansion. Clearly, our 6xed point value u' cannot survive
to the next order approximations and there is no mea-
sure telling us how close our u* is to its true value. In
fact, the renormalization group study in the critical di-
mension is problematical since the loop expansion is not
an expansion in a sm.all parameter and one does not have
a small parameter to control the perturbation expansion
(e = 0). This is a fundamental problem of the renor-
malization group theory [31]. Nevertheless, presently it
is the only way one can systematically obtain the strong
coupling fixed point of the KPZ equation in the critical
dimension.

Two interesting features of this study are worth not-
ing. First, the strong coupling fixed point (75) does not
connect to the conventional strong coupling fixed point
in 1+ 1 dimensions [14—16]. Besides the strong cou-
pling fixed point (75), there is another fixed point which
is proportional to e. This fixed point is unstable and
becomes Gaussian in the critical dimension, and corre-
sponds to the conventional strong coupling fixed point in
1+ 1 dimensions. Unfortunately, one cannot obtain the
1+1dimension scaling properties from this fixed point by
the traditional e expansion formalism due to its unstable
nature. Secondly, the functional renormalization group
studies [19, 21] and the self-consistent approaches [28,
29] have raised the possibility of a finite upper critical
dimensionality beyond which the strong coupling expo-
nents become equal to those at weak coupling. Clearly,
this property is not observed in our studies. We believe
that this matter cannot be elucidated by the present cal-
culation. In fact, we are strongly bound to the neighbor-
hood of the critical dimensionality by the field-theoretic
renormalization group method that we use [31].

In conclusion, we obtained the strong coupling fixed
point of the KPZ equation for physically interesting di-
mensions. Our results y 0.16 and z 1.84 are consis-
tent with the earlier numerical results of [23—25]. How-
ever, due to the reason stated above, we do not resolve
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the controversy between the results of Refs. [23—25] and
[26, 27]. Our values of the dynamic scaling exponents
result from the leading nontrivial approximation to the
strong coupling fixed point. Presumably, these results
could be modi6ed by contributions from the next and
higher order terms in perturbation theory.

APPENDIX A: INTEGRALS FOR RESPONSE
FUNCTION

En this Appendix we list all expressions of Feynman
graphs of the response function and their final results in
2 —e dimensions to order O(1/e).

1. One-loop order
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APPENDIX B: INTEGRALS FOR CORRELATION FUNCTIONS

In this Appendix we list all expressions of Feynman graphs of the two-point correlation function and their final
results in 2 —e dimensions to order O(1/e).
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1. One-loop order
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APPENDIX C: FLUCTUATION-DISSIPATION
THEOREM

In this Appendix we show that the perturbation expan-
sion formalism obeys the Buctuation-dissipation theorem
order by order.

1. One-loop order

From the expressions of ro, co, and their corresponding
symmetry factors, the one-loop order vertex functions

r]y and F02 reduce to(~) (~)

(x) & & l k(k —q)

& 1'2') , q' + (k —q)' '

r =2x2D
q' + (k —q)'

By changing integration variable, we have

f k(k —q) 1 2 1
q2 + (k —q) 2 , q' + (k —q)' '

which establishes Eq. (19) at the present order.

2. Two-loop order

Similarly, setting d = 1, all expressions of r and c
reduce to quite simple forms and the vertex functions
at this order read

r = A k
qp[p' + (k - p)'1 + q(k p)[q' -+ (k - q)']„[q' + (k —q)']'[p' + (k —p)'l[p' + (k —q)' + (q —p)'] '

~(2) 2Dp4 qp[p' + (k —p)'] + q(k —J )[q' + (k —q)'l
[q2 + (k q)2]2[p2 + (k p)2][p2 + (k q)2 + (q p)2]

which imply Eq. (19).
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