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Creep, stick-slip, and dry-friction dynamics: Experiments and a heuristic model
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We perform an extensive study of the dry-friction dynamics of a paper-on-paper system. We explore
the dynamical phase diagram by systematically varying the relevant control parameters (driving velocity

V, slider mass M, and loading machine stiffness k). A set of experimental results gives strong proof that
the low-velocity dynamics is controlled by a creep process, in agreement with previous results from rock
mechanics and metals [C. H. Schoiz, The Mechanics of Earthquakes and Faulting (Cambridge Universi-

ty Press, Cambridge, 1990), Chap. 2 and references therein; E. Rabinowicz, Proc. Phys. Soc. 71, 668
(1958) and references therein]. At higher velocities, a crossover to inertial dynamics is observed. In each
regime, when k is increased, the system bifurcates from periodic stick-slip to steady sliding: in the creep
regime, the bifucation is a direct Hopf one; in the inertial regime it becomes subcritical. We identify,
from comparison of the time dependence of the static friction coeScient p, (t) and of the velocity depen-
dence of the stationary dynamic one, pz( V), a memory length of the order of 1 pm. The V dependence
of pz( V) changes from V weakening to V strengthening at the creep-inertial crossover. We propose a
heuristic model of low-velocity friction based on two main ingredients: (i) following and extending the
ideas of Ruins [J. Geophys. Res. 88, 10359 (1983)],we define a phenomenological contact age account-

ing for the renewal of physical contacts on the scale of the memory length, and (ii) we assume that the
dynamics is controlled by the Brownian motion of an effective creeping volume in a pinning potential,
the strength of which increases with age. The crossover from creep to inertial motion then naturally ap-
pears as the runaway threshold between thermally activated and free motion. The bifurcation analysis in

the creep regime is compared in detail with experimental results, yielding a very satisfactory agreement.
When confronted with rock mechanics results, this study strongly suggests that low-velocity creep is

quite generic; further studies of this process should in particular bear on models of earthquake dynamics.

PACS number(s): 05.45.+b, 46.30.Pa, 62.20.Hg, 91.30.Px

I. INTRODUCTION

Basic studies of the physics of dry friction were pur-
sued quite actively up till the mid sixties. A semi-
phenomenological theory was then expounded in the
landmark books of Bowden and Tabor [1] and of Rabi-
nowicz [2]. It has remained up to now the standard
frame of work in the field, with the noticeable exception
of recent contributions from the rock mechanics com-
munity [3].

The interest of physicists for solid friction has recently
been revived by both the following:

(i) The progress of lubrication studies on the micro-
scopic scale [4,5], the control and accuracy of which has
improved spectacularly in the past few years, opening the
way to microscopic modeling [6].

(ii) The blooming of earthquake models, which, follow-

ing Carlson and Langer [7], suggests that seismic dynam-
ics might be primarily due to deterministic nonlinear
efFects.

The self-critical features of the dynamics emerging from
this class of models are intimately related to the
specificities of the constitutive law relating the local fric-
tion force to the local slip velocity. Most authors assume
for this forms that rely on what we will call the standard
model of solid-on-solid friction. This can be, for our
present purpose, schematically summarized as follows:

(a) The friction force is due to the shear strength of the
"junctions, " i.e., areas of real atomic or molecular con-
tact between the two solids. These are randomly distri-
buted in space over the area of apparent contact, and
their lateral dimensions lie typically in the 1 —10-pm
range. This force is expressed as [1,2]

'Also at Departement de Physique, Faculte des Sciences,
Universite de Picardie, 33 rue Saint-Leu, 80039, Amiens Cedex,
France.

with s a typical junction shear strength. A„,l is the total
area of real contact, which in turn is related to the nor-
mal load Mg (with M the "mass of the slider" ) by
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with p the Qow pressure of the softer material close to
the contacts. This picture, elaborated by Bowden and
Tabor, accounts for Amontons's law, which states that
the friction force is independent of the apparent area of
contact. It relies on a model in which the junctions—
whether of the "weld" or of the "indentation" type—
increase their area by plastic How until the stress they
sustain reduces to the yield one.

(b) When starting from rest, sliding motion starts only
once a finite shearing force F, (parallel to the plane of
contact) is reached. This defines the static normalized
threshold p, =F, /Mg.

(c) The general accepted wisdom then states that, once
sliding has started, the friction force drops to its kinetic
value p, d( V) (p, . This quantity is, in principle, though
this is not always explicitly stated, the force measured
when friction takes place at the constant velocity V. This
immediately leads to a nontrivial problem. Indeed, as is
the case in all mechanical studies, the stiffness of the
loading machine plays a crucial part in the dynamics of
the frictional motion. As is well known from everyone' s
experience of squeaking noises, when pulled at a constant
driving velocity, solids very often do not move steadily,
but by an alternation of slides and periods of rest, called
stick-slip (SS). SS can be observed whatever the chemical
nature of the solids in contacts and the state of their sur-
faces, provided that the loading system is soft enough,
while steady sliding is obtained with stiff machines
and/or high velocities. A friction experiment setup
(solids in sliding contact plus driving machine) can obvi-

ously be viewed as a dynamical system subject to the
stick-slip instability. It is therefore natural to try and
characterize its behavior in terms of a "dynamical phase
diagram" in the space of the control parameters (pulling
velocity V, spring constant k measuring the stiffness of
the loading system, and mass M), as was attempted in
some of the early experiments of Rabinowicz [2]. Such a
study was recently performed by Gu and Wong [8] on
rock-gouge systems.

More systematic dynamical studies on various materi-
als are clearly needed in order to unravel the respective
roles and ranges of relevance of friction and inertia. This
is necessary to understand in more detail the intrinsic
characteristics of friction dynamics which are, in particu-
lar, the keystone of deterministic earthquake models.

The crucial physical ingredient responsible for their
complex behavior is the "velocity-weakening"
phenomenon: one interpolates between the static thresh-
old p, and a smaller kinetic value pd, which may or may
not be ve1ority dependent, by defining a region of de-
creasing friction coem[cient. This, tacitly, implies that the
pd( V) behavior, measured in steady-state regime, remains
valid for unsteady motion, V being, now, taken to be the
instantaneous velocity x of the slider.

The validity of this picture is quite unclear, as far as
velocity weakening, which entails linear instability of
steady sliding, seems incompatible with the experimental
wisdom, stating that it is always possible to stabilize
against SS by using a stiff enough loading. In such a situ-
ation, how should an unambiguous value of pd be mea-
sured'? Is it legitimate to extend }ud( V) into p, d(x)? If so,

pd( V) =p,, (Do/V) (4)

with Do typically in the range of micrometers. Analysis
of the dynamical response to velocity jumps also led
Dieterich [14] to conclude to the existence of a charac-
teristic velocity-independent relaxation length, of the
same order of magnitude, in the velocity-weakening re-
gime.

This set of experimental results led Ruina [10] to pro-
pose a model that introduces the idea that solid-solid con-
tacts obey a slow dynamics described by a phenomeno-
logical constitutive state variable. The law describing the
time evolution of this variable is chosen so as to be com-
patible both with the existence of a memory length and
with the observed lnV-weakening dependence of pd( V}.
Such a model leads to a retarded frictional dynamics and,
so, precludes the identification between pd( V) and p„(x)
in the steady regime. Stability analysis then leads [10,11]
to predict that, in the k-V plane, SS and steady sliding
should occur, respectively, below and above a Hopf bifur-
cation curve of the form

k, =k,o+CV (&)

where C is a positive constant.

is this true on all length scales? Such questions have al-
ready been raised by several authors [3,9—11], who sug-
gest that the kinetic friction force depends not only on
the instantaneous velocity but on the previous dynamical
history of the solid-sold contact(s), usually referred to as
the "memory effect."

