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The object of our study is the one-dimensional discrete C model. %e compare two equilibrium
properties by use of molecular dynamics simulations: the Lyapunov spectrum and the time depen-
dence of displacement-displacement and energy-energy correlation functions. Both properties imply
the existence of a dynamical crossover of the system at the same temperature. This correlation
holds for two rather difFerent regimes of the system —the displacive and intermediate coupling
regimes. These results imply a deep connection between slowing down of relaxations and phase
space properties of complex systems.
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I. INTRODUCTION

The classical statistical mechanics of macroscopic sys-
tems in equilibrium essentially uses the ergodicity conjec-
ture, i.e., time averages are replaced by phase space av-
erages. The nongeneric occurrence of integrable systems
and the existence of stochastic webs in the phase space
of nonintegrable systems with N & 3 (N is the number
of degrees of freedom) [1] together with Boltzmann's ap-
proach (cf., e.g. , [2]) provides an intuitive explanation of
the ergodicity conjecture. However the dynamics of non-
linear macroscopic systems shows up with rather complex
properties so that further details of nonlinear dynamics
have to be exploited. In this contribution we deal espe-
cially with properties of slow relaxations. Common ex-
amples could be critical slowing down near second order
phase transitions [3) and freezing near the liquid-glass
transition [4]. In these problems one has to deal with
dynamics on different time scales. The success of phe-
nomenological and semiphenomenological theories to de-
scribe slow relaxations in those systems does not alter
the fact that we are far &om completely understanding
the underlying microscopic dynamics.

The modern theory of nonlinear dynamics provides
us with several useful results. First we mention the
Kolmogorov-Arnold-Moser theorem (KAM) [1]. It states
that if an integrable system is slightly perturbed with a
nonintegrable perturbation, there exists a set consisting
of N-dimensional tori close to the tori of the unperturbed
integrable system. The set in the perturbed system is
nowhere dense but forms a large part of the phase space
(i.e. , the measure of the complement of the set tends to
zero as the perturbation is lifted). If the perturbation
strength overcomes a finite value, most of the perturbed
tori are destroyed. The KAM theorem deals only with
the possibility of a nonintegrable system to evolve on
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regular trajectories (tori). In that sense KAM makes no
statements about 6nite time stabilities. Second we men-
tion the Nekhoroshev theorerns [5]. These theorems deal
with 6nite time stabilities. They provide us with lower
bounds on time scales on which the nonintegrable system
evolves on a trajectory close to a regular one. Finally
we mention the numerical evidence for the existence of
strong stochasticity thresholds (SST) (in the strength of
the perturbation) [6]. Below the SST the system's tra-
jectory evolves mainly along resonances in phase space.
Above the SST the trajectory evolves across resonances
thus speeding up the relaxation of the system, which can
be roughly brought into connection with the time the
system's trajectory needs to cover a major part of the
available phase space.

A subtle point in the application of the above results
to macroscopic systems is the dependence of different
threshold values on the number of degrees of &eedom.
Despite controversial opinions there seems to be some
agreement that neither the KAM tori nor the Nekhoro-
shev finite time regularity survive in the limit N ~ oo [7].
In other words, those properties are suppressed to regions
of almost zero energies per degree of freedom (tempera-
ture) in the thermodynamic limit. Only the SST seems
to survive. The increase of the energy per degree of &ee-
dom in a nonlinear nonintegrable system is equivalent to
the increase of the strength of a certain nonintegrable
perturbation. Then it could be possible that at certain
finite energies per degree of &eedom the system will be
close to another integrable system. For instance it is pos-
sible for certain systems to increase the energy per degree
of freedom to in6nity and become in6nitely close to an
integrable system. Thus we would not a priori rule out
the applicability of the KAM and Nekhoroshev results to
macroscopic systems at finite temperature.

