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We consider a periodically modulated random walk (Wiener process) to an absorbing barrier with a

deterministic reset to the starting point following each barrier crossing. Cooperative effects arising from

the interplay between the noise and periodic modulation are analyzed as they manifest themselves in two

statistical measures of the response: the passage time statistics of the process and the power spectral

density of the output. Simple relationships exist between the extrema that occur in these two characteri-

zations. The spectral properties of the response are seen to bear a striking resemblance to the stochastic

resonance phenomenon that is known to occur in periodically driven noisy nonlinear systems.

PACS number(s): 05.40.+j
I. INTRODUCTION

The response of nonlinear dynamic systems to weak,
deterministic, time-dependent stimuli in the presence of
system noise has recently been of considerable interest to
the statistical physics community. One of the most intri-
guing cooperative effects that arise out of the coupling
between deterministic and random dynamics in a non-
linear system (usually taken to be bistable) is "stochastic
resonance" (SR). This effect, originally reported by Ben-
zi, Eckmann, and their co-workers [1] was proposed as a
possible explanation for the Ice Ages [2]. It consists of a
noise-induced enhancement of the response of a nonlinear
system to a weak, external, time-periodic modulation in
the presence of background noise. The signal strength,
measured in the output power spectral density at the
stimulus frequency, can actually be enhanced over its in-

put value through a coherent transfer of energy between
the noise and stimulus-dominated hopping dynamics be-
tween the stable attractors of the system. The mecha-
nism of SR is simple. Given a bistable dynamic system,
for example, information is transmitted through the sys-
tem in the form of switching events between the stable
states, or attractors, of the potential function underlying
the dynamics. The efect of an applied time-periodic sig-
nal is then to rock the potential, alternately raising and
lowering the wells. However, should its amplitude be
very low (compared to the height of the potential bar-
rier), it will not be able to induce switching. In the pres-
ence of even small amounts of noise (assumed throughout
this work to be Gaussian and 5-correlated) there will,
however, always be a finite switching probability. Since
the switching probability is greater when the system is in
the "elevated" well, which occurs when the signal is at its
maximum, one realizes that the noise-induced switching
events may acquire some degree of coherence with the

deterministic signal as long as certain important system
parameters, notably the potential barrier height and the
locations of the fixed points, are appropriately adjusted.
With increasing noise, the component S(co) of the output
power spectral density at the stimulus frequency co in-
creases until, for a critical noise strength, the intrawell
motion gives way to interwell (or hopping) motion as the
major contributor to the dynamics. After this point S(co)
decreases with noise; for very large noise strengths, the
switching becomes noise dominated and very rapid, with
all coherence with the periodic signal being destroyed.
For modulation frequencies comparable to the Kramers
rate (the characteristic well-to-well switching rate in the
noise-only case), the critical noise strength (at the max-
imum of the signal-power curve) corresponds to a match-
ing between the modulation frequency and twice the Kra-
mer rate, hence the somewhat misleading characteriza-
tion of this eff'ect as a "resonance" in the physics litera-
ture. The earliest theories of SR [3] embodied adiabatic
assumptions wherein the modulation frequency was taken
to be smaller than the Kramers rate of the system in the
absence of the modulation. Latter theories relied on sys-
tematic expansions of the response autocorrelation func-
tion in matrix continued fraction series [4] or linear
response approaches [5]. The physics literature is also re-
plete with demonstrations of SR in numerous experi-
ments [6] and analog simulations [7]. A good overview of
the phenomenon may be found in recent review articles
by Moss [8] and Jung [9] as well as the proceedings of a
NATO workshop on the subject [10]. Recent contribu-
tions to the field tend to focus on the role of multiplica-
tive noise, i.e., fluctuations in the potential barrier height
and locations of the minima [11],the extension of con-
ventional theories of SR to new regimes of parameter
space [12], and the interplay of noise and modulation in
populations of globally coupled bistable elements [13,14].
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In addition, there has been much recent speculation
about the possible central role played by SR in the
response of sensory neurons (modeled as bistable noise-
controlled switching elements) in the mammalian nervous
system [14,15].

The above paragraph provides a short survey of
research carried out to date in this field, for the most part
on bistable dynamic systems, i.e., systems whose dynam-
ics can be underpinned by a double-welled "potential
function. " However, SR is by definition a threshold pro-
cess. One assumes that the deterministic periodic modu-
lation is too weak to cause transitions over the potential
barrier in the absence of the noise; then even small
amounts of added white noise will lead to noise-assisted
barrier crossings, thereby enhancing the output signal-
to-noise-ratio of the system. This, in turn, raises the
question of whether similar cooperative effects can be
seen in the response of a simpler system, quantified solely
in terms of threshold crossing events. The fact that SR
may indeed be a feature of signal processing by sensory
neurons and that there exist simpler mathematical mod-
els of neural firing than the bistable models referred to
above provides further momentum to this question. A
very recent paper by Wiesenfeld et al. [16] describes SR
in the response of a simple system, one in which a state
point makes an excursion to a barrier, under the infiuence
of white noise and a weak periodic signal; after sur-
mounting the barrier (which is impossible without the
noise) the state point is returned deterministically to its
starting point. This system can be used as a prototype of
a variety of "excitable systems, " some of which are
known to provide very good descriptions of certain prop-
erties of excitable cells. Indeed, Wiesenfeld et al. are able
to match the predictions of their generic theory quite well
with analog simulations of a Fitzhugh-Nagummo model
of the neuron, as well as experimental data from the
mechano receptor of the Missouri crayfish stimulated by
external noise and a weak periodic modulation. The pre-
dictions match the simulations even though, unlike other
single-state treatments of SR [17], they do not explicitly
consider a system dynamics described by a monostable
potential.

