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Scaling and density of Lee-Yang zeros in the four-dimensional Ising model
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All of the information on the behavior of the four-dimensional Ising model is contained in the
distribution and density of its partition function zeros. This model is believed to belong to the
same universality class as the Ps model which plays a central role in relativistic quantum field

theory. Here the scaling behavior of the edge of the distribution of zeros and the asymptotic form
for the density of zeros are determined. The 6nite-size dependency of the density of zeros —or
the distance between zeros —at the infinite volume critical point is found using both analytic and
numerical approaches. As vrith a previous analysis of the low'est lying zero, emphasis is laid on
the multiplicative logarithmic corrections to mean 6eld scaling behavior vrhich are related to the
triviality of the Ising and P models in four dimensions.

PACS number(s): 05.50.+q, 02.70.—c, 05.70.Fh

I. ZEROS OF THE PARTITION FUNCTION

The four-dimensional (4D) Ising model is believed to
belong to the same universality class as the P4 model
which plays a central role in relativistic quantum field

theory. At a value e of the intersite coupling and in
the presence of an external 6eld H, the grand canonical
partition function may be written as a polynomial in the
fugacity z = exp (—2&H) [1]

N

ZN(t, z) = z s ) p„(t)z"
n=o

where N is the number of lattice sites, p„anintegrated
density, and the reduced temperature t = 1 —K,/tc, is a
measure of the distance away &om the infinite volume
critical value K,, of z.

That the partition function (1.1) is analytic for finite
N establishes that no phase transition can occur in a
finite-size system. However, as N is allowed to approach
in6nity, phase transitions which manifest themselves as
points of nonanalyticity can and do occur. In 1952 Yang
and Lee [1] showed that the study of the onset of criti-
cality is equivalent to that of the scaling behavior of the
zeros of the partition function. For a finite system, or
in the thermodynamic limit but in the symmetric phase
(t ) 0), the zeros in H are strictly complex and the free

energy is analytic in a nonvanishing neighborhood of the
real axis. As criticality is approached (N -+ oo, t + 0)
the Lee-Yang zeros pinch the real H axis, precipitating
a phase transition. The Lee-Yang theorem states that
for the Ising model these zeros lie on the unit circle in
the complex fugacity plane (the imaginary axis in the
complex external field plane). This theorem holds in-
dependent of the size, dimension, and structure of the
lattice.

Itzykson, Pearson, and Zuber [2] connected the con-
cept of partition function zeros to the renormalization
group and thereby formulated a finite-size scaling theory

for these zeros. Their work applies to dimensions of three
or less where scaling behavior is of a power-law nature.
This was later extended to dimensions above the upper
critical dimension d = 4 where the scaling behavior of
the thermodynamic functions simpli6es and the critical
exponents are exactly those of the mean field theory [3].
At the upper critical dimension d = 4, perturbation the-
ory and renormalization group considerations [4] imply
that the mean field power-law scaling behavior is mod-
ified by multiplicative logarithmic corrections —a cir-
cumstance intimately related to the expected triviality
of the theory [5—7). These logarithmic corrections have

recently been identi6ed &om a perturbative renormaliza-
tion group analysis of finite-size scaling of the partition
function zeros backed up by a high precision numerical
study [8].

While a study of these lowest lying partition function
zeros suffices as a numerical confirmation of the theo-
retically predicted existence of multiplicative logarith-
mic corrections, of further fundamental signi6cance to
the theory of critical phenomena is the denaity of zeros.
Although the latter contains all of the information on
the behavior of these Lee-Yang systems, its exact form is
unknown for all but d = 1 dimensions.

It has, however, been shown rigorously that for
isotropic nearest neighbor interactions, and for t suHi-

ciently positive (the symmetric phase), there exists a re-

gion around H = 0 which is free from zeros [9]. This
means there exists a gap ~lmH~ ( Hi(t) where the den-

sity of zeros is zero. The &ee energy is analytic in H in
the gap and no phase transition can occur (as a function
of H). The point H = iHi(t), which is a branch point of
the partition function, is called the Yang-Lee edge [10].
One expects that this property (the existence of a gap)
holds in fact for all t ) 0.

The scaling behavior of the Yang —Lee edge in the ther-
modynamic limit was studied by Abe [ll] and by Suzuki

[12] in 1967 for Ising models strictly below the upper
critical dimension as well as for the mean field theory.
They found asymptotic forms for the density of zeros
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and a power-law behavior for the scaling of the edge in
the symmetric phase.