In this work we present results of numerical experi-
ments for a simple one-dimensional lattice model. We
show that both the relaxation times and Kolmogorov-
Sinai entropy (KSE) are sensitive to the existence of a
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dynamical "phase transition. " In other words we can de-
duce changes in relaxational properties by measuring the
KSE and changes in the type of phase space trajectories
by measuring relaxation times. The interpretation of our
results is (in our opinion) closely connected to the thresh-
olds discussed in the above paragraph. It is also useful
in detecting new kinds of elementary excitations (quasi-
particles) in complex systems, as we will demonstrate by
analyzing two particular model realizations.

II. MODEL) NUMERICAL METHODS

We study a d = 1 dimensional discrete classical model
given by the Hamiltonian

N

H = ) Pi + ——C(Xi —Xi g) + V(Xi)
2 2

L=1

P~ and X~ are the canonically conjugated momentum and
displacement of the l th particle, where l marks the num-
ber of the unit cell. C measures the interaction to the
nearest neighbor particles. All variables are dimension-
less. The mass of the particles is equal to unity. N is
the total number of particles. The nonlinearity appears
in the "on-site" potential V(x) which is of the C type:

The barrier height of this double well potential is b, =
0.25. The interaction parameter t and the energy per
particle E/N (E is the total energy of the system) are the
two parameters of the system. The temperature T (mean
squared velocity) is then given through a virial theorem.
The classi6cation of the system behavior in the (C, T)
plane turns out to be rather complex. First we mention
the existence of a critical point (second order phase tran-
sition) on the line (C, T, = 0) [8]. The order parameter
is (X) = P& X~. For finite temperatures below the value
of b, one Bnds the following: Ising-like (order-disorder)
behavior for C « 1, displacive (continuous) behavior for
C & 1, and a subtle intermediate behavior in between
the two previous C ranges. For temperatures tending to
infinity the system behaves like uncoupled quartic oscil-
lators with canonical energy distribution. For any finite
value of C the correlation length ( will decrease from in-
finity (T = 0) to zero (T = oo). Fixing the temperature
one finds zero correlation length for C = 0. Increasing
C leads to an increase of (. For C m oo the correlation
length tends to infinity. This is due to the fact that the
critical region around T = 0 increases as the interaction
is increased.

The slow relaxational dynamics of our system is, in
part, our focus. The simplest way to describe it would
be to consider the correlation function S~,» (tu),

Sx,»(t) = (Ar(t)Aq), Sx,~„=(AiAx),
S~(» ((u) = i S~,~, (z = (u + i0),

F(z) = l:[F(t)]= — dte"'F(t) .
Z 0

Here (...) denotes the standard canonical average and
C[...] means Laplace transformation. The local micro-
scopic variable A~ could be any combination of the canon-
ical variables setting up our desired Hamiltonian in (1)
and (2). The imaginary part of the susceptibility is then
defined as

(4)

and can be studied on a logarithmic frequency scale, as
commonly done to study slow relaxations in glass dynam-
ics [4]. Since the order parameter at the phase transition
at T, = 0 is & X )= P& X~, we expect to observe crit-
ical slowing down in both S~,~, and g&,&, . The half
width of a central peak around ur = 0 in Sx,x„(u)or
the position of the corresponding low-&equency peak in
g~& x„(u)could serve as an inverse relaxation time.

Another powerful and mathematically well defined
method in studying nonlinear dynamics of complex sys-
tems is the Lyapunov spectrum, meaning in our case the
set of 2N Lyapunov exponents of a one-dimensional N-
particle system, ordered with respect to their magnitude
(Aq ) Az ) ) Aq~). For Hamiltonian systems that
are considered here the spectrum is symmetric with re-
spect to zero, i.e., A; = —A~~;+q because of the sym-
plectic evolution in the tangent space [9]. In the ther-
modynamic limit N ~ oo the existence of a smooth dis-
tribution of Lyapunov exponents has been numerically
veri6ed [10]. Intensive quantities like a Lyapunov den-
sity