Following, and confirming, the pioneering experiments
of Rabinowicz [12] on metals, studies of rock friction
indeed provide evidence that:

(i) The static threshold p, increases slowly with the
duration of stationary contact prior to pulling. Different
phenomenological expressions of p, (r ) have been suggest-
ed to fit the data [9], among which is a dependence of the
form [3]

p, (t) =a, +b, ln(t) .

(ii) At low pulling velocities (typically V 1 gaum/s),

there is evidence of slow relaxation under load [13]. It is
no longer possible to speak of a truly motionless "stick
state, " but, rather, of stress-induced creep, which sug-
gests a continuous crossover between stick and slip.

(iii) Rabinowicz has accumulated several pieces of
semiquantitative evidence for the existence of a memory
effect characterized by a length [12].

(iv) Experiments on rock friction [3,14,15] have led to
the same kind of conclusions: indentation experiments
provide direct evidence of a slow relaxation under static
load, compatible with a logarithmic law. This relaxation
is faster in chemical environments known to promote
rock plasticity. Measured p, (t) are compatible with ex-

pression (3). A velocity-weakening regime with steady
sliding is observed, with a linear dependence of pd on
ln V.

Moreover, comparison of p,,(t) and pd(V), although
measured on different kinds of rocks, suggests [16] that it
might be possible to define a material and structure-
dependent length such that
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This model, although opening onto a very promising
wealth of dynamical behaviors [17],still suffers from two
main drawbacks .First, expression (5) predicts that, for
k &. k,o, SS should prevail at all pulling velocities, while,
for k & k,o, it should occur in the large-V limit, contrary
to usual experimental evidence. Second, the evolution
equation for the state variable P entails that this quantity
is constant for a motionless contact. So, the model can-
not account for a time dependence of p, .

More recently, Gu and Wong [8] were able to account
for their experimental results by resorting to a more com-
plicated version of Ruina's model, with two state vari-
ables, and in which they impose a high-velocity cutoff on
the friction law. In this situation, and in view of the quite
surprising similarity of the low-velocity frictional
behavior of rock-rock and metal-metal systems, we have
undertaken, in the spirit of nonlinear dynamics studies, a
systematic investigation of the low-velocity frictional dy-
namics within a wide range of stiffness. We have chosen
to work with Bristol board rubbing on Bristol board.
This system was 6nally selected for its highly periodic
and reproducible behavior in the SS regime. This is to be
related with its good surface homogeneity and resistance
to wear. We have varied V from 10 to 5 X 10 pm s
k from 10 to 10 N m ', M from 0.3 to 3 kg.

%'e have found it necessary to distinguish between a
low-velocity and a high-velocity regime:

(i) The low-velocity dynamics is primarily governed by
slow contact relaxation and creep phenomena. In this re-
gime, the steady p,d(V) decreases logarithmically with V
and Eq. (3}holds with a memory length Do= 1 pm. Ex-
tensive exploration of the k-V space shows that the SS
and steady regimes are separated by a bifurcation of the
Hopf type.

(ii) The dynamical system crosses over, at large Vs,
from this creep-dominated regime to an inertia-
dominated regime. This crossover occurs when the iner-
tial and creep characteristic times (M/k)' and Do/V
are comparable. In the inertial regime, the steady pd( V)
increases with V and the SS-steady sliding bifurcation
becomes discontinuous (subcritical) and noise sensitive.

This set of experimental results leads us to propose a
simple heuristic model, inspired by the ideas of Rabi-
nowicz as extended by the rock mechanicians [3]. This
model provides a coherent frame of interpretation of all
the observations. It rehes on two main physical in-
gredients. First, the low-velocity rubbing motion is de-
scribed as a thermally activated creep process in a pin-
ning potential. Second, the corresponding pinning
strength is assumed to increase with the "age" of con-
tacts. %e extend Ruina's description of the slow age dy-
namics [10]so as to bridge between rest and motion.

%e are thus able to account for the low-velocity stabili-
ty diagram. The crossover to inertial behavior is inter-
preted in this model as the runaway threshold due to
stress-induced depinning. The model also accounts quali-
tatively for the crossover from decreasing to increasing
pd( V).

This leads us to con6rm the previous suggestions that
low-velocity friction is strongly influenced by the slow,
plastic, evolution of the surfaces in contact. Accordingly,

it obeys in this regime a more complex dynamics than
that assumed by the standard description, a conclusion
that might be of importance in view of the current debate
about seismic dynamics models [7,18,19].

II. KXPKRIMENTAI. STUDY

A. The friction setup

A schematic representation of the experimental setup
is shown in Fig. 1. The setup is supported by a thick
massive duralumin frame. The two surfaces in contact
are made of 2-mm-thick Bristol board [20]. We have
selected this unusual system because a number of tests on
various materials (including ground metals} showed it to
give the most regular dynamical behavior, reproducible
at constant hygrometry on several hundreds of runs.
This enables us to perform an extensive and precise study
of the dynamical behavior. We attribute the high stabili-
ty to the weakness of wear effects (as compared, for ex-
ample, with metals). The regularity of the dynamical
behavior (see Fig. 3) we believe to result from the fact
that the cardboard layer retains enough large-scale
adaptability to avoid large Auctuations in the number of
contacts between the surfaces, which might arise from
long wavelength undulations of the base metal substrates.

The lower (fixed) surface, which we will call the track,
is glued with cyanoacrylate on the base frame. Depend-
ing on the range of V investigated, we have used track
lengths of 20 cm to 1 m. The 10X IO cm top moving
surface (hereafter referred to as the slider surface) is
glued by the same means onto a 1-cm-thick duralumin
plate of the same lateral dimensions. Its mass —300 g-
can be increased at will by adding calibrated masses atop.
The slider is driven by a motor. The needed translation

SP (k)

~s& po& &cc

FIG. 1. Low-velocity friction setup (10 pm s
& V&10 @ms '). BB, Bristol board; CC, crossed cylinders
contact; PD, position detector; (SL, slider; TS, translation stage;
SM, stepping motor; SP, cantilever spring of stiffness k; %'T,
calibrated weights. The mass of SL plus W'T is M. In the high-
velocity version (10 pms '& V&5X10 @ms '), the brass
cantilever spring (SP) is replaced by a helicoidal steel spring.
The inset shows a magnified detail of the crossed cylinders con-
tact between the bent cantilever spring (SP) and the slider (SL).
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range of course scales with V. Typically, the slider total
displacement in an experimental run ranges from a few
millimeters when V= 1 pm s ' to 1 m for V approximate-
ly equal to a few cms '. This large dynamic range has
led us to use two different driving systems covering over-
lapping V ranges. At low and medium speeds (10
pms '& V&10 pms ') we use a commercial transla-
tion table (Micro-Control UT50) including a geared down
stepping motor. The resulting translational motion
shows smoothed steps with a characteristic length of 0.1

pm. Its total travel range is 20 mm. This limitation has
led us to use at higher velocities (10 to 5 X 10 pm s ') a
different setup: a geared down ac motor with velocity
regulation provided by feedback from an optical encoder
drives a capstan. This in turn drives a stranded steel
cable, which pulls the slider. In both the low- and high-
velocity setups, the driving system is coupled to the slider
via a spring, the (adjustable, see below) stiffness of which,
k, is always much weaker than that of the rest of the
driving system. So k is the effective stiffness of the driv-
ing machine.

Both con6gurations give rise to specific noise problems,
the extrinsic noise of the system having two kinds of ori-
gin:

(i) Motor-induced or accidental external mechanical
perturbations, mostly in the audio range. We have mea-
sured the corresponding peak-to-peak vertical slider ac-
celeration b,y in the bandwidth 0.2 Hz —5 kHz (with the
motor on and og. At velocities V & 100 pm s
b,y ig & 2. 5 X 10 . The corresponding peak-to-peak
vertical displacements were less than 0.1 pm. The noise
level for this setup increases at larger velocities () 10
pm s '). In this latter range and above, the high- V setup,
for which b,y/g & 2 X 10,becomes preferable.

