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Application to the biaxial nematic phase
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The expression of distortion free energy derived in onr earlier paper [Phys. Rev. A 45, 974 (1992)] is
used to derive expressions for the 12 elastic constants of a biaxial nematic phase. These expressions are
written in terms of order parameters characterizing the nature and amount of ordering in the phase and

the structural parameters which involve the generalized spherical-harmonic coeScients of the direct pair
correlation function of an effective isotropic liquid, the density of which is determined using a criterion
of the weighted density-functional formalism. Using a reasonable guess for the values of the order and

structural parameters we estimate the relative magnitudes of these constants. The values of three con-

stants, which are associated with the deformations confined to a plane perpendicular to the principal
director N, are (three or four) orders of magnitude smaller than the other constants. Two of the three
mixed modes which arise because of biaxial ordering and vanish in the uniaxial phase are also about one
order of magnitude smaller than other constants. In going from the uniaxial to the biaxial phase each
constant associated with splay, twist, and bend splits into two and a mixed mode which in the uniaxial

phase is just equal to the difference of splay and twist becomes a new constant. It is shown that the con-

tributions to elastic constants arising from biaxial ordering and the departure from the axial molecular

symmetry are small.

PACS number(s): 61.30.Cz, 62.20.Dc, 61.30.Jf

I. INTRODUCTION

In a previous paper [1] of this series (hereafter referred
to as I) we developed a theory based on the density-
functional formalism [2] for the elastic constants of or-
dered phases of molecular systems (liquid crystals, plastic
crystals, and crystalline solids) in terms of order parame-
ters characterizing the nature and amount of ordering,
and in terms of molecular correlations which character-
ize the structure of the system. The theory was applied
to the uniaxial phases of liquid crystals; uniaxia1 nematic
(N„) and smectic- A (Sm- A) phases [1,3]. The purpose of
this paper is to apply the theory to the biaxial nematic
(Nb ) phase in which the molecular asymmetry becomes
manifest.

Predicted on a theoretical basis by Freiser [4] and Al-
ben [5], the occurrence of the N& phase was first observed

by Yu and Saupe [6] in an amphiphilic system (potassium
laurate-1-decanol —D20 mixture). A few thermotropic
materials have recently been prepared [7,8] which indi-
cate the possibility of the N& phase. These compounds
combine the features of rods and disks [4,9]. Field-
induced biaxiality has been observed [10,11] in the
nematic phase. Computer simulation of Allen [12] on
hard biaxial ellipsoids indicate that the transition from
the isotropic to the biaxial phase occurs over a very nar-
row range of particle shapes and possibly just in the
neighborhood of the so-called self-dual point (which
occurs when one axis length is the geometric mean of the
other two). Evidence of biaxiality has also been reported
in certain nematic polymers [13,14].

Usually uniaxial nernatic liquid crystals are visualized
as a system consisting of rotationally symmetric ellip-

soids, the orientational order of which is denoted by a
unit-vector field N, commonly known as a director. The
biaxiality of the nematic system can be thought of as a
breaking of rotational symmetry of the ellipsoid around
N. Thus the biaxial nematic phase can be visualized as a
system that breaks all three rotational symmetries but
none of the translational ones and consists of oriented el-
lipsoids with three different axes, or equivalently, of
oriented bricks. Depending on the discrete symmetries
these systems can vary widely. In principle, all familiar
symmetry groups, orthorhombic, triclinic, hexagonal, cu-
bic or even more exotic one, are admissible. The descrip-
tion of such a system requires two directors, denoted by
N(r ), the principal director corresponding to the director
of the N„phase, and M(r ), the transverse director
describing the rotation of the biaxial ellipsoids around
the principal director. There exists interesting differences
between the two nematic phases N„and Nb. The uniaxi-
al nematic —isotropic liquid transition is of first order
whereas the N„-Nb transition is second order. The
theoretical prediction [15] that the critical behavior of
the N„-Nb transition should follow the XY model has re-
cently been confirmed experimentally [16,17]. There are
three basic types of line defects [18] in a Nb phase as
compared to only one basic type in the N„phase.

A number of continuum theories [19—27] has been
developed to describe the elastic and hydrodynamic prop-
erties of a biaxial nematic phase. According to the one
given by Saupe [19],the hydrodynamics of a compressible
biaxial nernatic phase with local orthorhombic symmetry
can be expressed in terms of 12 elastic constants (exclud-
ing three constants contributing only to the surface ener-
gy) and 12 viscosity coefficients. Saupe theory was
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rederived [25] by adopting the Ericksen-Leslie approach
[28—30] developed for the uniaxial nematic phase. Kini
and Chandrasekhar [31]discussed the feasibility of deter-
mining some of the 12 elastic constants of an orthorhom-
bic nernatic phase by studying the elastic and viscous
responses of the system under the action of external mag-
netic and electric fields. Using the formalism of tensor
analysis Govers and Vertogen [26] derived the expression
for the distortion free-energy density involving 12 elastic
constants.