A(x) = A;g~, —-+ x, N -+ oo

or the Kolmogorov-Sinai entropy per particle S~s
1

Sas = A(x) dx
0

(6)

can be introduced as useful quantities for the descrip-
tion of the system behavior. In the simplest cases it
can be explicitely shown that the value of the positive
Lyapunov exponent, which characterizes the correlation
decay on short time scales (local instability), is also con-
nected (sometimes linearly) to a relaxation time of the
system [11].In other words, the Lyapunov exponents de-
termine the relaxational behavior of correlators. However
in systems with many degrees of freedom the connection
between the Lyapunov exponents and the time depen-
dence of correlators on long time scales is not known. In
highly chaotic regimes the shape of the function A(x) is
always linear and independent of the special form of the
Hamiltonian, as was proved by random matrix approxi-
mations [12]. As the temperature decreases, decreasing
of the KSE occurs due to an increase in the curvature of
A(x) and a decrease of Aq towards a less chaotic behavior.
In the low temperature regime the shape of A(x) around
x = 0.5 is nestled against the x axis yielding a grow-
ing number of very small Lyapunov exponents preparing
the smooth transition to the integrable case S~s ——0 at
T = 0. From the special shape of the KSE as function
of temperature, we expect to get additional information
about the longest time scales of the system with respect
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to the shortest ones, i.e., about the relaxation behav-
ior. A similar method was used in [13] to detect a phase
transition in a two-dimensional Heisenberg model and in
Refs. [6, 7] to detect the SST. To evaluate the properties
of interest we used molecular dynamics methods. The
detailed explanation is given in [14] for the time depen-
dence of correlators and in [15] for the Lyapunov spectra.

0.03—

0.02— ~s

~ k
4

III. RESULTS

A. C=4
0.01—

For C = 4 we find the following scenario. With de-
creasing temperature the inverse correlation length 1/(
decreases. At T = 0.35, ( is of the order 200 [16, 14].
At that temperature a drastic change in the temperature
dependence of 1/( (on a linear scale) takes place [14].
On a linear scale (Fig. 1 in [14]) it looks like 1/( be-
comes zero below the crossover temperature. However,
that is not the case (there is no phase transition at finite
temperatures in those systems). Instead the correlation
length stays 6nite at lower temperatures, but it becomes
very large. A discontinuity is seen in the inverse static
susceptibility at this temperature. The temperature de-
pendence of the position u I of the low &equency relax-
ational peak in yx, &, (u) (cf. [14]) is shown in Fig. l.
Clearly a crossover behavior at T —0.3 is observed.

In Fig. 2 we show the temperature dependence of the
KSE. Again we find a crossover behavior around the same
temperature 0.3. The KSE tends to zero by lowering the
temperature to the crossover value. Below the crossover
the temperature dependence of the KSE is seemingly
drastically changed.

The interpretation of the excitation spectrum of the
system goes as follows. At temperatures around 0.5 and
below, kink-induced relaxations become well separated
from (still anharrnonic) phonon excitations [17]. The de-
crease of temperature leads to a decrease of the density
of the kinks, thus allowing us to detect their presence in
the low-frequency part of the spectrum. Despite the dis-

0.05

0.5 1.0 1.5 2.0

FIG. 2. Kolmogorov-Sinai entropy Szz versus tempera-
ture 7 for C = 4. Triangles: N = 20; squares: N = 50;
circles: N = 100.

creteness of the system (lattice) the kinks are not affected
by the negligible Peierls-Nabarro potential (the Peierls-
Nabarro barrier is 4 x 10 s) and essentially move as in
the corresponding continuum system [18]. Because the
density of the kink subsystem is low, the collisions be-
tween kinks become rare. The increasing relaxation times
appear because of lowering the kink density. Only the
motion of kinks can provide the system with an equilibra-
tion channel. I et us test the applicability of the phonon-
kink picture where phonons and kinks are assumed to
be noninteracting with each other. Then it follows that
the inverse correlation length (or kink density) is propor-
tional to the square root of the inverse temperature mul-
tiplied with an exponent of Ei,/T, whe—re Es = 2/3/2C
is the minimum kink energy [19]. In Fig. 3 we clearly see
how this law is realized. A rough estimation of the kink
energy &om the slope in Fig. 3 even yields the contin-
uum value within 5%%uo [18]. This result also indicates that
the above discussed dynamical crossover is not detected
in the simple temperature dependence of the relaxation
times and correlation length, but rather in more subtle
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0.01—
0.01—
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0 0.1 0.2 0.3 0.4 0.5