(ii) Large-scale (mm to cm) spatial inhomogeneities of
the track. The larger V, the more relevant this type of
noise becomes. Indeed, a precise determination of the bi-
furcation curve demands to wait for good stationarity. In
practice, the corresponding signals must extend over tens
of SS periods. This entails that the necessary track length
increases with V (and with k ), thus more inhomo-
geneities are encountered. These inhomogeneities lie in
fixed (reproducible) regions of the track. They give rise
to variations in the stationary pd ( V), which we have used
as a test to determine which parts of the track are most
homogeneous. These are the regions that we preferential-
ly used for low- V experiments.

In the low-velocity setup, the elastic coupling between
the driver and the slider is provided by a series of brass
cantilever beam springs (see Fig. 1) of fixed length (30
mm), and variable thicknesses (0.5 —3 mm) and widths
(5—30 mm), with stiffnesses ranging from 10 to 10
Nm '. In the high-velocity setup, k values from 10 to
5 X 10 N m ' are obtained with helicoidal steel springs.
We have arbitrarily limited slider masses to 3 kg as a pre-
caution against possible damage to the setup.

In order for experimental conditions to be well defined
and reproducible, it is essential for the slider to retain
enough degrees of freedom to settle, under its own
weight, on the track surface and adjust to possible long-
wavelength undulations. At the same time the spring-

slider translational coupling must be stable and very sti5'.
These conditions are met using a crossed-cylinders con-
tact. A first, 1-mm-diam steel cylinder is glued with
cyanoacrylate to the free end of the cantilever, a second,
identical one is glued to the side of the slider. They meet
by a compressive contact located about 1 mm above the
sliding surface so as to minimize the couple felt by the
slider. We have checked that the total equivalent
stiffness of the spring-free driving stage is much larger
than that of the stiffest cantilever used with a given driv-
ing setup, and that no viscoelastic relaxation of the glue
was detectable. The tangential (shear) force on the slider
is deduced from the measure of the displacement of the
free cantilever (or spring) end, performed with an eddy-
current commercial displacement gauge [21]. The noise
level of the gauge plus amplifier is 10 pm, its stability is
10 pm per minute, and its response bandwidth is better
than 10 kHz.

As already mentioned, Bristol was selected from a
variety of nonmetallic materials for the high regularity
and reproducibility of its friction dynamics. These are a
prerequisite for a meaningful exploration of a large re-
gion of parameter space. Stability is reached, for a given
slider-track set, after a few runs; it then persists for hun-
dreds of runs. The relative humidity was constant to
within 5%%uo about an average of 40%. When observed
with an optical microscope, the surfaces, which are made
of cellulose fibers, with diameters of order 10 pm and
strongly glued together, show no sign of anisotropy.

B. Experimental results

When exploring the k-V space (see Fig. 2) in the
above-mentioned ranges, two kinds of dynamical
behaviors are observed. The corresponding k-V regions
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FIG. 2. Dynamical phase diagram in k-V space, measured
for a loading mass M = 1.2 kg. Dots indicate the location of the
bifurcation between stick-slip dynamics (region 1) and steady
sliding (region 2). The dashed line separates the creep region
(Cr) from the inertial one (In). It crosses the bifurcation curve
at V= V (see text). The dots in (Cr) show the location of the
continuous Hopf bifurcation. The existence of hysteresis in (In)
is symbolized by the hatched zone; in this region, dots refer to
the first intermittencies observed when increasing V(see text).
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(i) The stationary kinetic friction coefficient pd is found
to depend on the steady sliding velocity V(Fig. 4). When
it is measured in the low-velocity part of region 2 (Fig. 1),
pd decreases with increasing V and can be fitted by the
expression

0.32

0.3
10 15

t(s}
20 25 30

FIG. 3. Normalized friction coefficient p, =F/Mg vs time
recording in the stick-slip regime (region 1 of Fig. 2). M=2. 1

kg; k=1.5X10 Nm ', V=10 @ms '. During thestick, p, in-

creases linearly. The slip time ~,&;„=3.8X10 s. Data corre-
sponding to the slip are marked by circles for the sake of clarity.

1. Friction coe~cients

As a characterization of the tribological properties of
the system, we have measured the static and kinetic

are separated by a bifurcation curve k, (V} [or V, (k)].
Stick-slip occurs in zone (1) below the bifurcation curve.
It is highly periodic, as illustrated in Fig. 3. In zone
(2)—high V and/or high k —the slider moves steadily at
the pulling velocity V. It is in this regime that we are
able to measure a coefficient of stationary kinetic friction
pd( V). Its stability and reproducibility are a good test of
track heterogeneity and/or aging. Note that any V can,
in principle, be reached by using a stiff enough spring
[k & k, ( V)].

pd(V)=a„—b„ln(V/V0), a„=0.369, b„=0.014

(with Vo=l @ms '). (6)

This logarithmic behavior spans over three decades. In
the high-velocity part of region 2, pd(V) becomes an in-

creasing function of V which, in first approximation, can
be described by a linear function extrapolating, for V~O,
to a finite positive value pgp.

(ii) The static threshold p, is found to depend on the
"stick time" v;„,k prior to motion. This dependence can
be observed following two procedures: the static friction
coeScient p, can be measured directly, the system being
left at rest under zero shear for an aging time ~„;,k, the
shear being then ramped up on a time much shorter than

k to a value where sliding occurs. Alternatively, we
can extract p, from stick-slip force recordings in zone 1,
r„;,k being there the loading time before slip (Fig. 3}.
Note that this last operational definition assumes that
p, (r„;,z) is not affected by an increase of the shearing
force during the loading stage. The first procedure is
suitable for large values of r„;,„(typically r„;,k& 10 s)
while using stick-slip allows stick times of order 1 s to be
reached. The results obtained by both procedures agree
for a significant overlapping time region. The corre-
sponding results are shown in Fig. 5. They are reason-
ably well fitted by expression (3) with

0.6

0.5

0.4
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0.2
Il

0.3

0.1
0.2

0 10 20 30 40 50
V(mm. s')

I I I

-2 - I 0

log, V(mm 8 )

FIG. 4. Dynamic friction coefficient pd vs the logarithm of the pulling velocity Vin the steady sliding regime (main 6gure). Data
for V) 1 mm s (crosses) have been obtained with k =5 X 10 N m ' and advantage has been taken by working at decreasing V of
the hysteresis of the bifurcation in the inertial regime ai low noise. A linear fit of the data in the inertial regime (2In) is shown in the
inset. Data for V&10 mms (circles) were obtained by working in region (2Cr) of Fig. 2. A line is drawn as a guide for the eyes.
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FIG. 5. Plot of the stationary dynamic friction coefficient pd
vs velocity V (full dots), and of the static friction coefficient p,
vs Do/v;„,k (circles). The memory length value Do =0.9 pm is
obtained from the best logarithmic fit (full line).

a, =0.370, b, =0.015 (with r„;,k in seconds) . (7)

Thus b, =b, =0.01 45+( 5X10 ) and (6) together with

(7) leads us to define a length Do by

lnDO = a, —a,

so that relation (4) holds. The corresponding plot is
shown in Fig. 5. From (6) and (7) we obtain

DO=0. 9 pm .

The emergence of a characteristic, mesoscopic length
naturally leads, following Rabinowicz [12] and Scholz [3],
to the notion of an average "contact size" on which the
system retains a memory of its detailed contact structure.
The experimental law (4), which relates static and kinetic
data for a single system, may be connected to the idea,
first inferred by Scholz [16] from scattered data on rocks,
that static evolution and slow frictional dynamics result
from the same physical process, namely, creep of the con-
tact spots under normal or tangential loading.

2. The creep regime

a. Euidence of creep motion Figure 3 displa. ys a typi-
cal force recording in the stick-slip zone 1, far enough
from the bifurcation line. The normalized force
p(t)=F(t)/Mg increases linearly for a stick time ~„;,k.

