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Stabilization of unstable steady states in an electrochemical system
using derivative control
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We report the stabilization of an unstable fixed point in both an electrochemical experiment and
a model for electrochemical corrosion using a small control signal proportional to the derivative of
a measurable function of system variables. Spontaneous periodic oscillations observed during the
potentiostatic electrodissolution of a rotating copper disk in h sodium acetate —acetic acid bufFer were
suppressed to steady state behavior by adding to the anodic potential a feedback term proportional
to the derivative of the electrical current passing through the cell. A general discussion of derivative
control strategies shows that the steady state fixed points are left unchanged while, at the same
time, the stability of the fixed points can be altered. We also show that, in general, the dimension
of the state space of the system is increased when a derivative control strategy is applied.

PACS number(s): 05.45.+b, 87.10.+e

I. INTRODUCTION

It has been demonstrated in a number of different
physical systems [1—5] that dynamical control of chaotic
behavior can be achieved by judiciously applying small
perturbations to an accessible control parameter. These
experiments use fiexible control strategies [6—8] to con-
vert the observed chaotic behavior to periodic responses.
Also, recently there have been reports of controlling the
system dynamics on unstable fixed points (nonoscillatory
solutions) [9—12] using feedback techniques [10,11]. Con-
trolling the dynamics on a steady state fixed point is
of practical importance in experimental situations where
chaotic and/or periodic oscillations cause degradation in
performance.

We report the stabilization of unstable fixed points in
a numerical model [15,16] for aqueous electrochemical
corrosion and in an electrochemical cell [17,18] using a
derivative control strategy [10]. In the numerical model
we were able to convert both chaotic and periodic oscilla-
tions to a steady state response, while in the experimental
system we suppressed the observed periodic oscillations
to obtain a dc output &om the system. In the experi-
mental system, the continuous perturbations required to
stabilize the fixed point were largest (about 5%%up of the
control parameter) when the derivative control was ini-
tially turned on.

cussion is based on the methods of control theory [13,14].
We apply a derivative control strategy to model systems
of the form,

X = F(X,P),

where X E R" and P E R . We assume that solutions
of Eq. (1) exhibit chaotic or periodic dynamical behavior
for some fixed parameter vector Po and have an unstable
steady state fixed point Xo,

F(Xp, Pp) = 0. (2)

d-
v = cL—j(X,P)

dt

Our goal is to stabilize the fixed point at (Xp Pp) by ap-
plying a small control signal to some components of the
parameter vector P. In real experiments the individual
components of the state vector X and the parameter P
are usually not accessible for measurement and control.
Thus we assume that a single scalar j = j(X,P) is mea-
surable and that the parameter vector can be changed by
adjusting a scalar (knob) v; P = P(v). We take the zero
of v such that P(v = 0) = Po Now the gene. ral derivative
control strategy of the type proposed by Biewalski et al.
[10] is expressed by taking

II. CONTROL STRATEGY

In this section we provide a general theoretical &ame-
work for the derivative control strategy [10,11]. The dis-

where o. is a proportionality constant that adjusts the
strength of the control signal. Note that since v = 0
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when X = P = 0, the point (Xp, Pp) remains a fixed
paint of the system with control. Substituting Eq. (3)
for v into P(n) and solving for P gives

P = G(X, X, P, a), (4)

where G is such that P = Po, when X = Xo and P =
0. Assuming G to be invertible with respect to P and
substituting X using Eq. (1), the above equation leads
to

P = H(X, P, a,).

This control strategy results in a time dependence of P
given by Eq. (5). Hence the vector P forms an added set
of independent variables. %e combine vectors X and P
to form a new state vector Z,

- =(», , *-,pi, ",p-). (6)

Similarly, Eq. (1) and Eq. (5) combine to give

Z = E(Z, a),

III. APPLICATION OF THE CONTROL
STRATEGY IN THE NUMERICAL MODEL

%'e apply derivative control to a model for aqueous
electrochemical carrosian [15,16] described by three di-
mensionless differential equations:

and the derivative control strategy has, in effect, in-
creased the dimensionality of the system.