FIG. 1. Position of the low-frequency relaxational peak
of Xx, x, ~ (cf. [14]) versus temperature T for C = 4,
N = 4000.
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FIG. 3. T /( versus 1/T for C = 4, N = 4000.
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FIG. 4. T Szs 'versus 1/T for C = 4. Symbols are the

same as in Fig. 2.

dynamical scaling properties [14]. Consequently we ex-
pect the same to apply to the KSE. We show in Fig. 4
the realization of the same temperature law as in Fig. 3
for the correlation length. Thus the essential result we
find is that the rapid decrease of the KSE below T = 0.5
indicates the system to be close to an integrable one.
The analysis of the high-frequency excitation spectrum
as well as the low-&equency relaxation spectruxn leads
to the conclusion that the system can be described by
a mixture of weakly interacting phonons and kinks with
corresponding temperature dependent kink density.

B.C=0.1
For C = 0.1 the scenario is changed. The correlation

length increases very slowly with decreasing temperature.
At T = 0.1 it is still of the order of 5 lattice spacings [16,
14]. The relaxation time increases much more rapidly. In
[16] it is seen that an analogous crossover temperature as
in the C = 4 case seems to be reached at temperatures
around T = 0.1. In Fig. 5 we show ur (cf. [14]) as a

function of texnperature. Indeed, a strong slowing down

is observed around the above cited temperature.
In Fig. 6 the temperature dependence of the KSE is

shown. First we find a maxim»m in the KSE around T =
0.5 (for a discussion see [15]). Below that temperature
the KSE rapidly decreases with decreasing texnperature.
That indicates that for T ( 0.5 one can again try to
find an integrable system which is close to the studied
one. Second there is a steplike decrease in the KSE at
T 0.03 (inset in Fig. 6).

The interpretation of the excitation spectrum is not
well known in that case. Let us start with the still present
kink subsystem. The change of the interaction parameter
C from 4 to 0.1 mainly affects the movability of the kinks.
That should happen because the Peierls-Nabarro poten-
tial that the kinks are affected by during their motion
through the lattice has a barrier height of approximately
0.164 [18]. Thus the kinks are trapped by the discreteness
of the lattice. The radiation of energy by moving kinks is
also strong compared to the C = 4 case. Then the lattice
site change of a kink becomes a hopping process with-
out strong correlations to previous site changes. Conse-

quently for the same kink densities as in the C = 4 case a
longer relaxation time of the displacement-displacement
correlator can be expected, as found in the nuxnerical
simulations [14).

Still the kink density decreases with temperature, so
that more and more different degrees of &eedom are ex-
cited when lowering the texnperature. In contrast to the
C = 4 case the high-&equency part of the displacement-
displacement spectruxn is far &om being described by
(weakly interacting) phonons [17, 14]. The spectrum in
this &equency range is qualitatively very sixnilar to spec-
tra of uncorrelated particles (C = 0) [20]. However this
seems to be strange since one can estimate the interac-
tion contribution for C = 0.1 and find that in the given
temperature (energy) ranges the coupling energy is com-

parable with the total energy [21]. To understand the
nature of this high-&equency part we show in Fig. 7 the
time dependence of the local energy-energy correlator for
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FIG. 5. Same as in Fig. 1 but for C = 0.1.
FIG. 6. Same as in Fig. 2 but for C = 0.1. Inset: Zoom

of the temperature region 0 (T ( 0.15.
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FIG. 7. Local normalized energy-energy correlator S„„
versus time for C = 0.1, N = 1000 and the temperatures
T = 0.055, 0.067, 0.07, 0.073, 0.11,0.15 (lower temperatures
correspond to higher values of the correlstor at large times).