Motivated by recent work in the modeling of the
response of sensory neurons to deterministic periodic sig-
nals embedded in a noise background [14,15], we wish to
consider the response of simpler (compared to the
plethora of bistable-system-based treatments to date) sys-
tems to such external stimuli. It seems fitting to consider
continuous state space random walk models, since these
embody some of the most fundamental concepts of sta-
tistical physics and can be used in modeling a wide
variety of phenomena in areas as diverse as genetics and
astronomy. In fact, the response of the simplest one-
dimensional random walk to a time-periodic stimulus has
already been described by Fletcher, Havlin, and Weiss
[18]; they show that the mean residence time is a
minimum for certain characteristic frequencies. Excel-
lent reviews of random walk dynamics exist [19], and
rigorous theories of the first passage time in stationary
one-dimensional random walks have been developed by
Siegert and his co-workers [20] (see [21] for good re-

views).
The model that we consider in this work is a special

case of the periodically driven Ornstein-Uhlenbeck pro-
cess [22]:

x = A, ( u„—x ) +p+ F( t ) +q cosait . (1)

Equation (1), in the absence of the periodic stimulus, has
been extensively studied in the theoretical neuroscience
literature as a so-called "integrate-fire" (IF) model of neu-
rons [23]. In these studies, x (t) represents the cell mem-
brane voltage, with p being a positive drift to a firing
threshold a while k is a decay constant governing the de-

cay of the voltage variable to a resting level u, . The noise
term F(t) represents the net contribution from all the
synaptic inputs to the cell; it is usually taken to be Gauss-
ian and 5-correlated with zero mean and variance D
Deterministic IF models have been studied by Keener,
Hoppenstaedt, and Rinzel [24]. Excellent reviews of the
applications of models such as (1) to neurophysiological
modeling can be found in the works of Tuckwell [25].

In this work, we shall consider a simplification of the
above model, the A, =O case; of course, the A, =O=q=p
case constitutes the celebrated free-particle problem stud-
ied by Einstein [22]. Before studying the effects of the
periodic stimulus, however, it is instructive to review
some of the results for the unmodulated (q =0) case, the
so-called Wiener process [21,22]. Such a model was in-
troduced by Gerstein and Mandelbrot (GM) [26] as a
model of neural firing events subject to certain con-
straints. In their model, which they called the "perfect
integrator, " the underlying dynamics are assumed to be
describable by a stationary random walk based on the
cornerstone requirement of a stable distribution function,
in the absence of drift, for the probability density of first
passage times corresponding to the dynamics. The state
variable x ( t ), representing the membrane voltage, is as-
sumed to execute a biased random walk to an absorbing
threshold a at which point a firing event is designated to
have occurred, and x (t) is instantaneously reset to its
starting value, the reset mechanism being purely deter-
ministic. It is this reset which renders the "global" dy-
namics nonlinear. It is also assumed that the motion
occurs under the bias of a positive drift coeScient p
which was defined by GM as the suitably weighted
difference between excitatory and inhibitory synaptic in-

puts (it is neurophysiologically reasonable to assume
these inputs to be different [26]). For this model, the
%iener process with drift, one readily writes down the as-
sociated Fokker-Planck equation (FPE) [21,22],

BP DBP—P(x, t) = —p—+— (2)
Bx 2

From (2) the first passage times density function
(FPTDF), also known in the neurophysiological literature
as the interspike interval histogram (ISIH), is readily
found to be [21]

(a ao pt )——
go(t ) = exp '—,(3)

2m 1)t '

ao being the starting point of the random walk. The den-
sity function go(t), often referred to in the statistical
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literature [27] as the inverse Gaussian, reproduces many
of the properties of experimentally observed FPTDF's
(for spontaneous firings} reasonably well, including the
long (exponential} tail in the FPTDF go(t). However, the
model also has numerous limitations (which have been
enumerated by GM}, the most fundamental one being the
assumption that the membrane potential is deterministi-
cally reset following each firing event; nevertheless, it
provides a simple vehicle to explain, on a grossly
simplified level, the dynamics that arise from the cou-
pling of the noise to the drift-driven dynamics in certain
classes of neurons. A more rigorous (from a neurophy-
siological standpoint} grounding of the FPE (2} has been
given by Stevens [28].

The first passage time statistics corresponding to the

q =0 case are readily calculated from the FPTDF (3). In
particular, the mean first passage time (MFPT)
t—:to=(a —ao)/lu to the absorbing threshold is calculat-
ed as the first moment of go(t), and its reciprocal yields
an average firing rate. The variance of the first passage
time is t t =D(a——oo)/p . For a long-tailed distribu-
tion of the form (3), however, possibly the more impor-
tant quantity is the most probable time or mode, corre-
sponding to the maximum of the FPTDF. For the q =0
case, this time is readily obtained by differentiation:

3D

2p

' 1/2
4a p
9D

(4)