As mentioned above, Z = Zo, with X = Xo and
P = Pp, is still a fixed point of Eq. (7), for any a. The
derivative feedback does not change the 6xed point so-
lution of the system, since all time derivatives are zero
there. However, the stability of the 6xed point may be
altered by the control parameter o.. The eigenvalues of
the Jacobian of F, evaluated at Z = Zo, determine the
stability of the controlled system. Our control strategy is
successful provided o. can be adjusted such that the real
parts of all eigenvalues are negative. This will guarantee
the stabilization of the steady state fixed point, but does
not provide information about the basin of attraction in
the state space for the (now stable) fixed point. In prac-
tice we have been able to numerically stabilize the steady
state for a variety of models including the Lorenz equa-
tions and Chua's circuit using a simple feedback, where
the control knob v affects only the Icth parameter com-
ponent pp ——pI, O + v, and the measured quantity j is
a single component of the state vector; j = x~. This
simple additive control strategy does not increase the di-
mensionality of the system, since no components of P
survive in Eq. (3). However, in the numerical model for
electrochemical corrosion [15,16], the ineasured quantity
j depends on a component of P, and the dimensional-
ity of the system is increased as described in the section
below.

& = p(1 —~QH —~Q) —q&

~OH I (1 ~OH 0O)
—[exp( —P~QH) + r]~QH

+2st O(1 —OOH —80)~

tIO = «OH —seo(1 —~OH —~O)

(9)

(10)

J = r8oH.

Using Eq. (12), bV can be rewritten as

bV = n(r'HQH + reoH).

(12)

According to the rate equations, the time dependence in
the parameters p and r is given by

and

p = pp exp(pbV)

r = rp exp(pbV).

(14)

The above equation can be written as

r = rp exp[pa(r'HQH + rgOH)].

Solving for r' invariably adds an additional dimension to
the model [Eqs. (6)—(10)),

ln(r/rp) «OHr = 17
p~~oH ~oH

Equation (17) together with Eqs. (8)—(10) describe a
new four dimensional system that represents the original
model with the derivative control implemented. Since the
current expression Eq. (12) is independent on p, the time
dependent parameter p is determined &om the system
variables OoH and r. The time evolution of the controlled

The variables tIo and eoH represent the fraction of
the electrode surface covered by two different chemical
species, while Y represents the concentration of metal
ions in the electrolytic solution. The parameters p, q, r, s,
and P are determined by chemical reaction rates in the
model. Previous numerical studies [16] have shown that
this model exhibits deterministic chaos for parameter
set (p, q, r, s, P} in the neighborhood of (2.0 x 10
1.0 x 10, 2.0 x 10, 9.7 x 10, 5.0}. We numeri-
cally integrate these equations using a Runge-Kutta al-
gorithm. In the actual electrochemical experiment, de-
scribed in Sec. IV, the anodic potential V is available as
a control parameter. The two parameters r and p in the
model have an exponential dependence on this potential.
To make the simulation realistic, we change r and p as
a function of the changes in V. This control strategy
results in adding an extra dimension to the system.

To implement control, we change the anodic potential
proportional to the time derivative of the anodic current
J

dJbV=a —,
dt

(11)

where the exact expression for the anodic current J from
the rate equations in the model [15,16], can be approxi-
mated by
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system is obtained by numerical integration of Eqs. (8)—
(10) and Eq. (17), using Eq. (13) and Eq. (14) to evaluate

p. Since Eq. (17) depends only on the product of cry, we

are free to assign an arbitrary value to one of the param-
eters. In our simulation, we chose p such that o. was of
the order one when we achieved control.

Numerical results

For parameters (p, q, r, s, P) = (2.0 x 10 4, 1.0 x 10
2.0 x 10 s, 9.7 x 10 s, 5.0), the uncontrolled system
shows its typical chaotic oscillation. It has a steady state
fixed point at approximately Y = 0.114, 8QH = 0.315,
and 8o = 0.114. For the stability analysis, we deter-
mined the Jacobian from the right-hand side of Eqs. (8)—
(10) and used it to calculate the eigenvalues at the Bxed
point (Y = 0.114, HoH = 0.315, 8o = 0.114). These
eigenvalues were calculated to be Aq

———1.0553 x 10
A2 ——0.00199 + 0.01044i, and A3 ——0.00199 —0.01044i,
verifying that the fixed point is unstable, since two out of
the three eigenvalues have non-negative real parts. The
period of the chaotic oscillations is approximately 1000
time units. Thus the eigenvalues calculated in the nat-
ural time unit of this period are 1000 times larger than
the values of A; quoted.