FIG. 8. Hypsometric plot for the displacement patterns
for t = 0.1, T = 0.1, and N = 1000. A segment of the chain
{100particles) is actually shown. Ordinate: time; abscissa:
particle number. A filled square is drawn if the given particle
has negative displacement, otherwise white space is left.

difI'erent temperatures, i.e., for

A) ——e( = P) /2+ V(X))
+0.25C[(X( —X( g) + (X(+, —Xt) ]

If the kink excitations are the only localized ones, then we
expect a plateau to appear in the correlator. We could
estimate the height h„ofthe plateau by knowing the
kink energy EJr 0.258 [18] and the kink density 1/(:h„=E122/(2(). For all temperatures in Fig. 7 we find
that we underestimate the height of the plateau by 30—
50'%%uo. Thus we have to conclude that other degrees of
&eedom in the system are excited, which provide energy
localization. The explanation of the puzzle is very likely
the existence of nonlinear localized excitations (NLE's)
[22,21]. These NLE's can be excited without the presence
of topologically induced kinks as well as in combination
with kinks. The NLE's are (nearly) regular solutions of
the nonlinear translationally invariant lattice. A single
NLE is described by a 6nite set of fundamental frequen-
cies and can be viewed as the excitation of a finite set
of nonlinear localized degrees of freedom. Thus a given
lattice which shows up with NLE's at 6nite temperatures
can be viewed as evolving (close to) on high-dimensional
tori in phase space for finite times. The typical NLE
for the case under study consists of three excited par-
ticles, one central (large amplitude), and two neighbors
(small amplitudes). Indeed the NLE's can be observed
in hypsometric plots in [14]. In Figs. 8 and 9 we show
two hypsometric plots which demonstrate the presence of
NLE's at the temperature T = 0.1. Finally in Fig. 10 we
show g,", versus frequency. The huge halfwidth of the
low-frequency relaxational peak (nearly three decades)
indicates that several relaxational processes are present,
e.g. , the kink hopping and the NLE relaxation. There
are two intriguing facts which support the above given
interpretation of the spectrum. First it is known that
the NLE's (excluding the NLE's excited on kinks) have
an existence energy threshold [22]. For C = 0.1 this

threshold has a value of about E = 0.1 [22]. Since three
particles are involved in the NLE, it yields an energy
of 0.03 per particle. This value comes rather close to
the above described step in the KSE at T = 0.03. The
reason why the KSE increases steplike if one heats the
system above the step temperature might be that below
T = 0.03 essentially no NLE's are excited, so the system
excites small amplitude phonons which can have longer
lifetimes compared to the NLE's. Above the step temper-
ature more NLE's are excited. The second fact is that the
NLE's completely disappear at NLE energies of around
1.5 [21]. This corresponds to an energy per particle of
0.5. It is rather close to the found maximum in the KSE
at T = 0.4.

IV. DISCUSSION

When the KSE of a system becomes zero at a certain
value of the system control parameter, the system itself

I I

60—
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3

~ ~I

0—
I I I I I I I

0 20 40 60 80 100
PARTICLE NUMBER

FIG. 9. Same as in Fig. 8 but a filled square is drawn if
the displacement of the given particle is closer to any of the
ground state positions +1 than 0.3.
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FIG. 10. y,"„,for C = 0.1, N = 1000 versus frequency
~ as calculated froxn the correlators in Fig. 7. Lower tem-
peratures correspond to lower values of the position of the
lowest-frequency relaxational peak.

becomes integrable. If the KSE tends to zero (but does
not exactly become zero) approaching a certain range of
the control parameter space, the system becomes close to
an integrable system. Our results show that for the one-
dimensional 4'4 system at the same time as the ternper-
ature dependence of the KSE shows up with a crossover,
the temperature dependence of certain relaxation times
of the system does the same. What that result implies
is that if the relaxation of a system drastically slows
down, the system itself becomes drastically close to an
integrable system. That means that the system evolves
over longer and longer times close to some tori in the
phase space, and mixing occurs on larger time scales.
The mixing time scale which should be essentially identi-
cal with the relaxation time becomes separated from the
time scale provided by the motion on the tori of the cor-
responding integrable system (i.e., the inverse frequencies
in the action-angle representation of the integrable sys-
tem).