It is significant that the mode t depends on the noise.
In experiments, crossing or firing times clustered about
the mode are more probable. The mean of a large num-
ber of firing times may yield a MFPT to which, depend-
ing on the physical characteristics of the density function
(3), is close to the mode or farther out in the tail. When
analyzing the properties of the FPTDF, the interplay of
the three time scales To(=2m/to), to, and t is crucial.
With increasing drift p (corresponding in a neurophysio-
logical context to decreasing inhibition) or with decreas-
ing noise strength, while keeping the drift fixed, the
FPTDF approaches a more sharply peaked density; in
effect, the tail of the density (3) shrinks, with the mean
approaching the mode. This may be demonstrated via a
Gram-Charlier expansion of the density function (3), and
is depicted in Fig. 1 in which we plot the ratio t lto vs
the drift p and the noise variance D. Increasing the drift
is seen to lead to a more sharply peaked distribution as

lto ~ 1 for a given noise variance; the approach to a
very sharply peaked distribution is more rapid at lower
noise strengths. In the p~0 limit, the mean to increases
without bound, corresponding to the long tail that
emerges, in this limit, in the distribution function go(t);
the mode, however, approaches a limiting value
t =a /3D. For this case, the moments of the FPTDF
must be computed by invoking a cutoff t„ i.e., we
redefine the FPTDF to be the probability density of
reaching the barrier in some finite time t, ; this case is not
considered in this work.

In the following two sections, we detail the effects of
including the periodic modulation term in the dynamics.
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FIG. 1. Mode-to-mean ratio of the FPTDF (3) vs drift p with
noise variance (reading curves from top to bottom) D=0. 1,
0.25, 0.5 and (inset) vs noise variance D for (reading curves from
top to bottom) @=0.1, 0.0625, and 0.025. a=20 and q=0 for
a11 curves.

The resulting FPTDF's are seen to be strikingly similar
to and display many of the properties of escape time dis-
tributions that have been studied in nonlinear systems
with dynamics underpinned by a bistable potential. In
fact, some of the noise-induced cooperative behavior that
we will observe in the FPTDF and the power spectral
density of the output x(t) is seen to be strikingly similar
to behavior in bistable systems that has been linked to the
stochastic resonance phenomenon. A detailed discussion
of these points is contained in the following sections.

II. WEAK PERIODIC STIMULUS
AND THE FPTDF

a a~ D a'~—P(x, t }=—(p, +q corot�) +-
at Qx 2

The substitution y=x —pt —(q/co)singlet enables us to
solve the FPE, using the method of images, subject to the
condition of the absorbing boundary at x =a,

We now consider the inclusion of the periodic modula-
tion term in the dynamics: the q )0 case of Eq. (1},but
with A, =O. We require that, following each crossing of
the absorbing barrier at x =a, a particle described by the
state variable x(t) is reset to its starting point ao =0. We
also assume that the phase difference between the solu-
tion x (t) and the periodic stimulus is reset to zero follow-
ing each barrier crossing. This is an important point; if
we allowed the phase to remain coherent across the reset
times, there would be, after an initial transient, a pre-
ferred phase at which most of the threshold crossings oc-
curred. Thus the only effective difference between the
coherent model and the full reset model would be a phase
offset in the response statistics, merely a quantitative
change. The FPE for our model is easily written down:



4992 A. R. BULSARA, S. B. LO%KN, AND C. D. REES

v'2irDt P(x, t ) =exp — —exp pt +—sincotx p—t —(q /co)sincot ] 2a q

2Dt Dt

(x —2a p—t —
, (q /co)sincot )

Xexp
2Dt

whence the FPTDF is computed via the prescription [21]

g(t)= ——J P(x, t)dx,d
dt

which yields, after some calculation,

g(t)= 1 a aq
exp( f ~

) +— t coscot ——sincot
1

v'2nDt'". ' Dt' N

X@,(f3)exp(f2), (7)

where 4,(z)= (2—/v'm) f,"e ' dt is the complementary
error function and we have defined

[a p, t —(q—/co)sincot ]
2Dt

2Qf2
=— pt + sincot

Dt ru

[a+p, t+(q/co)sincot ]
v'2Dt

For future use, it is convenient to expand (7) to first order
inq:

g(t ) =go(t }+ (t coscot —co 'sincot )
Dt

X4, exp(2alLc/D ) .
a +tt, t

2Dt

(7). At very low stimulus frequencies (co «2m/to), with
all the other parameters fixed, the FPTDF consists of a
single narrow peak located near t =I; . The motion for
this case is dominated by the noise and the drift with the
mean of the FPTDF being given by T=to(1+q/IJ, )

which approaches to for small q Ip. Increasing the
stimulus frequency leads to the development of additional
peaks in the FPTDF. As co~2~/to, the dominant peak
approaches the location t = To with smaller peaks begin-
ning to appear near t =nTO (n ) 1). Finally, for
co =2m lto, the FPTDF consists of a dominant peak locat-
ed at t = To ( =to) with smaller peaks located at t =nTO
(n ) 1). For stimulus frequencies greater than 2irlto, the
FPTDF exhibits peaks at locations nTO where n is a posi-
tive integer. Figure 2 shows the FPTDF for two choices
of the drift p; increasing the drift p is seen to lead to a
narrower FPTDF, as described in the preceding section.
The FPTDF (3) corresponding to the q =0 case is seen to
be the envelope of the more general FPTDF (7};in fact it
is evident that if we adjust the stimulus and/or system
parameters such that

tm =~To (10)

A. Peak heights in the FPTDF

then the nth peak wi11 be the highest one. This is shown
in Fig. 2 (solid curves); here, the drift p has been adjusted
to make the peak at n =4 the highest one.

For the small values of q considered in this work, this ex-
pression yields a FPTDF that is virtuaHy identical to the
exact expression (7).