Adding the control stabilizes the steady state fixed
point for a range of the proportionality constant o, . Fig-
ure 1 shows the o. dependence in the real parts of the
eigenvalues for the new Jacobian in the four dimensional
system [Eqs. (8)—(10) and Eq. (17)]. For small o., the
eigenvalues Aq, A2, and A3 approach the values listed
above for the uncontrolled system. The real part of all
eigenvalues must be negative for the fixed point to be
stable. While Aq always stays negative [near (—10 4)],
the real parts of A2 and A3 are negative only for a lim-
ited range in a. The new eigenvalue A4 corresponds to

0.02
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FIG. 2. Numerical integration of the electrochemical model
Eqs. (8)—(10). After the derivative control is switched on

[Eq. (14)—(17)],the system leaves its attractor and approaches
a steady state Sxed point (thick line). Subsequently, when

the control is turned ofF the system leaves the fixed point by
spiraling outward and returns to the chaotic attractor.

the additional dimension introduced by Eq. (17) and is
always negative and real. It is interesting that there is
an upper limit for a beyond which the derivative control
will fail to stabilize the fixed point.

Figures 2—4 demonstrate the successful control on the
steady state of the model [Eqs. (8)—(10)] by application
of derivative control Eqs. (14)—(17) for above parameters
and (p, po, ro) = (—1.0 x 107, 2.0 x 10 4, 2.0 x 10 s). Af-
ter integrating 10 time units of the uncontrolled system,
we switch the derivative control on setting a = 1 (thick
line). The system leaves the chaotic attractor and goes
to the steady state. Figure 4 illustrates that the con-
trol perturbation on r is very small, except for a sharp
peak at the moment of its initialization. At t = 5.0 x 105
we turn control off again. After some delay the system
spirals out and returns to its attractor. We also con-
trolled the steady state for other system parameters, in
particular for parameters where the uncontrolled system
is periodic. In all cases the system moved towards the
steady state immediately after control was initialized.
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FIG. 1. Real part of the eigenvalues Aq —A4 of the Jaco-
bian of the electrochemical model system Eqs. (8)—(10) for
the steady state fixed point including the additional fourth
dimension Eq. (17), neccessary to implement the derivative
feedback control. The dashed line represents two complex
conjugate eigenvalues. For the proportional constant a in the
range 0.4 ( n (2.4 the real part of all the eigenvalues is

negative. This indicates a maximum range for n, where the
derivate control stabilizes the steady state fixed point.
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FIG. 3. The dynamics of the numerical model projected in
two dimensions. After the control is turned on the system
leaves the attractor. The thick line indicates the trajectory
the system follows to reach the fixed point.
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For all investigated models, we succeeded in forcing the
system to leave its attractor and stay on the steady state
fixed point after implementing an appropriate derivative
control. We did not find the success of the derivative
control to depend on the initial condition of the system.
With the same control parameter and proportionality
constant, we could bring the system to the steady state
fixed point even &om regions far away in state space.

IV- APPLICATION OF THE CONTROL
STRATEGY IN THE EXPERIMENTAL SYSTEM

FIG. 4. At t = 0, control is initiated (thick line). The con-
trol parameter r (see bottom graph) undergoes a sharp peak
and then returns immediately back near its original value ro.
The system represented by 8o (upper graph) quits its chaotic
oscillations and reaches the steady state. At t = 10 x 10
we release control. After a delay the system returns to its
original chaotic state.

FIG. 5. Schematic representation of the three-electrode
electrochemical cell. V is the anodic potential and I is the
anodic current. The potentiostat adjusts the emf to hold V
at the desired set value.

stat to maintain a desired set value of the anodic poten-
tial (the potential between the anode and the reference),
and the oscillation in anodic current (the current between
the anode and the cathode) was recorded. For recording
purposes time series data was collected by sampling the
anodic current at 50 ms intervals using a Nicolet model
3091 digital storage oscilloscope. Typical period for the
anodic current (periodic) oscillations ranged between 2—

4 sec, hence it was ensured that the sampling interval is
small compared to the period of the oscillations.