With the exception of [13,14,2], there has been very
little numerical work concerning the actual density of ze-
ros. Early numerical work [13],which involved the exact
calculation of the density of states p„(t),and was thus
restricted to very small low-dimensional lattices, yielded
some evidence for the existence of such a gap. High
temperature and high field expansions (in the thermo-
dynamic limit) were used in [14] to numerically approxi-
mate the density of zeros for two- and three-dimensional
lattices and for the mean field theory. Again, power-law
behavior was evident. The density of zeros was also stud-
ied for finite voluine three-dimensional lattices in [2]. Re-
cently Salmhofer [15]has proved the existence of a unique
density of zeros in the thermodynamic (N ~ oo) limit.

Here we present analytical and numerical results on
the density of Lee-Yang zeros in four dimensions. These
include (i) the scaling behavior of the Yang-Lee edge it-
self in the thermodynamic limit, (ii) the asymptotic form
for the density of zeros which is sufBcient to recover the
scaling form for the specific heat and magnetic suscepti-
bility, and (iii) the finite-size behavior of the density of
zeros. The numerical results are due to a more detailed
analysis (on some more statistics) of our earlier study;
results on the scaling of the closest Fisher and Lee-Yang
zeros have been published there [8].

II. THE DENSITY' OF LEE-YANG ZEROS
AND THE YANG-LEE EDGE

According to the Lee-Yang theorem [1] the zeros of the
partition function aQ lie on the unit circle in the complex
fugacity plane. Denoting the (t-dependent) position of
these zeros by

The thermodynamic limit is

g(8, t) = lim gN (8, t)

G(8, t) = lim G)v(8, t)

f(t, z) = lim f~(t, z)

(2.7)

(2.8)

(2.9)

The coefficients pt, (t) of the polynomial (1.1) are real
and hence g( —8, t) = g(8, t). Therefore it is sufficient to
consider only the interval 0 & 8 & x in the integrals. The
Yang-Lee edge 8,(t) is defined by

g(8, t) = 0 for —8,(t) & 8 & 8,(t)

Integrating (2.6) by parts gives for the free energy

(2.10)

f(t, z) = —ln [2cosh(2h) + 2]
1

2

G(8, t)de . (2.11)
e (t) cosh 2h —cos 8

The magnetization is then

8 = tanh (h) + 2 sinh (2h)

sin 8
x

[ h( h) ]~G(e, t)de, (2.12)

and the zero field susceptibility

mulative density of zeros G~ is a function monotonically
increasing in 8 from G(0, t) = 0 to G(2z, t) = 1. The free
energy is

1 8=2~

f~(t, z) = ——lnz+ ln (z —e* )dGiv(e, t) .(2.6)
2 8=0

(t) te, (t) 8,. eR, j =1, . . . , N (2.1)
(8'f ) = 1+4,G(8, t)de

e (t) 1 —cose 2

the partition function may be written as

Sz(t, z) = z ~ pz(t) (z —z' ' '
)i=1

(2.2)

1
fN (t, z) = —ln Z~ (t, z) (2.3)

can be written as

The largest coefficient p~(t) plays no role in the following
and we henceforth set it to unity. The free energy density,

y(t) =16,' (1+O(8'))de
Ge, t

e.(t)
(2.14)

In four dimensions and in the symmetric phase the per-
turbative renormalization group gives [4]

(2.i3)

One expects the contribution of small 8 to be dominant
[11,12]. In particular we want to study its contribution
singular in t. Expanding the trigonometric functions in
(2.13) (and dropping the constant term),

N

f~(t, z) = ——lnz+ —) ln
~
z —e' &( )

~

. (2.4)
2

The discrete measure dGN is formally given by

N

g~(8, t) = ' = —) b'(8 —8,.(t)) . (2.5)
j=1

The t-dependent density of Lee-Yang zeros on' the unit
circle in the complex z plane is given by g~ and the cu-

q(t) - t '(—lnt)*- (2.i5)

A change of variables is introduced via 0 = 8 x. Then in
the critical region where t ) 0 is sufBciently small

~ye. ~~~ G-'(—nt)' ' e () ' " dx (2 16)
1 x

Following [11,12], the upper integral limit can be replaced
by infinity near criticality. This leads to the requirement
that
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t( —lnt)-- G(z8. , t) dx ~ const. (2.17)
(2.21) the Yang-Lee edge in four dimensions scales as

8.(t) - t (2.26)
For 6xed t the integral is bounded due to the bounded-
ness of G. The constancy leads to a differential equation
[11,12] for G with the general solution

G(8, t) = t '(—-lnt)' 8.(t)'4
l

8

&8.(t) i
(2.18)

4(x) being an arbitrary function of z with 4(l z l( 1) =
0. Then

g(8, t) = „'= t '(—lnt) 8,(t)C'
l

dG(8, t), ;,( 8

(2.19)