We now briefly discuss some of the properties of the
density function (7). The mean first passage time for the

q )0 case could be found directly from (7) by integration.
It is, however, far sixnpler to note that the MFPT is sim-

ply the passage time to the boundary in the absence of
noise. Then, since we assume the periodic motion to be
simply a small perturbation to the drift dynamics, a first-
order perturbation solution of the dynamic equation
a =pt+(q/co)sincot yields the deterministic passage time
corresponding to the MFPT for the A, =0 case of the pro-
cess (1):

(q /a co)sincoto
T=to 1—

1+(q /p)coscoto

An interesting feature about the FPTDF (7) is that the
peak heights go through maxima as functions of the noise
variance D. This is demonstrated in Fig. 3 for a particu-
lar set of system and modulation parameters. One can
calculate from (7) the critical noise D, at which the nth

peak passes through its maximum. Noting that the peaks

0.010

0.005CI

where to —=a /p is the mean first passage time in the pres-
ence of noise alone. Note that T~to at high drive fre-
quencies co, as expected. Also, in the absence of the drift,
one obtains a MFPT T=co 'sin '(aco/q ) which is
defined only for q & a~; we do not consider this range of
parameters in this work.

We now consider the temporal behavior of the FPTDF

0.000
0.0 2.0 4.0

1

6.0 8.0 10.0

FIG. 2. FPTDF (7) vs normalized time t/To for q =0 cases
(smooth curves) and q =0.03, with drift @=0.065 (solid curves)
and 0.1 (dashed curves). 0=20, co=0. 1, and D=0.2 for all
curves.
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p =p, . As the noise decreases, one approaches the
= to limit. Since we already have set to =4TO, the

effect of decreasing the noise is to make the fourth peak
the highest one in the FPTDF and, thereafter, to increase
its height until it becomes a 5 function in the singular
limit, D ~0, in which the three time scales coincide. The
richness of behavior resulting from the coupling between
the drift- and noise-dominated motions is evident in this
subsection; we now demonstrate a somewhat different
cooperative effect that is peculiar to this system.

B. Antiresonant behavior

One final property of the density function (7) is worth
describing: the height at the mode of the density function
(3) goes through a minimum as a function of noise. This
can be shown by direct differentiation and has appeared
in the literature [27]. The effect also occurs for the q )0
case. In Fig. 6 we plot this height as a function of noise
variance D. The critical noise variance corresponding to
the minimum turns out to be

D = +0.3S12aq, (15)

corresponding (for the q =0 case) to a mode that is exact-
ly half the mean (t =

—,'to). The second term in (15) has
been obtained numerically. The behavior can be inter-
preted as a separation of regimes in which the random
walk is dominated by drift and diffusion effects. In fact,
one readily observes that go(t ) =(p /2naD)' for
D ((ap/2 whereas go(t )=(3D/2a )(6/ne )'/ in the
opposite limit, corresponding to noise-dominated motion;
in the transition region ( D =ap/2), no clear behavior
pattern emerges. In the q &0 case, one can set the pa-
rameters such that a particular peak is the highest. For a
given drift and noise variance this amounts to setting the
amplitude of the nth peak via expression (11) with nTo
replaced by r, the mode, according to (10). This ampli-
tude displays a minimum at a critical noise given by (15).
Since the mode t depends on the noise, as we change D,
we must change the frequency co along with D if we
desire the nth peak to be always the tallest one. Hence,
for the modulated case, the above represents an adaptive

change of parameters (the noise and frequency) such that
the height of a given peak, always adjusted to be the tall-
est one in the FPTDF, passes through a minimum. This
is shown in Fig. 7 in which the noise variance takes on
three values, selected such that go(t ) passes through a
minimum as a function of the noise. For each of these
values the modulation frequency is adjusted, via the rela-
tion (10), so that the n =3 peak is the highest. The height
of the third peak in the FPTDF then passes through a
minimum as a function of these noise values, although it
remains the highest peak in the FPTDF. The FPTDF
go(t) follows the same behavior as the n =3 peak of g(t)
for these parameter choices; this is as expected since, in
plotting the curves of Fig. 7, we have selected two noise
variances about the minimum defined by (15), held the
drift constant, and adjusted the modulation frequency
such that the relation (10) is satisfied in each case with
Pl =3.

We can compare the properties of the FPTDF (7) with
existing results from modulated noisy bistable systems.
The multipeaked structure of the FPTDF, in the pres-
ence of the deterministic modulation, is well known in
noisy bistable dynamic systems. It was first observed by
Gammaitoni et al. in analog simulations [3] and has sub-
sequently been described by numerous researchers in the
nonlinear dynamics community [9,29]. Longtin, Bulsara,
and Moss (LBM) [15] pointed out that depending on the
measurement process, two density functions were possi-
ble in driven bistable systems; these consisted of peaks at
the locations nTO (n integer) and nTo/2 (n odd integer).
They considered a "soft"-potential model of neuron dy-
namics and speculated that the second density function
corresponded to the "hidden" or "reset" events that fol-
low every neural firing; such events cannot be directly ob-
served in neurophysiological experiments. However, the
random walk model under consideration in this work
differs from all the above treatments of bistable models in
a very important respect. In the bistable model treat-
ments of SR, the potential barrier cannot be crossed in
the absence of noise, since the amplitude of the periodic
modulation is taken to be too small to allow deterministic
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FIG. 6. Height of the FPTDF (7) at the mode vs noise vari-
ance for periodic stimulus amplitude q =0 (bottom curve), 0.01
(middle curve), and 0.05 (top curve). a =20 and p =0.065 for all
curves.