In Sec. II we summarize, for the sake of fixing the no-

tations and completeness, the result of continuum theory.
In Sec. III we use the expression of excess Helmholtz free
energy of the deformed state derived in I using the
density-functional approach and derive expressions for
the elastic constants of the N& phase from the second-

order term in the expansion of the free energy around the
free energy of the equilibrium (undeformed) state in the
ascending powers of a parameter which measure the de-

formation. The first term of this expansion is balanced by
the equilibrium "stresses" of the undeformed state. The
elastic constants found in this way are expressed in terms
of the order parameters which measure the nature and

amount of ordering in the system and the direct pair
correlation function (DPCF) of an effective isotropic
liquid the density of which is obtained by weighting the

physical density over a physically relevant range about
the given point using a suitable weight factor [2,32]. In

Sec. IV, we discuss the relative magnitude of these con-
stants using a reasonable guess for the values of order pa-
rameters and structural parameters (which involve har-

monic expansion coeScients of DPCF). Most of the
mathematical details of our derivations are summarized

in five appendixes.

In writing this paper we have assumed that the reader
is familiar with previous papers of this series [1—3] and,
therefore, we assume that the reader is also familiar with

the density-functional expansion.

II. RKSUI.T OF CONTINUUM THEORY

L (1L L) M (M 1M) N (N N»1) (2.2)

It is important to mention that although the Nb phase

is essentially described by two-order parameters, for con-
venience, we use [19,31] three vectors and express all the
relevant quantities in terms of the three vectors. We
refer to the (x,y ) plane as the (Lo, MO) plane, etc. As L,
M, N are orthonormal, we get

Ly ~ Ny Mz & Lz A~ (2.3)

Here it should be noted that only three out of the six per-
turbations are independent. If we rotate the director
triad about L by a small angle then M and N should both
rotate about L by the same angle.

To second order in director gradients, the elastic free

energy is written as

Let us consider only small deformations and assume

that the preferred direction of orientation of molecules in

an orthorhombic nematic phase (Ni, ) is described by an

orthonormal triad of director vector fields N, M, and L.
Let the orientation of the director triad at a point 1 be

Lo=(1,0,0); Mo=(0, 1,0); No=(0, 0, 1) (2.1)

and the orientation of director triad at a neighboring

point R be

~~e ~~ zKLL ~z x + zKMM +x,y zKKW Ly z + zKLM Ly x + zKMN ~z y

+ ,'Kit (N„, ) +—,'K~~(L ) +—,'K„~(M, , ) —+„'Kt~(N, , ) —Ct~N, „M, —

C~~L N C~qM L» +Kot (L N L N»)+Ko~(M L M L )

+Ko~(N M» N»M )] (2.4)

Here a subscribed comma denotes partial differentiation
with respect to the subscript (e.g. , M, „=BM, /Bx).
There is complete symmetry in Eq. (2.4) with respect to
both (L,M, N) and (x,y, z). In Eq. (2.4) the twelve K's,
and the three C's are curvature elastic constants. Three
K's constants Epg Kp~ and Kp~ contribute only to the
surface torque so that elastic equilibrium is determined

by the nine K's and three C's constants.
To first order in the director gradients these elastic

constants have the following significance: K&z, K~M,
and K» represent, respectively, twists about L, M, and

N. K~t, K~~, and Kt~ represent splays of L in the

(Lo, MO) plane, of M in the (Mo, No) plane, and of N in

the (NO, Lo) plane, respectively Kt~, K~~. , and Kzt

represent, respectively, bends of L in the (Lo,MO)plane,
of M in the (MO, NO) plane, and of N in the (Nv, Lo)
plane. A11 the three C's coefficients have similar interpre-
tation. C~~ represents a simultaneous splay of N in the

(LO, NO) plane and a bend of M in the (Mv, No) plane.
It must be noted that when we refer to "twist about L"

we mean that L remains unaltered but the director triad
is rotated by a small angle about L such that M, and X
appear (N = —M, ) and these are functions of R.

For the X„phase with uniaxial molecular order, an ex-

pression for the elastic energy in terms of the elastic con-
stants was derived by Osean [33] and Frank [34]. Assum-

ing that the director N in the undistorted state is along
the space-fixed (SF) z axis, one finds

b. A, „=,' fdR[K, (N„„+—N ) +K,(N —N „)'+K,(N„, +N' )
—2(K22+K,~)(N, „N N„N )] . —
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Here K1, K2, and K3 denote, respectively, the splay, twist
and bend Frank elastic constants. The last term of Eq.
(2.5) reduces to a surface term. Comparing Eqs. (2.4) and
(2.5) we note that in the uniaxial phase I„= I—. =0,

KNN KLM —KML =CMN =CLN =0 .

Thus, in going from uniaxial to biaxial phase the defor-
mation modes of splay, twist, and bend split each into
two modes. In addition, six new modes are developed.

and

K1 KMN KLN

K2 KLL KMM

K3 KNL KNM ~

K1 K2 CLM

(2.6)

III. ELASTIC CONSTANTS
OF BIAXIAL NEMATIC PHASE

The expression found in I for the distortion free-energy
density in the limit of long-wavelength distortion is writ-
ten as

PEA, [p] = —
—,'po g g g g [(21,+1)(212+I)] 'Cs(l, l2l;m, mm')Q, „(6)

11,12, 1 m 1' 2' ' 1' 2

XQ& ~ „(—6)f drip[exp(iG, riz)D ' (hy(ri2)) —exp(iG ri2)]yi' (ri2)

XC(l, l~l;n, n2, r, 2) . (3.1)

Here Cs(l, l2l;m, mm') are Clebsch-Gordan coefficients,
D' „(Q) are the generalized spherical harmonics, and 6
is the reciprocal-lattice vectors of crystalline structure
that might be present in the ordered phase. po is the
mean number density of the system and the subscript e
stands for the quantity which corresponds to the distort-
ed state of the system. hy(r, z) represents the angle be-
tween the principal directors at R, and R2. The order
parameters which measure the nature and amount of or-
dering are defined in terms of the single-particle distribu-
tion p(r, Q), i.e., [2]

QI „(6)= + fdr fdQp(r, Q)exp[iG r]D"„(Q) .