The slip appears as a quasidiscontinuity over a time ~,&;p

( ((r„;,„) of the order of the inertial time

~,„=2~(M/k-)'".
However, looking in more detail to the signal, a devia-

tion from linearity in the "stick'* part of the cycle may be
noticed. This deviation is small compared to the slip am-
plitude, and in practice, the dynamical range of the force
transducer limits its observability. This limitation can be

circumvented by monitoring directly the displacement
x(t) of the slider with respect to the track. A perfect
stick corresponds then to x (t) =0. A typical recording of
x (t) is shown in Fig. 6(a): departure from perfect stick
increases nonlinearly with time and is mostly visible be-
fore the rapid slip event. This corresponding slow
motion will be called creep; it has already been observed
in rock mechanics experiments, where it was named "pre-
cursory stable sliding" [3].

An unambiguous distinction between creep and slip is
possible provided that time scales for these two processes
are well separated. A first characteristic of the function
x (r ) is then D i, defined as the distance crept before slip-

ping [Fig. 6(a)]. D, is found to lie in the micrometer
range. Experimentally, x(r), hence Di, show no notice-
able dependence on k and M over the range of parame-
ters investigated [Fig. 6(b)], in spite of the considerable
disparity of sticking times involved. However, when
varying the driving velocity V over decades, although
x(t) is found to be V dependent [Fig. 6(c)], Vt does not
provide a simple scaling to x( V, t) [Fig. 6(d)].

A second evidence of the creep process has been ob-
tained from the study of stress relaxation at zero pulling
velocity. The system is loaded up to a level p =@;„below
the slip threshold p.

„

the pulling system is then stopped,
and the slow motion is studied by recording the time
variation of the force. Figure 7 displays a typical exam-
ple of the corresponding force signal.

The closer p;„is to the static threshold p„the larger
the amplitude of the creep relaxation. In experiments
with large amplitude, the signal-to-noise ratio is large and
we are able to check unambiguously that, as is often the
case in, e.g.„plastic dynamics, the relaxation is nonex-
ponential. This may be related to the fact that no charac-
teristic time can be extracted either from the logarithmic
variations exhibited by p, (t) or pd( V).

We And that the amplitude of the creeping relaxation
increases markedly as the initial stress is raised towards
the slip threshold. This must be related with the non-
linear acceleration of creep in the SS experiments as the
slip event is approached. This is the signature of a self-
accelerating dynamics close to a runaway threshold, an
idea that will be developed in Sec. III. It agrees with the
earlier-mentioned quasi-independence of the measured
creep signal on the stick time.

The two above manifestations of creep motion remain
small effects as long as the system is far from the bifurca-
tion curve. For example, when performing the p, ,(r„;,„)
determination, the error induced by creeping,
Ap, /p, =D ) k /Mgp, && 1 for typical values of k /M.
However, when approaching the bifurcation curve from
below at low velocities, the nature of the dynamics
changes. While, deep inside region 1, a slip process
occurring on a time scale of order r;„=2m(M/k)' is

easily identified, the ~,„scalebecomes irrelevant when the
bifurcation is approached: inertial slip disappears (Fig.
8). Creep thus becomes the essential mechanism in the
low-velocity part of the bifurcation curve.

As will be discussed below, a thoroughly di5'erent
behavior is observed along the high-velocity part of the
bifurcation curve. The existence of these two regimes we
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interpret as follows. We define a creep time scale as
r„=DO/V. Note that we have found the creep length D

~

to be k and M independent and weakly V dependent with
D, =DO', so ~„=D,/V. On this basis, it is natural to
define heuristically, in (k, V) space, two regions separated
by the line r„=r;„:region (Cr), on the left side of this
line, which corresponds to ~„&~;„, is the creep-
dominated region, and region (In), to the right, is the
"inertial" region (~«(r;„).The dashed line in Fig. 2,
which is drawn to cross the bifurcation curve at V= V*,
corresponds to ~„=1.5~;„.

b Th.e SS stead-y sliding bifurcation. When perform-
ing a set of experiments described by a trajectory in pa-
rameter space that crosses from regions (1Cr) to (2Cr), we
observe an evolution of the dynamics as shown in Fig. 8.
As the bifurcation is approached from below, the SS am-
plitude decreases continuously towards zero on the bifur-

cation line, while a separation between (crept) stick and
slip becomes increasingly diScult.

We are thus able to define, for a given M, a critical line
in k-V space, k, ( V) [or V, (k) ] defined by a vanishing am-
plitude of oscillations. The corresponding SS—steady
sliding bifurcation is continuous and reversible.

Measurements for various M at given (k, V) show that
the relevant parameter in this creep regime is actually
k/M instead of k. Advantage was taken of this behavior
to ease the precise determination of the bifurcation line:
once a small SS amplitude had been obtained by rough
adjustment of k and V, the bifurcation was reached by
successive removal of small loading weights.

(k/M), is found to be a slowly decreasing function of
V. We find that a dependence of the form

( k /M ), = (k /M ),0—a ln( V/ Vo )

3
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FIG 6 (a) Direct measurement of the shder displacement x vs time t for M 0 32 kg k 1 5X10 Nm V 5 pms (Cr re
gion of Fig. 2). The slider, initially at rest at x =0 under zero tangential load (@=0)is then pulled at constant velocity V. The tilted
line has slope V. The creep length D, is defined as the value of x for which x = V. Data corresponding to the subsequent slip event
are marked by circles for the sake of clarity. The period of data acquisition is At=2X10 s. Only the beginning of the slip is
shown, the total slip displacement hx,~;~=20 pm. (b) Creep displacement x vs time t for V=2.5 @ms ' and (from lower to upper
curve) k/M=0. 42, 1.2, 0.69, 2.5, 4.5 (X 10 s ). A vertical shift has been added to each curve for the sake of clarity. The shape of
x (t) is independent of the value of k/M. (c) Creep displacement x vs time t for k/M =7.1 X 10 s and (from lower to upper curve)
V=1, 10, 50 pm s '. (d) Same data as (c), plotted vs Vt (the order of the curves is reversed). Both x (t) and x ( Vt) are markedly V
dependent.
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FIG. 7. Friction coe5cient p vs time in force-relaxation ex-
periments. After being left at rest for a fixed time lap of 15 s at
JM =0.15 {not shown), the system is loaded up to an initial level

p;„at which the pulling machine is stopped. The static
coeScient of friction p, is determined from the dashed curve
which corresponds to ordinary stick-slip. Creep relaxation in-

creases for decreasing p, —p;„.

FIG. 9. Transient response of the system to a forward im-

pulse at t =0. All curves correspond to k =1.5 X 10' N m
From upper to lower curve: M=0. 32 kg, V=6.0 @ms
M=0.78 kg, V=1.4 @ms ', M=0.78 kg, V=0.57 @ms
M=0.78 kg, V=0.31 @ms '; M=1. 1 kg, V=0.9 @ms
D„=VT„,(see text) is indicated for one curve: here D„=4.4
pm. Note that the two lowest curves reach stationary oscillat-
ing states of finite amplitude (Fig. 8).

with a= 1.8X10 s, (k/M) 0=7.2X10 s and
V0=1 @ms ' is reasonable. Given that our data only
cover two decades of V, this functional form should only
be considered as a tentative one.