FIG. 7. "Antiresonant" behavior (see text) in the n =3 peak
of the FPTDF. D=0. 195 {dotted curve), 0.959 [solid curve;
critical D as determined by {15)],and 2.702 {dashed curve).
a =20, @=0.065, and q=0.05 for all curves, and modulation
frequency co is set, via the condition t =3Tp such that the
n =3 peak is the highest in each case.
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switching. In the presence of a positive drift p, however,
the random walker considered in this work mill reach the
barrier in the absence of noise. This is reflected in a
MFPT that does not depend on noise, in contrast with
the Kramers rate that characterizes hopping events in
bistable systems. However, this property also leads to the
"antiresonant" behavior in the FPTDF that has been de-
scribed in the preceding subsection; such behavior, which
reflects a competition between the noise- and drift-
dominated motion to the barrier, is not observed in bi-
stable systems in which deterministic crossing events are
forbidden. In bistable systems, the heights of peaks in the
FPTDF display the same behavior that we observe in
Fig. 3 [9,29]. Although there does not currently exist a
precise frequency-matching condition that characterizes
the "resonances" in the FPTDF peak heights, this effect
has been espoused as a manifestation of SR at the level of
the FPTDF in bistable systems, particularly since the
hopping rate in such systems is noise dependent. No
such significance can be attached to the behavior of Fig. 3
until we examine the spectral properties of the dynamics
under consideration in this work; this is done in the fol-
lowing section.

III. SPECTRAL PROPERTIES OF THE DYNAMICS

The theory of the preceding section, as well as the oth-
er theories of noise-induced switching referred to above,
demonstrate that the multipeaked structure of the
FPTDF is a direct consequence of the noise. The LBM
theory, in fact, invites speculation regarding the possible
beneficial role of noise in sensory information processing.
However, SR, characterized by a maximum in the output
signal-to-noise ratio (SNR) vs noise-variance curve, has
been demonstrated in a variety of physical experiments
[6]. However, it has yet to be shown to play a fundamen-
tal role in sensory information processing in the nervous
system, although there have been some experiments that
show the characteristic SR behavior in neurons stimulat-
ed by periodic modulations superimposed on externally
applied noise [30]. It is important to reiterate that the
multipeaked FPTDF's that are ubiquitous in the neuro-
physiological literature are not (by themselves) indicators
of SR as an underlying cooperative stochastic effect. To
obtain such density functions it is sufficient to have some
form of optimization process whereby certain system pa-
rameters, e.g., the potential barrier height in a bistable
system or the quantities a and p in the noisy dynamics,
can be adjusted in response to the applied stimulus. Such
an adjustment optimizes the coherence between the
stimulus, which is assumed to carry external information,
and the system response (characterized by the output sig-
nal strength Sor the SNR). Although the peak heights in
the FPTDF do display maxima as functions of the noise
strength, attempts to quantify this "resonance" via a
matching of two characteristic rates (as is the underlying
precept in SR) have been largely inconclusive because of
the practical difficulties associated with generating
FPTDF's at low noise strengths.

The mathematical neurosciences literature contains
several attempts to model neuron firing activity with an
emphasis on stochastic point processes [25]. Generally,

the focus has been on the FPTDF or ISIH. If the inter-
spike intervals are assumed to be independent and identi-
cally distributed, then the point process is a renewal pro-
cess [21,25]. It is important to point out that the FPTDF
(or the ISIH) that was described in the preceding section
is only one statistical measure of a point process; two
different point processes may share identical FPTDF's.
In addition, not all neurophysiological experiments yield
FPTDF's that can be matched to the inverse Gaussian.
Most conventional considerations of the response of these
systems are based on an analysis of the power spectral
density (PSD) characterizing the output; hence it seems
reasonable to suppose that the two probabilistic measures
of the response (the PSD and the FPTDF) should be re-
lated and in fact, for the case of a renewal process, they
are known to be directly related. Accordingly, to under-
stand better the cooperative behavior observed in the
preceding section, we now consider the PSD of our mod-
el. We treat our modulated random walk as a renewal
process, since the crossing times are independent of one
another. This is possible because of our assumption of
the phase resetting that accompanies the reset to the
starting position, following each crossing of the barrier.
Then, in terms of the FPTDF (8) we may write down the
PSD at a frequency Q [31]:

S(Q)= ( T) 5(Q/2m. )+ ( T) 'Re, (16)
1 —$(Q)

$0(Q)=exp (p +p 2i QD—)— —a
(18)

which yields, combined with (15), the PSD at the frequen-
cy Q corresponding to the q =0 case (the MFPT T is now
replaced by to),

e2A
S,(Q}= —2e ~cosy

where we define

(19)

—aap
D

1/2
+p +4Q D +tJ,

2D
(20a)

(Qp4+4Q2$72 2)1/2
~2@ (20b)

The behavior of the expression (19}as a function of the
noise variance D is effectively dominated by the behavior
of the real part of the characteristic function $0. We can
write the real part of $0 in the form