(3.2)

Since in a nematic liquid the centers of mass of the

molecules move freely relative to one another as in the
isotropic liquid, Eq. (3.2) reduces to

Q, „(0)=(21+1)fd Qf(Q)D '„(Q)

=(21+1)D

where p(r, Q)=p„f(Q). Here p„ is the number density
of the nematic liquid and f(Q) is the orientational singlet
distribution normalized to unity

fdQ f(Q)=1 .

In Eq. (3.1), C(l, l2l; n, nz, r, z) represents the harmonic
expansion coei5cient of the DPCF of an isotropic liquid
in terms of the generalized spherical harmonics. In a SF
frame this expansion is written as

C(r,2, Q„Q2)= g g g C(l, 121;n,n2, r, z)Cs(lilzl;m, m2m')D ' „(Q,)D ' „(Q2)yI~, (r,2) .
11,12,1 m1'm2' ~1' 2

(3.3)

In Eqs. (2.1) and (2.3) r&2=r, 2/~riz~ is a unit vector along
the intermolecular axis.

The DPCF which appear in Eq. (3.1) is that of an
eS'ective isotropic reference fluid. The density of the
effective fluid is found by any version of the weighted
density-functional formalism [2]. In I and elsewhere [3]
we generalized the formulation of Denton and Ashcroft
[32] developed for the atomic fluids to the molecular sys-
tems. According to this scheme the density of the
effective fluid is given as

1p[p]= dxi dx2p(x&)p(x2)co(x»x2, 'p),
Vo~

where co is a weight factor,

1 1
co(x, x,P}=— P C(x„x2;p)+—

pea "(p)
2b,a'(P}

Here ha(P) is the excess free energy per particle and the
primes denote derivatives with respect to the density.
p[p] is viewed here as a functional of p(x }.

As in a nematic phase there exists no positional order-
ing; the distortion free-energy density of Eq. (3.1) can be
expressed as
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V
—PbA, [p]= —zp„g g g [(2l, +1)(2/2+1)] 'C (/, /~/, m, mm')

ll, 12,1ml' 2 ' nl' 2

XQI „(0)QI „(0)f dr, z[D ' (by(r, 2)) —1])I* (r,2)C(l, /2/, n in2', r12) .

{3.4)

As noted in Sec. II, the main task is to compare the
orientation of director triad (L,M, N) at a point R from
the origin with its orientation at some neighboring point
R+r (Fig. 1). This helps us in extracting the relevant
gradients of the director fields. Since the orientation of
the director triad can be uniquely specified by three an-

gles, we express the director components in terms of
three Eulerian angles (Appendixes A and C).

We write the rotation matrix D ' (b,y(r)), which de-
2

scribe the rotation of the director triad at R+r with
respect to the director triad at R as

I

D ' (bg(r))=e' d ' (P')e (3.5)

where a', P', y' are the Euler angles. Assuming that (see

Appendix C)

g'=a'+y'

we write

D ' (by(r))=e ' d ' (P')e
2 2

(3.6)

d ' (P')=d ' (0)+d'P'+ —,'d "P' + (3.7)

where

d ' (0)=5 {3.8)

c)d„' (P')
i

c)P'

= —
—,
'

[ [(l2+m )(/~ —m2)]'r 5

Since P' is small {weak deformation), we expand d ' in
2

terms of the powers of P',

and using the result of Appendix C [Eqs. (C9) and (C10)],

a'=0, ; P'=0, ; y'= —(a' —(')=0, and

—[(l2 —m)(/2+m2)]'~ 5 (3.9)

=
—,'[[(/2+m)(l2 —m+1)(/z+m2+1)(/2 —m2)]'~ 5 +2

—[(/z+m)(/z —m+1)(l2 —m2+1)(/2+m2)]'r 5

—[(/z —m )(l2+m+1)(/2+m2+1)(l, —m2)]' 5

+ [(/z —m )(/2+ m + 1)(l z
—m 2+ 1)(/z+ m z ) ]' 5

im2('
Expanding e terms in Eq. (3.7) and retaining the terms up to the second order, we get

(3.10)

t

2

(3.1 1)

Substituting Eq. (3.11) into Eq. (3.4) and using the results of Appendix C, i.e., Eqs. (C11) and (C12), we write the distor-
tion free-energy density in terms of the director components.