Now the cumulative density of zeros in four dimensions
may be found &om (2.18). In four dimensions one ex-
pects the power-law scaling behavior characteristic of di-
mensions below the upper critical one to be modified by
multiplicative logarithmic corrections. Assume therefore
that the Yang-Lee edge has the scaling behavior

8.(t) = At'( —lnt) "

for small t ) 0 and with 0 ( p & 1. This gives

(2.21)

d'G(8~t)
A t" (—1 t)' ~ 1+O

l

1 l

x(2(1 —3p+ 2p') C (z)
+p(3 —4p) x@'(x) +p'z'4" (z)), (2.22)

where x = 8/8, and a prime indicates derivative with
respect to x. The speci6c heat is then

Cv oct" (—lnt)' 1+Ol
l

dz
1 8. Ix

E»t)
(2.23)

where I is some function of x. As t -+ 0 [8,(t) + 0], one
has

C& ~t'i' '(—lnt) 1+0
lgluts

(2.24)

in the symmetric phase (t ) 0, H = 0) and near critical-
ity. From perturbation renormalization group analyses it
is known [4] that the zero field specific heat scales as

where 4'(z) =
From (2.11) [and using the fact that G (8„t) = 0], one

gets the specific heat

8'f(t, z)
Bt2

d2G Ht= —2 8 ', ' f1+O(8'))d8 . (2.20)
dt2

It should be clear that the derivation of (2.26) does not
involve mean 6eld approximation but is derived in what
is genuinely four dimensions. That the power of the
multiplicative logarithmic corrections happens to be zero
means that the scaling behavior of the Yang-I ee edge in
four dimensions coincides with that yielded by mean 6eld
theory [2,11,12] in the thermodynamic liinit.

The density of Lee-Yang zeros is given by (2.19) as

, (8l
g(8, t) = t' (—ln-t) 4'

l

—
l

(2.27)

in which 4 is an unknown function. This form is sufFi-

cient to recover the singular behavior of the susceptibility
and of the speci6c heat.

The behavior of the zero at 8 = z8, (for fixed z) as a
function of t (t ) 0) is given by (2.27). At fixed t, g(8, t)
is an unknown function of 8/8, . Kortman and Griffiths
emphasized the study of the density of zeros close to the
Yang-Lee edge [14]. Using high temperature and high
field series they concluded that below the upper critical
dimension and for a fixed (strictly positive) t, the density
of zeros near the edge exhibits a power-law behavior

(8 t) - [8 —8 (t)] (2.28)

lim M(t, z = re* ) — lim M(t, z = re' ) oc g(8, t).
r-+1+ v'~ 1

(2.29)

In zero dimensions (a single site) 0 is known to be —1 [16].
For the exactly solvable one-dimensional Ising model
0' = —1/2 for all t ) 0 [1], i.e., the density of zeros
diverges as the edge is approached. The Ising model in
the presence of an external 6eld has not been solved in
more than one dimension. Nonetheless the value of o
in two dimensions has been found to be —1/6 by Dhar
[17] by mapping the two-dimensional Ising ferromagnet
into a solvable model of three-dimensional directed an-
imals. Cardy [18] found the same result by using the
conformal invariance of two-dimensional systems at the
critical point. Using high temperature numerical meth-
ods, Kurtze and Fisher [10,19] found 0 = 0.086(15) in
three dimensions. It is believed that these values hold
independent of the lattice parametrization used [10]. For
the mean field theory 0 = 1/2 [14]. Thus there seems to
be a systematic increase of cr with dimensionality.

At criticality t = 0, however, the Yang-I ee gap van-
ishes and one may expect the critical exponent o to take
on a value diferent than that in the symmetric phase.
New, the density of zeros is proportional to the disconti-
nuity in the magnetization M crossing the locus of zeros

[1]

1

Cv(t) (—lnt) ' (2.25)

The infinite volume behavior of the magnetization below
the upper critical dimension

in four dimensions. Therefore p =
2 and A = 0. Prom M(t = 0, H) - H~
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0.004

0.002

to rely on finite-size scaling (FSS) extrapolation methods
to gain information on the corresponding thermodynamic
limit.