The nature of the bifurcation was analyzed by studying
the response of the system to pulling perturbations,
namely, a forward impulse given to the slider (Fig. 9).
The typical response is oscillating and damped. We con-
veniently measure the pseudoperiod of the oscillations
T„,and the damping time Td, „.Far above the bifurca-
tion line in (2Cr), the response is aperiodic. When ap-
proaching the bifurcation line, Td, z diverges while T„,
remains at a finite value. On the line, the response be-
comes a pure oscillation of period T„,[(k/M), ]. The
response on the SS side of the line is studied as follows:
Starting from a point close to the bifurcation in (2Cr), we
add a loading weight (or decrease V) so as to reach a
point in (1Cr). The initial steady sliding state is unstable,
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FIG. 8. Evolution of the amplitude of the steady-state oscil-
lations, when approaching the bifurcation from region (1Cr) of
Fig. 2. V=0.9 IMms

' k=8.8X10 Nm ' and (from lower to
upper curve) M = 1.2, 0.745, 0.695, 0.670, 0.640, 0.620 kg.

FIG. 10. (a) Pseudodistance D„=VT (see text) vs pulling
velocity Vfor k=8.2X104 Nm ' and M=0.37 kg. The solid
line is set at the mean value of the data. Note the log scale for
V. (b) D„vsM/k along three dilerent paths in region (2Cr):
along the bifurcation curve {crosses); at V=2.3 pm s
k =8.2X 10 N m ' and M ranging from 0.37 to 0.59 kg (dots);
V=0.25 @ms ', k=1.5X10 Nm ' and M ranging from 0.62
to 1.0 kg {circles).
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and SS settles via an amplifying oscillatory transient ulti-
mately saturating into the SS cycle. The amplification
time of the transient diverges also at the bifurcation. All
these features permit us to conclude that the bifurcation
from SS to steady sliding is of the direct Hopf type.

c. Variations of T,~(V, k/M). We have investigated
the variations of the pseudoperiod of crept relaxation
T, with the mechanical parameters of the system.

(i) No variation of D„=VT„,with V can be measured
over more than two decades [Fig. 10(a)].

(ii) D„is found to depend on k/M [Fig. 10(b)] though
remaining within the range 1—10 pm. So,
T, =D„(k/M )/V.

d. Experimental length scales. Up to this point, in the
creep zone (Cr), either in the SS or the steady sliding re-
gime, we have encountered three distances, namely Dp,
D, , and D„.All of them are in the micrometer range but
each presents a particular flavor. Since D„depends on k,
it is obviously not a characteristic of the sliding contact
alone; the V dependence of D& indicates that this is a
dynamical quantity while Dp seems to be more intrinsi-
cally related to the properties of the material. There is no
reason to expect the three distances to be simply related.

C. Crossover toward the inertial regime

The former creep bifurcation is observed up to V=100
pm s . For larger driving velocities, the nature of the
bifurcation is deeply modified.

(i) The transition occurs at finite amplitude of the SS
oscillations.

(ii) It gives rise to either hysteresis or temporal inter-
mittency, depending on the noise level of the system (see
Sec. II A}. For a low-noise system, the transition "steady
sliding-+SS" occurs at a velocity markedly lower (up to a
10:1 ratio) than the "SS—steady sliding" one. The resul-
tant hysteresis loop narrows when increasing the noise
level, ultimately giving rise to temporal intermittencies
within the reduced hysteretic range; they consist in an al-
ternation of variable numbers of periodic SS cycles and of
steady slidings of random duration. As V is increased at
constant k and M, the relative duration of steady sliding
increases, and perfect steady sliding finally sets up.

(iii) Indeed, in the hysteretic region, we find that it is
possible, with the help of tailored perturbations, to in-
duce the system to switch from one stability branch to
the other, and this in both directions: SS~steady
(steady~SS).

These features strongly suggest that the transition
should be analyzable, at least globally, as an inverted bi-
furcation. Such an interpretation is, in particular, com-
patible with the appearance of intermittencies at high
noise levels.

Whatever the dominant behavior, we can no longer
define a clear-cut bifurcation line but, at best, a transition
zone. This corresponds in Fig. 2 to the hatched zone of
the (1-2) separation line. In this region, we have not been
able to ascertain whether or not the combination k/M
(rather than k, M separately) remains the only relevant
inertial parameter, due to the above-mentioned loading
weight limitations and to transition width effects.

In this region, the average ~dk, /dV~ at constant M is
much larger than in the creep region. So, a quite well-
localized crossover can be identified for V' and (k/M )'.
It is worth noting that for the crossover values, the rela-
tion ~„=v;„,defined earlier as separating the creep-
dominated from the inertia-dominated regimes, is rough-
ly fulfilled (see Fig. 2). Moreover, the value V' corre
sponds also approximately to the crossover between
velocity-weakening and velocity-strengthening behavior
of the stationary kinetic friction coefficient p, d( V) (Fig. 4).
These two experimental observations will be connected in
Sec. III.

III. A HEURISTIC MODEL

A. Physical basis

The main results of the experimental study presented
above can be summarized as follows:

(i) Sliding at low velocities —typically in the }um/s
range —is primarily controlled by a creep process.

(ii} The time dependence of p,, gives evidence that the
physical contacts between the solids undergo a slow re-
laxation process.

(iii) The fact that p, (t) and }M&( V) satisfy relation (4) in-
dicates the existence of a memory length. This may be
interpreted as when the slider has moved by Do relative
to the track, the population of contacts has been de-
stroyed and renewed.

(iv} The frictional dynamics crosses over from creep
controlled to inertia controlled when ~„=~;„.One of the
manifestations of this crossover is the change of the
steady pd( V} from slip weakening to slip strengthening.

These results were obtained from an extensive and
reproducible study of a single physical system. (i) to (iii)
agree with earlier conclusions deduced from metal and
rock studies, to which they provide strong confirmation,
on a system (paper on paper) of a very difFerent physical
structural and chemical nature.

So, creep, aging, and the existence of a memory length
appear as stable characteristics of the dynamics of slow
friction between macroscopic solid surfaces, i.e., surfaces
with a large population of contacts with lateral dimen-
sions in the micrometer range. Result (iv), though con-
cerned with a still unreported effect, we also believe to be
quite general.

%e now want to build a model for the motion of the
experimental system studied in Sec. II above as simple as
possible while capturing these physical features. For the
sake of simplicity, we forget here the internal elastic de-
grees of freedom of the slider, the motion of which we as-
sume to reduce to the one-dimensional motion of its
center of mass G along the pulling direction x.

Let x(t) be the instantaneous position of G, moving
due to the force F,„,imposed by a spring (k) of instan-
taneous elongation xo(t) —x(t},and subject to a shearing
frictional force I' f,. Standard models assume that the sys-
tem, initially at rest, remains motionless as long as
~F,„t~&Mgp, „and that when the system is moving

Fz, =Mg pz [x(t)), where pd( V} is the steady kinetic fric-
tion coefficient, exhibiting slip weakening at small V or an
abrupt discontinuity [pd(0+ ) &p, ].
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It is immediately clear that such models are incompati-
ble with our low-V results. For example, they exclude
slow relaxation under stresses below the p, threshold,
and they are incompatible with stable steady sliding in
the slip-weakening range, contrary to what we observe.

These remarks, added to results (i)—(iv), lead us to
think that the standard description must be modified so
as to take into account two distinct physical processes.

(1) The first one is creep, which is controlling up to a
threshold, corresponding, for example, to a rather abrupt
switch from creep to slip dynamics observed during SS
cycles deep inside region (1Cr). Following Eyring, Glas-
stone, and Laidler [22,23], we will assume that the creep
process is a thermally activated motion in a potential
modulated in space. In models of bulk thermal creep the
modulations are naturally associated with the underlying
crystal structure. Here we assume them to describe phe-
nomenologically a pinning efFect related to surface inho-
mogeneities (roughness) on the rnesoscopic (micrometer)
scale. Again, for the sake of simplicity, we assume this
pinning potential U to be periodic along x, with period a
and amplitude modulation 6Uo [Fig. 11(a)].