Pb, A, [p]= —
—,'p„g —g g [(2/, + 1)(2/~+ 1)] 'Q, „(0)Q, „(0)

11,12,1ml'm2m'm nl' 2

X dr al, +a)2 o ) +i a)) —a)2 o.
2 +ib2o. 2

( 3 )' ( 3 )' . ( 1 )'

+(az, +a22+a23)(o. , ) +(a&3 —a2z —az, )(o, )
(3)' 2 (3)' 2

—
—,'b2(cr~" ) +i(2aq, —2aq~+ ,'b ) I2'ccrr~ '—

-+im2(a„+a, 2)Lr] cr~ +m~{a,~
—a„)o~ cr2 ]

(3)' ( &)' (3)'

XC,{/, /; /, n~;nr, ~)y,
* (r),
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where
cr', '=p'cosa'

oz ' =p'sina'

o z" =('——,'p' sina'cosa',

a]]= —
—,
' [(lz+mz+ l)(lz —mz }]'
XCg(l, lzl, m, mz+ 1,m'),

a, z
=

—,
' [(lz —mz+1)(lz+mz)] '

XCs(l&lzl, m &mz
—l, m'),

az, =
—,
' [(lz+mz+2)(lz —mz —1)

X(lz+mz+1)(lz —mz)] '~z

X Cg (1,1z 1,m, m z +2, m '
)

azz =
—,
' [(lz+mz+2)(lz+mz —1)

X(lz —mz+1)(lz+mz)]'

X Cs(l, lzl, m, mz —2, m'),

az3 = ——', [(lz+mz)(lz —mz+1)

+(lz —mz)(lz+mz+1)]

XCs(l, lzl, m, mzm'),

bz =Cg(1)lzl, m )mzm')mz,

bz =Cg(l&lzl, m&mzm')mz .

(3.13a)

(3.13b)

(3.13c)

(3.13d)

(3.13e)

(3.13f}

(3.13g)

(3.13h)

(3.13i)

(3.13j)

Xr

FIG. 1. Deviation angle for director triad at R+r with

respect to director triad at R.

In Appendixes B and C [Eqs. (89) and (C4)] we express
each basic deformation variable in terms of coordinates
of intermolecular separation r,z. The expressions for
elastic constants are derived by comparing free-energy
density relation with the continuum relation. We write
the continuum relation (1.4) in terms of the director com-
ponents in Appendix D. Retaining only those terms
which appear in the continuum relation [Eq. (D4)], we
write Eq. (2.12) as

ph A, [p] = —
—,'p„g g g [(21,+1)(2lz+1)] 'QI „(0)QI „(0)

ll, l2, 1 m1'm2' 1' 2

X r r r —,'8', ' q&+q3 r x r y a»+a~2 + a2~+a22+a23 q& r x +q2 r y +q3 r z

+ ,'B'z ' [i(a» ——a,z)( —qz+q, )(r y)(r z)+(az3 —azz —az, )[+q, (r x) +qz(r y) +q3(r z) ]J

+ —,'Bz"' [ibz( —
qzz+qf )(r x)(r y) —

—,'bz[q&(r x) +qz(r y) +qz3(r z) ]]

+ [21(azl azz
)(~r'x)(~r y) z (a ll +a lz )(~r'x)(F'z)

g
i(a 11 a lz )( 'y)(~r'z)]

Xq)qzBI Bz + [ zibz(r x)(r'y} I'(aii+aiz)(r'x)(r'z)

+i[—,'(a, )
—a,z)+mz(a„+a, z)](r y)(r z)]qzq3BI 'Bz '

+ [ —,'ib (r x)(r y)+[m (a, —a„)——,'(a„+a, )](r x)(r z)

—
—,'i(a&& —a&z)(r y)(r.z)]q&q3 z z }y&'.(r)C(l&lzl, n&nz, r } . (3.14)

After performing the angular integrations over r, we compare Eq. (3.10) with Eq. (D4) and obtain relations for the
elastic constants.

1$,12 m I,m2 n l, n2

X (a23 azz —azl ) —( ) (0 0
1 1/2

3
' 1/2

' 1/2 1/2
4m 2'

&12& 0+
15

&u~ 245

2'+
15

&12~ 2 (3.15)
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pK~~= p g g g D D Jl l l (a21+a22+a23) ' (4ll) 5105
11,12 ml m2 nl n2

1/22'
15

4m

45

1/2

2'
15

1/2

&l2~ 2. (3.16)

ll, l2 ml m2 nl n2

ll, l2 ml m2 nl n2

' 1/2

(5u5 2
—5u5 2)

' 1/2

&l2& 0

' 1/2

(3.17)

—
—,'b2 ~ —(4m ) 51115 11—2 1 1/2

1/2

4m

45
5u5 o

1/2

+ 2+
15

2m'
5125 2+

15
5125 2 (3.18)

ll, l2 m 1' 2 nl' 2

' 1/2

(a11 a12)t 5125 '1 5l25 'll (a23 a22 a21)

X —(4m )' 51115 11—

1/2

1/2

5u5 o— 2'
15

1/2

5u5 2

2'
15

5125 2. (3.19)

11,12 ml' 2 nl' 2

1/2

(all +a12)I5l25 '1 5I25 '1 l

' 1/2

ll, l2 ml'm2 nl'n2

1 1/2 16m
+(a21+a22+a23) ' (47r) 5105 0+

3 m 45

1/2

I5u5 2
—5u5 2l

' 1/2

5125 o.