Let P~(t) represent the value of some thermodynamic
quantity P at reduced temperature t on a lattice charac-
terized by a linear extent L. Then, if ( is the correlation
length, the FSS hypothesis is '.hat [8,20]

-.005 0
Re(H)

.005
PL, (t) & gr, (t) l
P (t) (~ (')) (3 1)

FIG. 1. Contours along which ReZ = 0 (dotted lines) and
IniZ = 0 (full lines) (for L = 24 and e = 0.149703).

should be recovered from (2.28) at t = 0 and therefore,
for d (4,

In four dimensions the scaling behavior of the correlation
length is [21]

(3.2)

Its scaling with L is [22]

g(e, t =0) -er (2.31)
(i(0) L(ln L) 4 (3.3)

In four dimensions where h = 3, one expects the above
formulas to be modified by multiplicative logarithmic cor-
rections The. re, (2.30) becomes [4]

Therefore in d = 4 the scaling variable should include
logarithmic terms [8]

M(t = 0, H) H3 (—ln H) &

Therefore in 4D in the thermodynamic limit

g(e, t = 0) gs( ln8)s

III. FINITE-SIZE ANALYSIS

(2.32)

(2.33)

(3.4)

Let Hq be the position of the Yang-Lee edge in the com-
plex external magnetic field plane in the thermodynamic
limit and let Hi(L) be its finite-size counterpart (i.e., the
position of the lowest lying zero for a system of finite lin-
ear extent L). From (2.26), the FSS hypothesis applied
to the Yang-Lee edge gives

Nonperturbative means of calculating thermodynamic
functions in spin models are provided by stochastic tech-
niques such as Monte Carlo integration. These numerical
methods yield exact results subject only to statistical er-
ror. They are, however, limited to finite lattices. One has

(3.5)

Fixing z (so that when rescaling L, the temperature is
also rescaled in such a way as to keep x constant), we
find

TABLE I. The positions of the first Lee-Yang zeros as obtained from the multihistograms for all
five lattices and near @,. The real part of the zeros is always zero.

0.149600
0.149650
0.149703
0.149750
0.149800
0.149850
0.149900
0.149950
0.150000
0.150050
0.150100
0.150150
0.150200
0.150250
0.150300
0.150350
0.150400

L=8
ImHg

0.015281
0.015091
0.014892
0.014718
0.014535
0.014355
0.014177
0.014001
0.013828
0.013657
0.013488
0.013322
0.013159
0.012997
0.012838
0.012682
0.012527

L =12
ImHg

0.004511
0.004384
0.004253
0.004140
0.004023
0.003910
0.003800
0.003693
0.003590
0.003491
0.003395
0.003302
0.003213
0.003127
0.003044
0.002965
0.002889

L=16
ImHg

0.001958
0.001860
0.001761
0.001677
0.001593
0.001512
0.001437
0.001366
0.001299
0.001237
0.001180
0.001127
0.001077
0.001032
0.009909
0.009530
0.009185

L=20
ImHg

0.001047
0.000966
0.000886
0.000820
0.000756
0.000697
0.000644
0.000597
0.000555
0.000518
0.000486
0.000458
0.000433
0.000413
0.000395
0.000379
0.000366

L=24
ImHg

0.000637
0.000567
0.000500
0.000447
0.000398
0.000355
0.000319
0.000289
0.000264
0.000244
0.000228
0.000215
0.000204
0.000195
0.000187
0.000180
0.000174
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0.03

0.01 .—

0 o

0 001 — **
++

0.0001
0,1495

ooooo oooooooooo
&& 0 0 && && &&*** *

O'OQ Q+~~ 0 0* **~~**** ******++++++++++++
I

0.15

K
p. 1505

-5

-6

-8
-13

FIG. 2. The zeros approach the real axis as e increases;
at e, they should scale with the lattice size I according to
(3.6). Here the triangles, circles, diamonds, stars, and crosses
correspond to lattice sizes 8, 12, 16, 20, and 24, respectively.

FIG. 3. The FSS of the density of zeros is given by (3.12).
The leading power-law behavior is revealed by a log-log plot.
Here the open diamonds and triangles correspond to j = 2
and j = 3, respectively. This gives a slope of 0.778(2), the
deviation away from 0.75 being due to the presence of loga-
rithmic corrections.

Hi(L) - [& 'L (lnL) ']*f(&)
L s(lnL) (3.6)

Therefore

H = ci&Mr, (lnL) 3 + c2M&(lnL) (3.7)

where cq and c2 are constants. At t = 0, therefore,

Mr, (t = O, H) H~(lnL)~ (3.8)

For a 6nite-size system the position of the Yang-Lee edge
is not zero at t = 0 and the origin of nonvanishing density
of zeros has to be correspondingly shifted as in (2.28).
One therefore expects the density of zeros to be

gL, [H, (L)] [H, (L) —Hi (L)] ~ (ln L) ~

where H~(L) is the position of the jth Lee-Yang zero.
De6ning the cumulative density of zeros at the jth zero
by the fractional total of zeros up to H~ (L),

GL, [H, (L)] = (3.10)

This FSS formula agrees with that derived recently by
perturbative renormalization group methods [8].