This pinning elect certainly only affects the very limit-
ed part of the slider which electively takes part in the
plastic processes by which real contacts deform and get
destroyed. This "creeping volume" we can imagine, in a
crude first approximation, to be coupled quasirigidly to
the main part of the slider, which then acts as a thermal
bath into which energy can be dissipated by acoustic ra-
diation, and as a rigid transmitter of the external pulling
force. %'e will call X„the number of moles in the creep-

(a)

ing volume; more exactly, X„XA„,,d„is the number of
degrees of freedom involved in the creep process.

So, X„is an a priori unknown quantity, the order of
magnitude of which we will try to extract from experi-
mental data. Note that, if one makes the reasonable as-
sumption that it is proportional to the total area of real
contact, the Bowden-Tabor interpretation of Amontons's
law leads one to expect it to scale with the total mass M
of the slider.

The driven system thus moves in the total potential
U,z= U+ V,„,(x, t), where

X k
V,„,(x, t)= —f I',„,(x, t)dx =—jx xo(—t)I

For small external F,„„U,ff retains a modulated struc-
ture on top of a slow parabolic variation which can be ap-
proximated locally by an average slope [see Fig. 11(b)]
provided that a «~x —xo~. Let us assume, for the mo-
ment, that xo is fixed, and that the representative point of
the system lies in the vicinity of a minimum of U,ff.

Creep out of this minimum is due to thermal fluctua-
tions, which can be described by a Langevin 5-function-
correlated random force R (r). This immediately and
necessarily entails that the system is also submitted to an
average frictional force (

—I'x), related to the fluctuating
one by the fluctuation-dissipation theorem

I = f (R(0)R(t))dt .

Note that this frictional force is necessarily slip
strengthening (I )0). R(t) and I account for the cou-
pling of the sliding interface with the vibrational degrees
of freedom of the two solids. We assume them to be x
independent, thus neglecting again statistical fluctuations
due to medium- or large-scale interface inhomogeneities.
So, the dynamical equation describing the system reads

BU,sMx+ I x = — +R (r) .
Bx

(2) We now want to insert, into this description, the
e8'ect of the slow aging of contacts, and the existence of a
finite memory length Do. For this purpose, we define a
phenomenological variable, P(t), which we call the con-
tact age, by

i.a (i+1).a

(b)
p(t)= f exp

~

x (t) x(t')—
Do

(13)

where to is the time at which the two solids first came
into contact. Equation (13) is equivalent to

X=]-
DO

(14)

i.a {i+1).a

FIG. 11. Typical shape of pinning potential (a) in the ab-

sence, and (b) in the presence of the external shearing force F,„,."i"labels the "pinning centers. "

with initial condition $(to) =0.
Such a definition is directly inspired by Ruina s [10,11]

description in terms of a constitutive variable. However,
it improves upon it by allowing for a reasonable interpo-
lation between the system at rest, for which P(t) = t to, —
(i.e., the age at rest is simply the duration of the solid-
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Do
(15)

That is, Eq. (15) expresses the idea formulated from result
(iii) above that Dp is the average shearing displacement
necessary to break a typical contact by brittle or ductile
fracture.

We now introduce the physical effect of aging by as-
suming that the older the contacts, the stronger the pin-
ning, i.e., the larger the height modulation EUo of the
pinning potential U:

solid contact) and motion at constant velocity V, for
which

M~o, 5E»N„RT (21)

This assumption, which we borrow from Nozieres s dis-
cussion of desorption dynamics [25], is by no means cru-
cial for the following analysis, the results of which would
retain the same qualitative features in the other regimes.

Under conditions (21), one obtains

Both the value of this threshold and the prefactor in

Eq. (19) depend on the energy loss and damping condi-
tions. In the absence of a microscopic model, we will as-
sume, in order to fix ideas, that the system operates in the
so-called Eyring's absolute rate regime [23,25], which
corresponds to

EUp =—EUp($), (16) (22}

where d(b, Up)/dg&0. The frictional dynamics in the
low-velocity regime is therefore, finally, described by Eqs.
(14) and (15) for the two variables x and P, where now

U,s=U(x, g)+V,„,(x, t) .

and the runaway threshold is defined by the condition

EV,„,&SE= bUp,
r

Mo
(23)

B. Dynamics in the creep regime

X=0 ~

1 1
(18}

where r (~ ) is the thermal time for escaping from a
given well into its downstream (upstream) nearest neigh-
bor. Let b, U~ be the corresponding barrier heights [see
Fig. 11(b)]:

(19)

(ii) A freely sliding regime, at large external driving
force. The limit af very strong bias simply corresponds
to ordinary stable frictional motion, i.e.,

x =F,„,/I (20}

The two regimes are separated by a "runaway threshold, "
which characterizes the order of magnitude of the exter-
nal force at which the thermally fluctuating system gets
depinned from the modulations of U.

Brownian motion for a single degree of freedom, driven
at constant bias in a time-dependent potential, has been
analyzed in great detail by many authors. Several re-
gimes must be distinguished [24,25] depending on wheth-
er (a) the mechanical motion in U, tr is over or under-

damped (these two limits correspond to I'»Mcop and
r «Mcoo, where coo is the oscillation frequency about
one of the minima of U,~), and (b} the average energy 5E
lost by the system while moving from one maximum of
U,N to the vicinity of the next one is large or small com-
pared with the thermal energy N„RT—with N„the
number of moles involved in the creep motion. In all
cases, one can distinguish between:

(i) A pinned regime, at low imposed external force
(EUp »N„RT),where the system undergoes a thermally
activated creeping motion. Its velocity is given by

'I

where hV,„,is the potential drop between two neighbor-

ing maxima of U,z associated with the external force. Fi-
nally, note that, as soon as 5V,„t»N„RT, upstream es-

cape is negligible with respect to the downstream one,
and 1/r can be neglected in Eq. (18).

Expressions (18) and (19) for the creep mobility are val-

id for a system submitted to a time- and position-
independent external force and pinned by a time-
independent potential U(x). The spring-driven slider ex-
periences a pulling force F,„tthat depends on both x and

t, via the spring elongation xp(t) —x. On the other hand,
the aging effect results in a time dependence of U via Eq.
(16). Results (18) and (19) should, in principle, be
modified so as to take into account the variations of U
and I",„,on the average length (bx-a) and duration
(b, t -r ) of an average escape event. Since these quanti-
ties depend on time through the, a priori, unknown evolu-
tion of the dynamical variables x and P themselves, this
poses by itself quite a formidable problem of coupled
nonlinear and Brownian dynamics, the solution of which
should result in a renormalization of barrier heights and
of the runaway threshold. In the present preliminary
model, we circumvent this problem by assuming that the
corresponding variations are small enough for an adiabat-
ic approximation to be valid, i.e., that
Ia, xp(t)~~] && ~xp(t) —x

~
and r~~BlnhU /'dt~ && l.

So, in the creep regime, the instantaneous sliding veloc-
ity, at time t, is given by Eqs. (18), (19), and (22) where
6U is understood to take on its value at the same time, as
well as cop, which should also depend on P, insofar as
U(x) does. We then obtain, from Eqs. (18), (19), and (22),
in the creep regime b V,„,« ( I'/Mct)p)5 Up

culpa ka jxp(t}—x J 5Up(P}
x(t) =— 2 sinh ~ exp

277 cr cr

(24)

So, as soon as the work performed by the driving force
when moving from a minimum of U to the next max-
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F,„,(x, t ) =—b, Uo(P )+N„RT ln=2
a Q)pa

(25)

l. Steady sliding

imum is much larger than the thermal energy A„RT, Eq.
(24) can be inverted into

growth of fiuctuations about steady sliding:
l

0 . Q ak
V

i
V 2N„RTDO

where

a Mgd[ld V]
2N,„RT Do d [ln V]

(32b)

Let us now consider the case of stationary sliding in
the creep regime. In this case, F,„,becomes a t- and x-
independent constant, and (25) directly provides the ex-
pression of the stationary kinetic friction force as mea-
sured in the experiments of region (2Cr) of Fig. 2. Mak-
ing use of expression (15) for /St„,we obtain

2 2mDo
b, Uo($)+N„RTln

a cooa

Do
=Mgpd '

b, Uo((b) =6U 0+OP ln($/Po)

with

(27)

(26)

where the functional form of pd(V) for our system is

given by expression (6). So, up to corrections that may
arise from the P dependence of too,

The roots of Eq. (32a)

2ak
X„RTDo

(33)

are real negative at very large k. The steady sliding state
becomes linearly unstable when A, &0, i.e., for

Mg [Pd

Do d [ln V]

Since pd( V) exhibits a slip-weakening behavior in the
low-velocity range, k, ( V) is a positive quantity. That is,
we recover here the results provided by the zero-inertia
limit of Ruina's theory, his constant A being given here

by

A =2N, „RT/a .