1/2

(3.20)

—(4~) '5 5, —12'2 3 lo m'0

1/2

4m

45
5u5 o— 2'

15
&i2& 2

1/2

2m

15
&l2& 2. (3.21)

I1,12 m 1'm2 n1'n2
11 12 ) I 5I25 '1 5l25 '1 I

+ (a 23 a22 a21 ) ' —(4'�) 5105 0+ 16~
1/2

&i2& o (3.22)

r

11,12 ml'm2 1' 2

1/2

11 12)f !2 '1 l2 'll

1/2

+(a21+a22 23 ) ~) 5l05 '0
1/2

3

1/22'+
as

2%.
2+

as

1/2

~l2~ 2 (3.23)
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n)n2
pCL~ = P—„Dm

1
n Dm2n2 11121

' 1/2
1 32m.

L

x —
15

(a2, —a22)[5125 .2—5125

+1 8m
+4 15

1/2
1 8m

(all + 12) [5125 '1 5125 'l] +
4

' 1/2

(all a12)[5125 '1+5125 '1] (3.24}

r

2
—1& e —12m n&n2 1 32~

1/2
1 Sm

[5125 '2 5125 '2] +
4

( 11+ 12

1/2

' 1/2

[5125 '1 5!25 '1]

1 8m+ [ (all a12)+~2(all +a12)]
2 2

' 1/2

[5125 1+5125 1] (3.25)

32K
15

1 8m

2 15

' 1/2

—l~ e —l2+ ~1~2
~CNL P Dnm& n&D m& &nJI ll1252 [ 5125m 2

—
5125m 2]

[~2(a12 all ) (all +a12)] [5125 '1 5125 '1]

1/2
8m.

11 12) [5125 1+5125 I] (3.26)

where

n&n2
Jl I I f "d«(&1I2I 111112 ") (3.27)

are the structural parameters. A line under a numerical
subscript denotes a negative quantity.

Equations (3.15}-(3.26) give general expressions for the
12 elastic constants in the long-wavelength limit of a bi-
axial nematic liquid crystal. From these equations we
derive expressions for the elastic constants of the uniaxial
phase of nonaxial molecules by putting all terms involv-

ing order parameters D' „with m%0 equal to zero. The
results found this way satisfy Eq. (2.6). As is shown
below, however, the contribution due to the breaking of
the axial molecular symmetry to the elastic constants is
small which is in agreement with the experimentally ob-
served results [35]. If in the above expressions we retain
only terms involving order parameters Dec and put alll

other terms equal to zero we get expressions given in I for
the uniaxial nematic phase.

IV. DISCUSSION

In order to calculate the values of elastic constants
given above one needs the values of the order parameters,
generalized harmonic coefficients of the DPCF of an
efFective Quid as a function of the temperature and densi-
ty and the information about the constituent molecules,
viz. , electric multipole moments, geometry of the repul-
sive core, length-to-width ratio, etc. as input parameters.
In the limit of long-wavelength distortion, it is assumed
that the magnitude of the order parameters is not afFected
due to the distortion; it is only the direction of the direc-
tors which becomes position dependent. Thus, one may
use the value of the order parameters either determined
experimentally or calculated from theory. The c harmon-
ics for a given system can, in principle, be found either by

I

solving the Ornstein-Zernike equation with suitable clo-
sure relations [36] or by adopting a perturbation scheme
which is based on the fact that the fluid structure at high
densities is primarily controlled by the repulsive part of
the interactions. However, such calculations for nonaxial
molecules are very complicated and may need enormous
computational efforts to generate reliable data for c har-
monics [37].

In what follows, we therefore restrict our attempts to a
system of rigid molecules possessing three mutually or-
thogonal mirror planes with inversion symmetry through
their intersection, e.g., ellipsoids with three different axes
or spheroplatelets. Ordered phase (here it refers to Nb) is
also assumed to have the same symmetry as the constitu-
ent molecules. Thus, to characterize the system, we
choose four order parameters [38]P, 2), p, and i. The or-
der parameter P=DOO=( —,'(3cos 8—1}) measures the
alignment of the molecular e, axis along the SF z axis (or
the director N). The order parameter
2) =Do 2

= ( —,'~3 sin28cos2$) is an indicator of the
difference in alignment of the molecular e„and e~ axes
along the director. If the molecules are axially sym-
metric, the molecular e„and e axes are indistinguishable
and

p
vanishes. The other two order parameters

p=D2 o =(—,'&3 sin 8cos2$) and F=Dz 2
= ( —,'(1

+cos 8}cos2gcos2$—cos8sin Psin2$) are the measure
of the biaxial ordering in the system. If the phase is uni-
axial, p and v vanish. Introduction of biaxiality in the
molecular shape and/or in the intermolecular interaction
has been found [37,39] to have pronounced effects on the
isotropic-uniaxial nematic (I N„} transition; bo-th the or-
der parameters and the first orderedness of the I-N„ tran-
sition are greatly reduced from that of the comparable
uniaxial bodies.

In Appendix E we give explicit results for all 12 con-
stants in terms of these order parameters. To have an
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order-of-magnitude estimate of the contributions arising
due to different ordering to elastic constants, we assume
that

and

g/P =P/P -0.1, r/P -0.01

J22; /J22; -0.2,

J02 /J00 (J22 /JOO )1 /2 0 45

where i =0 or 2. Although it is difficult to prove the
correctness of these values, they are believed [37,39] to
provide a reasonable estimate for any real system.