$0„=e "cos8, (21}

which we now analyze in some detail. To begin with we

where

$(Q }—:J g(t }e'"'dt (17)
0

is the characteristic function of the density function (7}.
At high frequencies, the PSD is seen to approach the lim-
it (T) ' and at low frequencies, it approaches the limit
[var(T)]I(T) . In the absence of modulation we have
the characteristic function
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note that 3 ~0 in the D~O and D~ ~ limits; in be-
tween, it has a minimum at D, =(2+&5)' p /Q. We
observe that B(D =0)=aQ/p; thereafter it decreases to
zero for increasing D. Hence the behavior of the relative
maxima of Po„ is determined by the parameter
o=aQ/2nrp= t, o—/To, with To =—2m. /Q being the period
corresponding to the frequency argument 0 in the PSD.
A first-order expansion of Po„ in D leads to the conclusion
that for o &(/2ir) ', Po„ is decreasing at the origin, so
that the only relative maximum for this case occurs for
D=O. For (i/2ir) '&cr & —,', there is no relative max-

imum. For —,
' &o. &1 there is a relative maximum at

D =0 since both terms in Po, are decreasing. For o & 1,
there is a relative maximum whenever B=2n ir ( n in-

teger). In this case the number of relative maxima, E, is

given by N =[cr], i.e., the greatest integer not greater
than o. For the case N & 1, the relative maxima of Po„
are very closely located by setting 8 =2nm, which yields
the critical noise variance D,„at which the maxima
occur,

Q
Dm,„= QQ —n Qo,

4n m.
(22)

, 1+exp(A )

1 —exp( A )

with A obtained by substituting (20a) into (18):

(23)

where Qo= 2m/t—o
T. he .actual maxima will be slightly

displaced from these values because of the presence of the
exponential in (19), but the displacement will be small
since 0 & e "&1. Note that, in (22), n =1 yields the "glo-
bal" maximum, i.e., the one farthest from the origin. The
actual maxima and minima can be easily found via expan-
sion around D,„and D, . Near the global maximum,
characterized by n =1, the PSD (19) approaches the sim-

ple form,

-19.0

-19.5 — j j'-- ---
/

-20.5
0.0 2.0

0
3.0 4.0

FIG. 8. Signal strength S(co) of the PSD for three modula-

tion frequencies co, plotted as function of the nose variance D,
with q =0.025 (top three curves), and 0 (bottom curves).
~=0.125 66 (solid curves), 0.16 (open circles), and 0.2 (dashed
curves). a =20 and @=0.2 for all curves.

proaching p. The qualitative similarity in behavior of the
spectral properties for the q =0 and q &0 cases is explic-
itly demonstrated in the figures. Decreasing the modula-
tion frequency efFectively makes the global maximum
sharper and moves it to the left; these are characteristics
of stochastic resonance as we know it in bistable systems.
Note that if we take Q=n Qo there is a global maximum

only at D =0 as shown by the analysis of the preceding
paragraph.

Can the critical noise value (at the maximum) be ex-
pressed in terms of characteristic frequencies of the sys-
tem as in conventional SR? We consider R, defined as
the ratio of the mode location, given by (4), of the noise-
only FPTDF to the modulation period To', with the mode
being evaluated at the critical noise strength D,„given
by (20) that approximately locates the global maxima of
the curves in Fig. 8. After some algebra R becomes

Qo —0= 2m.
Go+0

(24) T
max

1/2
The height of this maximum decreases with increasing a
or decreasing p. At the maximum, the PSD is character-
ized by only the two frequencies 0 and Qo. In what fol-
lows, and in the figures, we shall replace the PSD fre-
quency 0 by cu whenever we specifically refer to an ap-
plied periodic stimulus of frequency ~.

In Fig. 8 we show (top curves} the signal strength S(co)
vs D, taken from the PSD for three modulation frequen-
cies Q. These curves are obtained numerically from the
full FPT density (8). The bottom curves show the same
cases but with q =0; these curves are calculated directly
from the theory of the preceding paragraph. We note
that the curves for q & 0 are virtually identical (except for
a vertical shift} to the q =0 case. For small q this is not
surprising since, for the parameters considered in this
work, the FPTDF is very well approximated by its first-
order expansion in q. Hence much of the analysis that
follows can be carried out for the simpler q =0 case and
extended, qualitatively at least, to the 0 & q «p case. It
is worth noting here that, in practice, we obtain very
good results via the approximation (8) even for q ap-

1+6 m —1
3 16

( 1 g)1/2 (25)

where we have introduced a paratneter 5=Qo/Q
=Toi/toi that is related to the detuning. As expected,
8 ~1 as 6~1. The parameter b, thus defines the critical
point at which the global maximum of the signal strength
vs noise curve occurs. Recall that the actual global max-
irnurn occurs at a location somewhat displaced from that
predicted by (22}. It is tempting to assume that this abili-

ty to express R solely as a function of the ratio b at the
global maximum is a manifestation of SR. However, this
is not necessarily the case, because we can calculate the
"SNR" at the drive frequency 0 as a function of D
directly from the curves in Fig. 8; for this purpose, we
define the SNR to be the ratio of the PSD's at the fre-
quency Q in the presence and absence of the periodic
modulation at that frequency. The result is a monotoni-
cally decreasing function; it does not go through a max-
imum. Hence, while the above-described efFeets may be
an example of a nonlinear resonance that is controlled by
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noise, they need not be taken to be the same as SR as we
know it in bistable systems. Finally, the gain in signal
strength as a function of noise is, at least for all the pa-
rameters chosen here, quite small (less than 1 dB). One
can also plot the signal strength S(Q) vs noise variance
for different drift values, although this is not shown. In-
creasing the drift is seen to lead to a more pronounced
maximum. This should be expected since the signal
strength at a given frequency in the PSD will increase
with the number of barrier crossing events.