P=aMgb„+N„RT. (28)

Expression (27) can be qualitatively understood as
describing the increase in contact strength associated
with the slow plastic relaxation implied by the interpreta-
tion of Bowden and Tabor [1]. So, Eq. (25) can be rewrit-
ten as

Since the bifurcation occurs for A, =O, it is immediately
apparent in Eq. (33) that, when k =k, ( V),

0[k,(V);V]=it@,(V). The bifurcation is a Hopf one.
Equation (33) gives for the quasilength D„defined in Sec.
II B above from the oscillation frequency on the bifurca-
tion line,

Do 2N RT x
k [xo(t)—x] =Mgpd + ln

a Do
(29a)

2~
V D„(V)

ak, ( V)

2N„RTDo

' 1/2

The nonlinear friction dynamics in the creep regime is
now completely specified by Eq. (29a) together with Eq.
(14), which we rewrite here for the sake of clarity:

X=1-
Do

(29b)

2. The SS steady slid—ing bifurcation

We now want to study the linear stability of the above
steady sliding motion. We set

/=DO/V+5/ exp(Qt ),

x = Vt —Ax„+5xexp(Qt ),
(30)

and expand Eqs. (29a) and (29b) to first order in 5$,5x.
Noticing that

a Do
~~Pd

'

/=Do/V

V d[) d(V)]
Do d [ln V]

(31)

we obtain the following dispersion relation for the rate of

Let us emphasize here that, although our approach
yields the same linear bifurcation analysis as Ruina's one,
the two models differ in several important respects, even
in the low-velocity limit. In the pinning model, inertia is
necessarily absent from the "equation of motion" [Eq.
(24)] in the creep regime, as a consequence of the creep
dynamics itself. The full nonlinear dynamical systems are
different and should thus lead, in particular, to different
6nite amplitude stick-slip dynamics. Indeed, while
Ruina's state variable incorporates at once both Gnite

memory and some of the plastic relaxation effects, our
age variable only accounts for the memory effect in what
we believe to be a more consistent way, plastic relaxation
coming into play via the "aging" of the pinning potential.
Finally, as will be discussed below, the crossover from
creep to inertial motion naturally results from the pin-
ning model, and no externally imposed cutoff on the fric-
tion law is needed. We should now compare the above
predictions about the SS—steady bifurcation with the ex-
perimental results of Sec. II.

a. Position of the SS steady bifurc—ation Let us firs.t
concentrate on the experimental results about the bifur-
cation line k, ( V).

(i) It is immediately apparent in Eq. (34) that k, (V)
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should scale with M, as is indeed observed.
(ii) Plugging into Eq. (34) the experimental value [Eq.

(6)]

=b„=0.014,

2'
~osc

ak
2N„RT

1/2 aDo I k —k, ( V)]

8N«RTk

(38)

we predict for the critical value of k/M (with Do =1 pm;
see Sec. II},

(k/M), =1.4X10 s

to be compared with our measured values, which range
from 2X10 to 1.3X10 s . In view of the quite
simplistic nature of our model, we consider this as a
surprisingly good agreement.

(iii) We now have to face a more difficult question: if
we use for pd( V) the fit obtained from our data, we would
expect k, to be V independent, while we measure it to de-
crease noticeably when V increases, the dependence being
quasilinear in (lnV). If expression (34) is valid, this im-
mediately entails that pd( V) is not strictly linear in (ln V)

but should rather read

pd( V}=a„—b„ln(V/Vo)+c„[ln( V/Vo) J (37)

with c„= D /2g [d—[(k /M ), ]/d [ln V] ] .
From the data displayed in Fig. 2, we get

d[(k/M), ]/d[lnV]= —1.8X10 s

We can now evaluate the relative variation b,pd lpd, on
the three decades on which pd is measured, due to the
last term in Eq. (37). We get

hpd /pd =4 X 10

while the global measured variation is of order 3 X 10
This, added to experimental uncertainties on pd values,
which can be measured only up to an accuracy of a few
percent, leads us to conclude that our }ud(V) data are
compatible with the theoretical prediction.

Conversely, an important physical remark emerges
from this discussion. The experimental study of the
SS-steady bifurcation appears as a much more powerful
tool for obtaining information on friction in the creep re-
gime than the direct study of pd(V), as far as k, (V)
directly measures the variations of JMd with velocity.
Moreover, since k, is obtained from a study of the dy-
namics, it can be measured with a much better accuracy.

b. Osci/lation length in the linear creep regime: Depen-
dence on k, M, V. We have found, by studying the dy-
namics on the bifurcation line and the relaxation of srn. all
perturbations in the steady sliding regime in its vicinity
that:

(i) When measured at fixed k and M values, the oscilla-
tion length VT„,does not exhibit any systematic varia-
tion, on a range of velocities of three decades and within
the experimental spread, of order 20% [see Fig. 10(a)].
This must be put in regard to the theoretical prediction
[Eq. (33)], from which

Using expression (36), we find for the predicted variation
of VT,~

b(VT, ) g Dojk —k, (V)J
(39)

VTosg 2 D «k& ( V}k

which we calculate from our data to be at most of order
10%. Again, although experimental limitations do not
permit to check Eq. (39) in detail, the measured behavior
is compatible with the results deduced from the model.

(ii) Let us now concentrate on the dependence on k and
M of the oscillation length in the bifurcation region,
which we can define operationally as VT„,as well as D„,
since we have seen that no V dependence of VT, is
measurable. The corresponding results, displayed in Fig.
10(b), show that D„is well fitted by a linear function of
M/k. This result, when compared with the value of this
same quantity deduced from Eq. (36} or (38), leads us to
conclude that the number of "creeping moles" N„should
scale with M, as could reasonably be expected.

However, one notices that the linear fit in Fig. 10(b)
does not extrapolate to zero at large k. Note that we can-
not expect our adiabatic approximation to work well in
the large-k regime, where total spring elongations be-
come very small (of order of micrometers), i.e., compara-
ble with the expected characteristic scale a of the pinning
potential.

c. An attempt to evaluate the number of contacts. We
are now able to deduce from the slope of the D„(or
VT, ) vs M/k curve the value of N„/a for a given value
of M, here chosen to be 1 kg. We find

N« /a = 1.5 X 10 "mol/pm . (40)

In order to evaluate a total creeping volume
V„=N„v,&, we have to make a guess about the molar
volume v „.Paper has a very complicated structure (cel-
lulose fibers, glue, loads of various kinds}, so that what we
have called a mole of creeping degrees of freedom has a
very uncertain meaning. So, we will use the most conser-
vative estimate, v,&=20 cm, a typical value for small
molecules. Then

V„=300a

with a in micrometers, and V„in (pm) .
It seems reasonable to think that the surface of an indi-

vidual contact is of order Do —1 pm . However, we have
no direct information about the effective height h of the
active plastic zone. This quantity is certainly strongly
dependent on the detailed nature of the plastic processes
at play and should therefore be strongly material depen-
dent. An estimate of order Do/10 seems, again, to be a
very prudent one.