We note that the first terms in KLL and KMM [see Eqs.
(El) and (E2)] are equal to K2(2, 2) of I (see Eq. (A7) of
[1] and note that Jzz; =(5/4n )J2z; ). The next two terms
in their expressions are due to the breaking of axial sym-
metry of molecules. The contribution of these terms is of
the order of 5% of that of the first term. The remaining
three terms of Eqs. (El) and (E2) are due to the ordering
that makes the system biaxial. The combined contribu-
tion of these terms is of the order of 5% or less. Thus,
while the elastic constants associated with twists about L
and M axes have magnitudes nearly equal to that of K2
( —10 dyn), the twist elastic constant of the uniaxial
phase, the magnitude of Kzz which represents the twist
about the N axis [i.e., the twist is confined in the (Lo, Mo)
plane] is about 3 or 4 orders of magnitude smaller than
K2. Similarly, we find that Kr~ and KM& [see Eqs. (E3)
and (E4)], which represent, respectively, the splay and
bend of I. in the (LO, MO) plane, are very small compared
to K& or K3.

As is noted in I, in a N„ph sea, K~(2, 2)=K3(2, 2).
This equality may be seen from Eqs. (E5)—(E9) by p and r
equal to zero. The first term in these equations is equal to
expression K&(2,2) or K3(2, 2) given in Appendix A of
[1]. The terms that involve g are due to a departure from
axial symmetry in the molecular shape. As noted in the
case of the twist constant, their contribution to elastic
constants is small. The contribution of terms arising due
to ordering giving rise to biaxiality in the phase is also
small. Among the three C constants associated with
mixed modes of deformation, we find that one, i.e., CL~,
is about ten times larger than the other two. It may also
be noted that only this constant survives in the uniaxial
phase where it becomes equal to K, K2 [see Eq.—(2.6)],
and the other two, which at this level of approximation
are equal in magnitude, vanish in uniaxial phase.

Since for a realistic potential model J2z2 is negative (see
Fig. 4 of [1]) we conclude from Eqs. (E10)—(E12) that
while CL~(2, 2) and CM&(2, 2) are positive, C+L (2, 2) is
negative. In general, as argued by Kini and Chan-
drasekhar [31], the determination of the signs of the C's
is experimentally difficult. When a symmetric initial
orientation is subjected to a destabilizing field in some ar-
bitrary direction, deformation can set in without a
threshold. In this ease, the elastic response wi11 also in-
volve the C's. A study of the deformation for different
Acids should yield an estimate of the magnitudes of the
C's. The sign of the C constants can, however, be deter-
mined by the conoscopic observations [31].

From the above results, one therefore concludes that
the three constants, viz. , K&&, K~~, and K. J, which are
associated with deformation in the (Lo, Mo) plane (the
principal director N is perpendicular to this plane in the
undeformed state), are of the order of 10 or 10 '

dyn,
which is three or four orders of magnitude smaller than
the value of the constants found in the N„phase. The
constant C~z, associated with the mode of deformation

A A
representing simultaneous splay of L in the (MO, LO)

plane and a bend of N in the (No, Lo) plane, and the con-
stant Cz&, which is associated with the simultaneous

splay of M in the (No, Mo) plane and a bend of L in the

(LO, M0) plane, are about one order of magnitude smaller
than CzM which is associated with simultaneous splay of
N in the (LO, No) plane and a bend of M in the (Mo, NO)

plane. The seven constants, viz. , KLL, K~~, KL&, K&M,
K~~, K~L, and CL~ have nearly equal value and are of
the order of the values found in the uniaxial phase. We
have already noted in Sec. II the relationship of these
constants with the Frank's constants of the uniaxia1
nematic phase. We thus conclude that the effect of biaxi-
al ordering and, also, the effect of departure from axial
molecular symmetry on the value of the elastic constants
are small (almost negligible in view of the large experi-
mental error bars). However, these orderings give rise to
several modes of deformation. By studying the effects of
the external magnetic and electric fields applied in
different sample geometries, Kini and Chandrasekhar
[31]have examined the feasibility of determining some of
these 12 curvature elastic constants.
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APPENDIX A: DIRECTOR TRIAD
AT A GENERAL POINT R=R]

Suppose R=R, is the position vector of a chosen mole-
cule (Fig. 1) referred to a laboratory-fixed Cartesian
frame with unit vectors e'J' (j=1,2, 3). At the point R,
let S be the unperturbed director frame described by the
unit vector N'"=L =e"' N' '=M =e' '

0 0 0 0

N0 '=N0=e' ', let S be the perturbed director frame de-
scribed by the unit vectors N "'=L=N0" +0 ' ",

N )=N=N +~ ' where0 0
cr '~' may be regarded as the distortion vectors; and let

=N .N0 =5jk+o.k be the components of the per-()— () (k) ()
turbed directors with respect to the S frame.

The transformation from S to S is effected by a 3 X 3
orthogonal matrix T with elements Tjk =Xk '=5~k+v~'
such that

N(j) = T N("=N"'+o-(,j)N'" (A1)jk 0 ~k 0

where the sum over the repeated index k is understood.
The orthogonality condition

Tlj Tlk ~jk
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implies

(j)+ (k)+ (g)~(k) p (A2)

go(j)
r(j)=Ix +x o' )]k a m a

At this stage suppose that the deformation components
o (kj) are infinitesimal. Taking first the nondiagonal (j Ak )

terms in (A2), we find that

52o (j)
+ I 2xaxb+x x„crb + ] ax.aX,

(B6)

o'"'= cr—g' a—j"o'"'=0,+0 (j Ak) (A3)

where 0, means a first-order small quantity. Next, tak-
ing the diagonal (j=k ) terms in (A2), we notice that

APPENDIX B: DIRECTOR TRIAD
AT NEIGHBORING POINT +=R2= R, +r, ~

o'j)= ——g Io((j)] =0, (no sum over j) . (A4)
I

It follows that cruz", cr', ', and o(2 ' can be regarded as the
basic independent distortion variables (all as functions of
R). Every other component can be constructed with the
help of (A3) and (A4).