Now we can formulate an essential part of our results.
If the relaxation time of a system becomes drastically
large (by smooth changes of control parameters) that
would imply that certain Lyapunov coefficients may tend
to zero. But surprisingly we find that the largest Lya-
punov coefficient tends to zero, and thus the whole KSE.
Consequently the whole system becomes close to an in-
tegrable system.

In analyzing the data for C = 4 we found that in the
temperature region of low KSE and large relaxation times
the systexn becomes close to a weakly interacting kink-
phonon system. Thus our analysis provides us with an
understanding of the typical "quasiparticles" (phonons,
kinks) and the reasons for slow relaxation (low kink den-
sity, weak phonon-phonon interaction). The C = 0.1
case turns out to be similar in the correlation between
KSE and relaxation, but totally diferent in the inter-
pretation of the excitation spectrum. Here our analysis
supports the picture of nonlinear localized excitations as

quasiparticles together with kinks. The slow relaxation
is now given by the slow diffusion of kinks (high Peierls-
Nabarro barrier) and the slow relaxation and interaction
of NLE's.

Butera and Caravati [13] have found numerically that
a system of the Heisenberg O(2) universality class shows

up with a crossover of the maximum Lyapunov coeffi-
cient versus texnperature behavior at the phase transi-
tion (where both correlation length and relaxation times
diverge). This result could be viewed in analogy to our
C = 4 case. Undoubtedly the system becomes noner-
godic if one passes the critical texnperature &om above.
The strange part in both results is the following: the fact
that the largest Lyapunov coefficient (and thus the KSE)
tend to zero at the critical point implies the system to
be close to an integrable one.

Let us also mention the results of Pettini and Lan-
dolfi [6] and Pettini [7]. These authors have investigated
a modified 44 model [where V(X) = zX~ + 4X4] and
Ferxni-Pasta-Ulam models in one dimension. All these
models seem not to have a phase transition, thus the
found slowing down cannot be attributed to large spatial
correlations. The observed crossover both in the relax-
ation times and in the largest Lyapunov exponent ver-
sus temperature dependence were thus attributed to the
presence of a strong stochasticity threshold. This thresh-
old separates motion xnainly along resonances &om mo-
tion mainly across resonances of an assumed underlying
and perturbed integrable system.

Another interesting case is the study of liquid-glass
transitions. These transitions are defined by a slowing
down of structural relaxation in the undercooled liquid.
Recently Madan and Keyes [23] have studied the dynam-
ics of Lennard-Jones liquids. Using molecular dynamics
they calculated the fraction of unstable modes out of an
averaged density of states. Around the freezing (glass)
transition a crossover in the texnperature dependence of
the fraction of unstable modes is found. Although there
is no clear mathematical connection between their den-
sity of states and the Lyapunov spectruxn, it seems to
be likely that an investigation of the largest Lyapunov
exponent would yield analogous results.

Suxnmarizing we have shown two examples of slowing
down in complex systems. The simultaneous decrease
of the KSE allows us to make statements about the na-
ture of excitations in the systems under consideration.
Below the crossover (dynamical phase transition, strong
stochasticity threshold) the systems are likely to behave
as a set of weakly interacting excitations. Thus one can
construct microscopic theories to describe the crossover
phenomena.

Note added. We have recently learned about system-
atic discrepancies between the behavior of the correlation
length in the case C = 4 and results from considera-
tions of noninteracting kinks and phonons [24]. However
these discrepancies do not indicate in any form a dynaxn-
ical crossover mediated by the kink-phonon interaction.
Consequently the results on the phonon-mediated eHec-
tive kink-kink interaction of Ruderxnan-Kittel-Kasuya-
Yosida —type as found in [25] should not alter our observa-
tions. Finally let us xnention the observation of NLE-type
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excitations at 6nite temperatures in a new Klein-Gordon
chain with double-quadratic onsite potentials [26].
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