Finally, we should try to estimate a, which we interpret
as the distance traveled, once a contact has been de-
stroyed, until the replacing one is created. A lower limit
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corresponds to completely aligned contacts, in which case
a -I.ln, where I.=10 cm is the lateral extension of our
square slider, and n is the total number of contacts.

From this we obtain, with the help of (40), a lower esti-
mate,

n =N„U &/Doh =2X 10

The pressure on real contacts corresponding to this value
1S

p =Mg lnDO =5X10 Pa,

to be compared with typical yield pressures of solids,
which range from -10 to —10 Pa.

These orders of magnitude appear very satisfactory.
However, let us strongly insist that they can at best be
considered as indicative of the plausibility of our inter-
pretation.

3. Creeping relaxation: A qualitatiue interpretation

Let us now consider the experimental situation de-
scribed in Sec. II B, where the system is rapidly stressed
to a level not too far below the static threshold by
displacing the free end of the spring to a position xo
which is then kept fixed. The observed characteristics of
the relaxation dynamics can be easily understood qualita-
tively on the basis of our model: The closer the initial
stress to the static threshold, the closer the system to its
runaway threshold, i.e., to the depinning condition, so
the larger the relaxation amplitude. Contact destruction
and renewal occur as a consequence of creep. The age of
the contacts decreases as the motion accelerates, which
reduces the pinning strength and takes the system closer
and closer to runaway; hence the observed self-
acceleration.

Equations (29) should be appropriate to describe the
very first stage of this motion —still far below threshold.
The necessary numerical integration would thus be of
limited interest, since it would only provide predictions in
the region of very weak amplitudes where precise experi-
mental data are not yet available. Good data correspond
to the vicinity of the threshold, where Eyring's results
[Eqs. (18) and (19)] are no longer valid. In this region,
the dynamics is expected to depend strongly on details of
the shape of the pinning potential and of the loss mecha-
nisms, and no detailed general prediction can be formu-
lated. For these reasons we believe that numerical stud-
ies on particular models would be premature.

The same kind of qualitative arguments should apply
to crept stick near threshold. In this case the stress in-
crease due to continuous pulling provides an added ac-
celerating mechanism. Again, the regime where the dy-
namics is observed to exhibit scaling properties leading to
the characteristic length D

&
corresponds to the vicinity of

the depinning threshold. The observation of a scaling it-
self suggests that this length is related to the characteris-
tic scale of the pinning potential.

4. Crossover and kinetic friction coe+cient
in the inertial regime

The crossover from what was termed above creep and
inertial regimes now appears quite natural in our qualita-

tive picture: it corresponds to the situation where the ve-
locity has become large enough for the driving force piled
up on one a traversal to drive the system up to runaway,
i.e., into practically free motion. In this situation the sys-
tem is depinned enough to move quasifreely, i.e., with a
velocity of order (a lr;„)=D, /r;„,which corresponds to
the criterion extracted from experimental data.

In this regime, fluctuation effects are important: the
system close to threshold runs away by a series of nonuni-
formly spaced statistical jumps of one or a few a. We
therefore expect the dynamics in the crossover region to
be quite noisy. This agrees with the qualitative trend not-
ed in the experiments. Close to threshold, the present
single-mode model is certainly insufficient. As is known
from the dynamics of extended pinned systems such as
charge density waves [26—28] or vortices in type-II su-
perconductors [29], depinning is not a single macroscopic
event affecting all elementary units (here, contacts) at
once, but in general occurs through avalanche processes.
We expect these to occur here as well and to give rise, via
internal vibrational couplings between contacts, to a
complex spectral signature.

Once the inertial regime has been reached, the initially
resting slider is pulled into the depinned state too fast for
the creep amplitude to become a noticeable fraction of
the spring elongation: stick is almost perfect until runa-
way is reached, while pinning becomes quasi-irrelevant
during sli.p. When the system is in steady inertial motion,
we therefore expect the velocity vs force curve to behave
as schematized in Fig. 12: the larger the force, the closer
the system approaches the ordinary frictional behavior
[Eq. (20)]. That is, due to dissipation into vibrational
modes, friction in the depinned state should exhibit ve-
locity strengthening, as is indeed observed,

Our measurements of pd( V) are performed over a lim-
ited V range and not very far above threshold. It is seen
in Fig. 12 that a linear extrapolation of such data must
lead to a finite positive intercept @do, in agreement with
experiments (see inset of Fig. 4). This analysis therefore
suggests that, when the system operates in the inertial re-
gime, its dynamics can quite reasonably be approximated
by the standard model of solid friction, that is, (i) stick
for forces F,„,(Mp, (t„;,„);(ii) slip with a velocity-

V

FIG. 12. Schematic representation of I' /Mg =pd ( V) in the
inertial regime. The shaded region corresponds to the regime
where such a characteristic loses validity due to slow relaxation
effects. The dotted line stands for the linear extrapolation of
data measured in a limited velocity range.
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strengthening friction coefficient pd(x} where the pd
function is the same for steady and unsteady motion, and

)Ltd(x —+0&p, .
On the contrary, in the creep-dominated part of pa-

rameter space, the standard model is not acceptable. The
dynamics is controlled by Brownian motion in an age
(i.e., dynamical history) -dependent pinning potential.
Stick is no longer perfect. Moreover, it is no longer pos-
sible to extrapolate from the steady pd( V) a unique pd(x).

IV. CONCLUSION

We believe that the study presented here provides,
when compared with previous results on rocks and met-
als, strong support to the —a priori rather surprising—
idea that low-velocity friction dynamics obeys quite gen-
eral laws whose functional form is material independent.
The number of relevant control parameters —loading
mass, machine stifFness, pulling velocity —is small
enough for extensive study of a given system to be feasi-
ble. Experimental results can be rationalized on the basis
of a model that, although simplistic, seems to provide an
acceptable basic framework. In particular, experimental
results on the SS-steady bifurcation are in very satisfac-
tory quantitative agreement with theoretical predictions.
In particular, not only does this analysis show our heuris-
tic description to be consistent with the data, but it leads
us to a physical statement; namely, we conclude that the
amount of matter actually involved in the creep process
scales with the slider mass. Moreover, our numerical es-
timates seem consistent with the fact, suggested by the
works of Bowden and Tabor and by Rabinowicz, that the
plastic processes at work in low-velocity friction occur
within effective contact volumes of submicrometer size.

The nature of the system appears in the model only via
a few material-dependent parameters that we associate,
following previous authors, with surface roughness, plas-
tic relaxation dynamics; and average contact size. Our
interpretation in terms of thermal creep in an aging pin-
ning potential leads us to correlate the suspected univer-
sality of low-velocity dynamics with the fact that activat-
ed processes are quite insensitive to details of the poten-

tials in which they take place.
This work obviously calls for a number of

confirmations and extensions in various directions:
(i) Further quantitative investigations of our paper-on-

paper system. In particular, as already mentioned, de-
tailed noise studies should be of interest.

(ii) Extensive studies on difFerent classes of solids, in
particular metals with known bulk microscopic struc-
tures and plastic properties. We have performed a few
preliminary experiments on duralumin-duralumin, which
give evidence of the existence of the creep regime.

If universality of the creep dynamics is confirmed,
theoretical developments will be necessary, along two
main directions. On the one hand, numerical studies
based on the single-mode model proposed here, or on an
improved version allowing for random pinning will then
become worth performing. On the other hand, we will
have to try to correlate the present model with a more de-
tailed description of the contacts and of their statistics,
possibly in the spirit of the recent work of Brechet et al.
[30] and of Jensen, Brechet, and Doucot [31]. It will cer-
tainly then appear, as is the case for charge density wave
transport and vortex dissipation, that a one-mode ap-
proximation is too crude to account for more detailed
features of the dynamics.

(iii) Behavior of systems of much lower internal
stiffness. We can then hope to reach regimes where inter-
nal spatial couplings become relevant and may give rise
to the kind of extended system behavior studied by recent
earthquake models [7,18,19].
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