The perturbative renormalization group analysis of the
finite-size P4 model [8] gives the relationship between the
magnetization MI, (t, H) and external field H at reduced
temperature t,

(3.12)

Equation (3.12) gives the FSS behavior of the distance
between lowest lying zeros, i.e., of the density of zeros.

We now compare these FSS results with data obtained
for the 4D Ising model in a high statistics Monte Carlo
calculation. The simulation was done with the Swendsen-
Wang cluster updating algorithm [23] applied to lattices
of sizes I4 with linear extension L = 8, 12, 16, 20, 24 (de-
tails of the nuinerics can be found in [8]).

The critical value of x in four dimensions has been de-
termined to r, = 0.149703(15) [8]. Our data yield only
three reliable Lee-Yang zeros for each lattice size. The
reason for this is demonstrated in Fig. 1 where the con-
tours along which ReZ = 0 and ImZ = 0 (for L = 24 and
K, = 0.149703) are plotted. Because of the magnification
of statistical errors far away &om the simulation point0 = 0 these contours fail to cross the imaginary Z axis
when ImH is large. Thus the zeros move oH' the ImH
axis and their positions are unreliable. The remaining
lattices give qualitatively similar pictures.

Table I lists the positions of the 6rst Lee-Yang ze-
ros (the Yang-Lee edge) as obtained from the multihis-

we find [integrating gL, in (3.9) to GL, ]

- [H; (L) —Hi (L)]~ (ln L) 3 (3.11)

TABLE II ~ The positions of the first three Lee-Yang
zeros as obtained from the jackknifed multihistograms at
~ = 0.149 703. The real part of the zeros is always zero.

3

2+2

~ 2.1

I.
8

12
16
20
24

Im(Hg)
0.014892(22)
0.004253(16)
0.001761{6)
0.000886(5)
0.000500(4)

Im(Hg)
0.033057(48)
0.009426(15)
0.003905(22)
0.001970(12)
0.001106(5)

Im(Hs)
0.047357(174)
0.013349{71)
0.005388(24)
0.002743{29)
0.001541(12)

I I

0.9 1

ln ln (L)
1.2

FIG. 4. Data as in Fig. 3, but with the leading power-law
behavior removed; we clearly identify the negative exponent
in the log I behavior. The shaded band indicates the result
of a fit giving a slope value of —0.248(17).
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tograms for various ~ values near e and for all five lat-
tices analyzed. As ~ increases one expects the zeros to
approach the real axis in the thermodynamic limit ac-
cording to (2.26). Figure 2 shows the corresponding be-
havior for the finite-size systems considered. At K, they
should scale according to the FSS formula (3.6).

Table II lists the positions of the first three Lee-Yang
zeros as obtained &om the multihistograms at our esti-
mated value for the critical coupling in the infinite vol-
ume limit, e, = 0.149703. The errors in the quantities
calculated from the multihistograms were estimated by
the jackknife method as in [8].

The density of zeros should behave according to (3.9)
or (equivalently) (3.12). The log-log plot of Fig. 3 gives a
slope of 0.778(2). The deviation from the exponent 0.75
in (3.12) is presumably due to the presence of logarithmic
corrections. This may be seen in Fig. 4 where we remove
the expected leading behavior: A negative slope is clearly
identified. In fact a best fit to all ten points gives a slope
of —0.248(17). The shaded area is bordered by lines of
this slope.

We find that both leading power-law scaling behavior
and multiplicative logarithmic corrections for the density
of zeros (or equivalently for the distance between zeros)
are identified in Figs. 3 and 4. This is complementary
to our previous analysis in which the scaling behavior
of the actual positions of these zeros was analyzed [8].

Both approaches yield quantitative agreement with the
(perturbative) theoretical predictions.

IV. CONCLUSIONS

The scaling behavior of the Lee-Yang zeros and in par-
ticular of the Yang-Lee edge in four dimensions and in the
thermodynamic limit has been determined. The asymp-
totic form for the density of zeros in the infinite volume
limit is suHicient to recover the scaling formulas for the
specific heat, the magnetization, and the magnetic sus-
ceptibility. This extends the work of Abe and Suzuki to
the case of four dimensions where mean Beld power-law
scaling behavior is modified by multiplicative logarithmic
corrections which are linked to the triviality of the the-
ory. An analytical FSS study of the edge and the density
of (i.e., distance between) zeros is in good quantitative
agreement with a numerical analysis in the form of Monte
Carlo simulations on finite-size lattices.
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