An analog difFerentiator circuit, shown in Fig. 6, was
used to generate a continuous feedback signal propor-
tional to the time derivative of the anodic current (system
variable). This feedback signal was then used to contin-
uously perturb the anodic potential (control parameter)
in order to stabilize a fixed point of the system.

We applied the derivative control strategy discussed in
Sec. II to stabilize spontaneous oscillations in an electro-
chemical cell.

A. Experimental system

The experimental system was a PAR Model K60066
(Princeton Applied Research) three electrode electro-
chemical cell set up to study the potentiostatic electrodis-
solution of copper in an acetate bufFer. The electrochem-
ical behavior of this system has been studied in some
detail by Dewald, Parmananda, and Rollins [17,18]. Un-

der appropriate parameter conditions, this electrochem-
ical system exhibits both periodic and chaotic current
oscillations [17,18]. A schematic diagram for the electro-
chemical cell is presented in Fig. 5.

The anode is a rotating copper disk (5 mm diameter)
shrouded by TefIon. The electrolyte solution was an ac-
etate bufFer, a mixture, comprising of 60 parts of glacial
acetic acid and 35 parts of 2M sodium acetate. A vol-
ume of about 100 ml was maintained in the cell. The an-
odic potential measured relative to a saturated calomel
reference electrode was used as our control parameter.
The cathode was 2.5 cm platinum foil disk. The emf
of the circuit was continuously adjusted by a potentio-

B. Experimental results

Signal In ~741

RC—dt
~741

10k

100k

741

Dif ferentiator Gain and
Filter

FIG. 6. The analog circuit used to obtain the continuous
time derivative of the anodic current.

The control strategy was implemented while the sys-

tem was exhibiting periodic oscillations. Figure 7 shows

the time series of the anodic current while the control
is ofF, turned on, and then shut ofF again. The anodic
potential with the control ofF was 0.715 V and the anode
rotation rate was 1400 rpm. During successful control,
the anodic current oscillations decay eventually yielding a
dc response &om the system. When the control is shut ofF
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FIG. 7. The time series of anodic current plotted contin-

uously over a time during which the control is switched on
and then turned off. The derivative signal used to achieve
control is superimposed on the bottom graph. The rotation
rate = 1400 (rpm), the anodic potential with control off is

Vp ——0.715 V.

the system moves away from the 6xed point and reverts
to executing periodic oscillations again. The feedback
signal proportional to the time derivative of the anodic
current is superimposed on the bottom graph to illus-
trate the fact that the corrections (maximum) are about
5'%%uo of the applied potential, and go to zero as the system
stabilizes itself on the fixed point. Figure 8 depicts the
dynamics in a reconstructed phase space for a segment of
the time series in Fig. 7. As the control is turned on, the
system leaves the limit cycle, spirals in, and eventually
settles down on the stabilized fixed point.

V. CONCLUSIONS

The derivative feedback technique extends the stability
regime of unstable steady states observed in oscillating
chemical systems. This could be of practical importance
in chemical reactors where oscillations are undesirable as
they cause degradation in system performance. In the
numerical model, we studied the robustness of this con-

FIG. 8. The phase space reconstruction for a segment of
the time series data shown in Fig. 7. After the control is
turned on, the system dynamics spiral in, and eventually set-
tle on the stabilized 6xed point.

trol strategy and the range of proportionality constants
for which the stabilization could be attained. In the ex-
perimental system we show that this control strategy re-
quires no prior knowledge of the system dynamics, and
the simplicity in its implementation makes it an effective
technique for stabilization of chemical systems which are
inherently unstable. Experiments in application of the
derivative control strategy to convert the chaotic oscilla-
tions to a steady state 6xed point response in the electro-
chemical cell are underway. We also plan to investigate
the possibility of stabilizing the dynamics of other chem-
ical systems exhibiting oscillatory behavior.
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