To make further progress we need the quantities
Q(kj) =5 k+~(kj), which are the components of N'j) re-
ferred to the S frame. Evaluation of the relevant dot
product in terms of S frame components yields

g(jY N(j) N(.k) I5 ++(j)]I5 +o(k)]

Hence,

~(j )' —N(j)' 5 ~(j)+o(k)+~(j)o(k) (Bg)

Substituting for gz)()') from (B5) and using the orthogonali-

ty condition, we find the general expressions correct to
20, ,

~"' =t' '+t' '~k k I +I

Next, we consider a neighboring molecule at the point
Q=R2=R, +r, 2 (Fig. 1) at which the perturbed director
frame is called $. The corresponding unit vectors N(j)
have components Q(kj) =5 k+~(kj) with respect to the So
frame. By definition,

&2'=&'k"(R+ )
—

5jk

r V„(r.Vs )(r.V j( )
1+ + + N' '(R) —5.

lf Ql
k jk

=[Ix,+x a, ]5k)+x,cr( ]
(m) (k)

a

+[f )x xb+x x cr(b )

g2o(j)
+ xxb—a) ] + '''

a b

along with
( ') (m)

(
' )' ( )' — ~ " 3

k +» xaxb 5X 5X
+Os

a b

(B9)

(B10)

(B1)

where a second-order Taylor expansion in powers of the
intermolecular separation vector r has been performed.
In terms of the laboratory Cartesian components
(X) X2 X3 ) of R and (x „xz, x 3 ) of r we can rewrite (B1)
more compactly as

From the physical viewpoint, the quantities ~(kj) are
very important because they represent the change in the
director frame at I relative to that at R.

APPENDIX C: SINUSOIDAL DEFORMATION
AND EULER ANGLES

, acr(kj) x.'xb' 5'o(kj)
(B2)

For practical applications of these results, it is very
convenient to assume long-wavelength deformations
given, in the space-fixed frame, by

x'=x +o' 'x
a a a m

Substituting (B2), we get

5o(j)
~'kj'=a'kj'+ Ix +cr' 'x

a a m
a

52o(g)
+ zIXa+Oa Xm] IXt +Oh X»]

BX,BXb

(B3)

(B4)

At this juncture, it is convenient to express the com-
ponents x, of r (with respect to the S frame) in terms of
its components x, (with respect to the S frame). The
relevant transformation equations, in close analogy with
(Al) are

o'k '=&k"»n(q R), (Cl)

Rsin qR = Rcos qR =V 2,

fd R sin(q. R) cos(q.R)=0,
we obtain, eS'ectively,

(C2)

(C3)

where Bk ' are small amplitudes and q is the wave vector.
Substitution of (Bll) into (B9) and (B10) yields rather
complicated expressions for ~kj' and for ~'k" ~'„' in
terms of sines and cosines. However, considerable
simplification occurs if we recall that, in statistical
mechanical calculations, we shall always encounter these
functions under fdR integration. Since

Retaining terms up to second order in the cr's, we obtain
q B m B z2B(j)B(k)~k I mqa a k 4 (C4)

~(j)—o(j)+&
(j)

where

(85)
(j)' ( )' — 2B (J)B( )
k n 2 I n (C5)
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where

s =x,q, (sum over c implied) . (C6)

(1)'+ 1 (3)' (3)'
~2 2~1 ~2

where the ~'k' functions are read off from Eq. (C4).

(C12)

Note that the components x, of r are measured in the S
frame while the components q, of q are measured in the
laboratory frame S .

Finally, if the rotation of the director frame $ with
respect to the director frame S is parametrized by the
Euler angles (a', P', y'), then some typical elements of the
relevant transformation matrix are

APPENDIX D: BIAXIAL CONTINUUM RELATION
IN TERMS OF DIRECTOR COMPONENTS

Let the orientation of the unperturbed director triad at
point 1 be

L()=(1,0,0), M()=(0, 1,0), N()=(0, 0, 1),
3 I ~ ~ I

cosa'sinP' =o'& ', sina'sinP' =~2 ',
( cosp' —1 )sina'cosy'+ sin(' =~(2",

(C7)

(Cg)

and orientation of the perturbed director triad at point R
be

L=(1,L,L, ), M=(M„ I,M, ), N=(N„,N, 1) .

o'=o„p'=0, ,

)"=(a' —g') =o„4'=o, ,

(C9)

(C10)

where g'—:a'+y'. Since, in general, each of the quanti-
ties ~', ', ~z ' and ~z" should be O„we conclude that
the Euler angles must have the orders of magnitude