The effects of changing the drift p while keeping the
noise constant are shown in Fig. 9, wherein we plot the
signal strength at the drive frequency vs the drift for four
different drive frequencies. The curves all go through
maxima at critical values of the drift. Once again, the

q =0 case yields curves that are virtually identical to the

q )0 case except at very low IM, in which case the curves
differ by a scale factor on the vertical axis. This is be-
cause with increasing p the contribution of the second
term in (8) to the FPTDF becomes increasingly negligible
with the random walk becoming drift dominated. Hence,
it is far more convenient to carry out our analysis based
on the q=0 case. Note that, as 0 increases, the signal
strength at the maximum increases; this is contrary to the
results depicted in Fig. 8, in which the noise strength is
varied instead of the drift. We also find that the critical
drift (at the maximum) of any of these curves corresponds
to a matching of the drive period Tp with the deterministic
switching rate tp. This condition closely resembles the
frequency-matching conditions that define conventional
SR. In Fig. 10 we plot the ratios t /Tp and t Itp vs the
drift, keeping the noise variance D constant. The inter-
sections of the curves yield the critical p values at which
the peaks in Fig. 8 occur. A far more interesting situa-
tion is shown in Fig. 11. Here we plot the signal strength
at a given frequency 0=co vs drift, and change the noise
variance. Once again we obtain global maxima for p
values corresponding to T0 = t0. However, we also notice
the appearance of an additional peak in the signal
strength for low applied noise which occurs at Tp =tp/2.
This efFect can be explained by returning to Eq. (22) and
inverting to obtain the dependence of p on D. We readily

4.0

3.0-

2.0

1.0

0.0
0.0

I

0.5 1.0

FIG. 10. Ratios t /To (solid curves) for co=0.075, 0.1, 0.15,
and 0.2 reading from bottom to top and t /to (dashed curve), vs
drift p. The intersections yield locations of the maxima in Fig.
9. a =20, q =0.025, and D = 1 for all curves.

find that

4 4 2
1 ~2 16n nD

0 n a4 (26)

where we recall that Q=p2mpl .aThis expression will
have a real root for D &a QI4n n For t. he case when
Q & 4m. D/a, one can always find an n & 1 such that the
argument of the square root in (26) is positive. Then
n = 1 defines the global or dominant maximum of the sig-
nal strength, corresponding to the largest p value. For
large a, the second term in the square root can be neglect-
ed (for small n) and we have the dominant maximum
occurring at 00=0, i.e., T0=t0; this is also the max-
imum that corresponds to the largest p value. The next
lower maximum occurs for n =2 (Tp=tp/2) and so on.
In fact, one obtains a local maximum for all integer n
values until the argument of the square root turns nega-
tive. Interestingly, the function cosB in (19), and there-
fore also the real part Pp„of the characteristic function,
both have maxima at the same n values. For large a, the
first few maxima correspond very well to the condition
n Tp = tp [given by the first term in the square root of (26)]

-12.0 -11.2

-14.8
-15.6

-17.6

8
-20.4—
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-20.0
8
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~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

ooooooooooo oooooooooooo

-24.4

-26.0
0.0

I

0.5 1.0
-28.8

0.0 0.5 1.0

FICx. 9. Signal strength S(co) vs drift p for (reading the sets of
curves from bottom to top) co=0.075,0.1,0.15,0.2. Solid and
dashed curves in each set correspond to q =0.025 and q =0, re-
spectively. a =20 and D = 1 for all curves.

FIG. 11. Signal strength S(co) vs p for noise variance
D=0. 15 (solid curve), 0.5 (large dashes), 1.0 (dots), 2.0 (filled
circles), and 4o0 (open circles). a =20, q =0.025, and co=0. 1 for
all curves.
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which was precisely the condition for the nth peak in the
FPTDF to attain its maximum height for a fixed noise
variance D. However, as n increases, the second term in
the square root of (26) becomes non-negligible and the
maxima are determined via the full condition (26). In
Fig. 12 we show a case with multiple maxima. Here
a =60 and one expects to find n =9 maxima. However,
the amplitudes of the maxima decrease rapidly with in-
creasing n and the low-lying ones cannot be resolved on
the scale of the figure. These curves are computed direct-
ly from Eq. (19) for the signal strength in the absence of
the modulation; however, a full numerical simulation of
the dynamics of (1) with a small modulation amplitude q
(compared to the drift p} yields qualitatively similar
behavior. The small differences between the q=0 and

q &0 cases are evidenced solely in a vertical scale factor
as stated earlier. The values of the drift p corresponding
to the maxima of Fig. 12 are well approximated by the
condition (26) with the second term in the square root
neglected for small n. From the foregoing discussion, it
is evident that the dominant maximum (the farthest one)
occurs at To /to =—Top/a =1; thereafter the maxima
occur approximately at To/to= —,', —,', —,', . . . . The effect

of changing the noise variance is also shown in this
figure; lowering D leads to the appearance of more peaks
together with an increase in the peak amplitude. In fact,
a given peak, in Fig. 12, attains its maximum possible
height in the D~0 limit corresponding to the t ~to
case; this is precisely the limit, discussed in the preceding
section, in which the nth peak in the FPTDF approaches
a 5 function. For both noise values, the dominant maxi-
ma occur for the same p value; they correspond to n = 1

and To =to, a condition that is basically independent of
the noise variance. As n increases, the second term in

(26) becomes increasingly important in computing the
critical values of p, and the peak locations are no longer
determined via the condition QO=Q/n We can. compute
exactly the signal strength So"' for any discrete value of
n, yielding the signal strength at the peaks in Fig. 12, by
substituting (22) into (17). After some calculation we ob-
tain

, 1+exp( A„)
1 —exp( A„)

13.2

2.2

where

The n =1 peak is the highest one. Also, So"' increases
with increasing frequency 0, as was observed in Fig. 9.
For large D values such that the square root in (26) is
imaginary for n =1, we still observe a (single) maximum
in the signal strength. Two such cases are shown in Fig.
11 (D =2,4). For these higher D values, the factor cos8
in (19) has only a single, global, minimum and both the
factors in (21) determine the location of the extrema of
S(Q), in contrast to the cases discussed above wherein
the extrema of cos8 yield the extrema of S(Q} to a high
degree of accuracy. As D increases with a and 0 held
constant the peak becomes noticeably less sharp and the
signal strength approaches a plateau.

To summarize, the preceding paragraph has estab-
lished a connection between the limiting behavior of the
peaks in the signal strength and the FPTDF (8). If we
consider thc FPTDF as a function of the drift p, then for
p= p, =a Q/2nn it consists of a single, very sharp peak
located at t/To=n For. small deviations from p„ this
peak is shifted from this location and its height decreases.
In fact, we have already seen that, for a given a, q, 0, and
D, the nth peak in the FPTDF attains its maximum
height at a drift determined by to( =a/p)=nTo, in con-
nection with Fig. 4. This condition sets the location of
the mean of the FPTDF, which is precisely the condition
for determining the locations of the peaks in Figs. 11 and
12. Having fixed the value of p, the effect of changing the
noise variance D is to render the FPTDF peak sharper
and taller for decreasing D, which ultimately leads to the
singular limit to=nTo=t discussed in the preceding
section, or broader and lower for increasing D. Precisely
this behavior is observed in the signal strength as shown
in Fig. 12 for two D values. We have thus established a
connection between the FPTDF (8) and the behavior of
the signal strength S(Q) which is obtained directly from
the PSD. Changing the frequency yields curves that are
qualitatively similar to Figs. 11 and 12 except that the lo-
cations and numbers of the peaks change. The maximum
number of peaks allowed for a given 0 is contingent on
the argument of the square root being non-negative. On
a graph with To/to as the abscissa, the resolvable or visi-

ble peaks occur at identical locations. Although the
number of peaks may differ for different 0 values, the
lower-lying peaks are not resolvable on the scale of the
figure; their amplitudes may, however, be different for
different 0 values.

IV. CQNCI. UDING REMARKS

-19.8—

/

-30.8 ~—
0.0 0.3 0.5 0.8 1.0 1.3

FIG. 12. Signal strength S(co) vs T0/t& calculated directly
from (19) with q=0. D=1.0 (solid curve) and 0.3 (dashed

curve). a =60 and 0=1.0 for both curves.

The behavior described in this work certainly has the
fIavor of stochastic resonance; however, we are reluctant
to assign these efFects to the same class as the cooperative
behavior that is seen in driven bistable systems, although
it may have much in common with existing observations
on SR in simple systems as described in Sec. I. Certainly
major differences exist between the characterization of
our problem and of bistable systems in the study of
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noise-induced cooperative behavior. One such difference
is the introduction of a positive drift in our problem; this
effectively removes the restrictive lack of deterministic
switching that is commonly used to constrain bistable
systems. We do, however, impose a constraint, the as-
sumption that the periodic-stimulus-induced motion is a
small perturbation to the drift-driven dynamics, which
may be regarded as the counterpart of the proscription
against deterministic switching in bistable model treat-
ments. Despite this assumption, a passage to the bound-
ary is guaranteed in our problem, even in the absence of
noise, because of the positive drift. In fact, we observe
that the drift significantly affects the response of the sys-
tem, and the competition between the drift- and noise-
dominated motion introduces some very interesting
behavior. The simplicity of this model (most of the cal-
culations can be done analytically) permits us to establish
a connection between the rich cooperative behavior ob-
served at the level of the FPTDF and the PSD; a precise
connection of this kind has not been possible in bistable
systems because of the difBculty in performing simula-
tions at low noise strengths. That the critical quantity R
[Eq. (25)] can be expressed solely in terms of the frequen-
cies Q and Qo points to the cooperative effects as being
strongly frequency dependent, and it is important to note
that no approximation similar to the adiabatic approxi-
mation [3], that is frequently made in bistable dynamics,
has been made here. Nonetheless, the fact that we obtain
qualitatively similar behavior to SR as it is commonly ob-
served in bistable systems when we consider the output
signal strength, but do not see the SNR (defined in Sec.
II) passing through a maximum, gives us reason to treat
this effect as a somewhat different type of "resonance. "

With regard to the neurophysiological ramifications of
this work, it is important to observe that the FPTDF's of
Sec. II, for the q &0 case, cannot exist in the absence of
noise. The results of that section seem to point to the ex-

istence of a selection mechanism whereby the response to
a deterministic periodic stimulus, whose frequency is its
most important aspect, is enhanced by background noise,
using the distance to the firing threshold (the absorbing
boundary in our current system) as a "control parame-
ter" that can be internally adjusted. To obtain well-
defined multipeaked histograms such as we show in Fig.
2, one must have the system and stimulus parameters
constrained within certain well-defined ranges. Then, in-
creasing the drift or decreasing the noise variance leads
to a dominant response at a particular harmonic; the
response is a maximum at the confluence of the three
times t, to, and nTO, as described in Sec. II. This model
and other, bistable, models embodying SR are open to the
criticism that information may be lost in our considera-
tions of these models as purely threshold devices, with all
details regarding the passage to the threshold being
neglected. Nevertheless these models reproduce (qualita-
tively, at least) remarkably similar behavior, in the
FPTDF, to what is observed in experiments; in fact, the
model (1) with A, =O has been shown to reproduce some
of the salient features observed in recordings from
periodically stimulated cortical neurons [32].
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