In the small-distortion limit, when the director triad un-
dergoes spatial distortion, the elastic free energy is given
by Eq. (4). In this Appendix we intend to write the elas-
tic free energy in terms of the deformation variable
de6ned in Appendix A, viz. ,

where 0, means order unity. Thus, the Euler angles
correct to 0, are given by

(1)
y
—02
—~(1)

z

x 1 & ~ 1

x =~"
z 3 ~ y 2 (D 1)

P'cosa'=~() ', P'sina'=~2 ', (Cl 1) Now Eq. (2.4) reads

ga(2)
b A, = JdR —,(KLL

BX1

ga(2)
+ 2KMN

1
03

BX2

ga(3)
+-,KLN

1
01

BX1

(3)
1

01+ 2KMM
CIX 2

a~(» '
+ 2KNN

BX&

a~(1) '
1

0'2
+ pKLM

BX1

+ 2KNL

ga(3)
+T+ML

()X3

oc (»
CT2 g~(2)

1
03+ T.KNM

BXq

a~(3) a~(2)CT 1
0'3

CLM
aX) aX2

ga(2) ga(1)03 02
CNL

BX3 ()X)

~~(» a~(»02 0'1—C
()X2 ()X 3

(D2)

Equation (D2) does not contain the contribution due to surface terms.
For the sinusoidal deformation we write

(rI,"=B„"'» (qnR),
where Bkj' is the amplitude. Using Eqs. (B16)and (B17) (Appendix B), we write the elastic free-energy density as

2[2+ILq)B3 + p+MMq2B1 + p+NNq3B2 + p+rMq)B2 + p+MNq2B3

(D3)

+ 2KNL9 3~1 + 2KML~2~2 +
2 NMq3 3 + pKLNq1 1 CLMqlq2~1 ~3

(1) (3)—
CM2vq2q3B2' B) C~Lq3q, B3 B—,' j .(2) (&) (D4)

APPENDIX K: EXPRESSION FOR ELASTIC CONSTANTS
IN TERMS OF LEADING-ORDER PARAMETERS

In this appendix we evaluate the series of Eqs. (3.15)—(3.26) for l, =12 =2.
1/2 1/2 1/2

4m 2 p 2 1 Jpp + 2 Jpp + 2 1 J22 + 2
Pn '

2 220 7 222 I 2 220 7
((3KL~ (2, 2) = 22

J222

1/2 1/2
1 p2 2 p2 1 — 1 pp 2 pp+~ I J220 + ~222 + ~ ~I J220+ ~222
2 7 v'6 2

1/2
1 — 1 ()2 2+ —PT J22P +v'6 2 7

)

02 1
1222 I i~222 +r 1222 I.

—2 00 —2 22
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1/2
4m. 2

—
2 1 oo 2

pn '
2 22o

' 1/2

J222 +1 J22o+oo —2 1 22

2

1/2

J22
7 222

+Pg J220 +O2

2

1/2
2
7

1/2
o2 1 —— 1 oo 2 oo

220 + 222v'6 2

1/2

6 2 7220 ~222 + tP ~222 ++ J222 j
1 -- 1 o2 2 02 1 -200 -222

56
(E2)

pK~N(2, 2)=—2 4m

PKLM(2, 2)=—2 4m

PKML (2, 2)=—2 4m

' 1/2

p 7 J220+

' 1/2
2 —2 J22

Pn ~ 22O

1/2
2 —2 22

pn~ J220

1/2
22

J222

1/2
2 22

J222

' 1/2
2
7

(E3)

(E4)

(E5)

4~
PKMN(2, 2)=

5

' 1/2
2 2 1 00 1 00 —2 1 22 1 22

pn 2 J220 222 9 220 222
14 2 14

o2 1 o2 1 -- 1 oo 1 oo 1 -2oo -222+~ l 220 ~222 + ~~ P ~220 222 lP' 222+i ~222 f
2 14 &6 2 V14 56

4m

5

' 1/2
2 2 1 00 1 00 —2 1 22 1 22

pn '
2 J220 J222 + 9 2 J220 222

14 14

(E6)

o2 1 o2 1-- 1oo 1 oo+~9 ~220 J222 + ~P 220 2222 14 &6 2 &14

02 1 02+ P+
2 J220 ~ 222v6 2 v 14

(E7)

' 1/2

pKLN(2, 2)= 4~ 2 2 1 00 1 00 —2 1 22 1 22
n 2 14Pn

' ~
2

J220 ~222 + 9 J220 ~222
14

02 1 02 1 — 1 00 1 00+~9 ~220 ~222 ~P' J220 2222 14 6 2 &14

2
~220 + J222 I P J222 .222 i

02 1 02 1 —2 00 —2 22

6 2 14 56
(ES)

BKNI (2,2)= 4m.

5

' 1/2
2 2 1 00 1 00 —2 1 22 1 22

pn ' P J220 J222 + 9 J220 J222
2 V'14 2 V'14

1/2

1 02 1 o2 1 — 1 00 1 00 1 -- 1 o2 1 o2+P~
2 220 222 V I 2 220 ~ 222 ~ 220 ~ 222

14 v 6 2 +14 &6 2 v'14

(E9)

4m'

1 4m
PCM~(2, 2)=—

2 105

Pn f ~ ~222 g ~222 +~9~222 l IP 222 + ~222 I
14 14

' 1/2

Pn I 8 222+ 222 j

(E10)

(E11)

BC~I (2,2)= —PCMN(2, 2) . (E12)
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