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Global vector-field reconstruction by using a multivariate polynomial L2 approximation on nets

G. Gouesbet and C. Letellier
Laboratoire d'Energetique des Systemes et Procedes, Institut National des Sciences Appliquees de Rouen, Coria,

Boite Postale 08 76131,Mont-Saint-Aignan Cedex, France
(Received 16 February 1993)

A multivariate polynomial L& approximation on nets is designed for global vector-field reconstruc-
tions of time continuous dynamical systems. The technique is tested by investigating standard forms of
the Rossler band, the Lorenz mask, and a chaotic attractor produced by a simple model of thermal lens

oscillations.

PACS number(s): 05.45.+b

I. INTRODUCTION

Global vector-field reconstruction is a topic of growing
interest in the field of nonlinear dynamics with pioneering
papers by Packard et al. [1],Crutchfield and McNamara
[2], and Farmer and Sidorowich [3]. For time continuous
dynamical systems, which are considered in this paper, a
basic problem is, given a scalar time series for an observ-
able, to provide a set of ordinary differential equations
(ODE's) equivalent to the original underlying system. It
is worthwhile to point out that such a problem may be at
first sight a somewhat weird one because, when the aim is
achieved, we own one ODE for the observable supple-
mented with ODE's for dynamical variables on which no
observation has been made. The possibility of such a
somewhat intriguing achievement results from
mathematical works by Whitney [4,5], Matte [6], and
Takens [7,8]. For instance, let us consider a strange at-
tractor of typical fractal dimension D embedded in a
minimal phase space of dimension no (then D ~no).
Takens's theorem states that the attractor may be generi-
cally reconstructed in a phase space of dimension n ~ nT
in which nr =2D+ 1 (ideally, D would refer to the Haus-
dorfF dimension of the set). Here, the word generically
means that using n ~nT is in principle always sufficient
to reconstruct the attractor. This theorem is routinely
used for numerical evaluations of invariants, relying for
instance on the so-called time-delay method, by studying
reconstructed attractors diffeomorphically related to the
original attractor. Of course, reconstruction phase
spaces of dimension n & nT may also work. In particular,
global vector-Geld reconstructions discussed in this paper
use a minimal phase space of dimension no. Beside pro-
viding algorithms to construct phenomenological models
from numerical scalar time series, global vector-field
reconstructions provide many opportunities previously
discussed ([9—13]), one of them being the forecasting of
the observable. More generally, many comments and dis-
cussions available from Refs. [9—13] are not repeated in
this paper in which attention is focused on new results.

One possibility for global vector-field reconstructions is
to use a time-delay technique associated with a singular
value decomposition (SVD) to choose the appropriate
dependent variables appearing in the dynamical equa-

tions. This method leads to the research of approximate
functions to model eigenfunctions generated by the SVD
[14,15]. A typical claim is that SVD has the advantage of
providing an efficient filter for the noise which is always
present in experimental data. Following Palus and
Dvorak [16], however, this claim must seemingly be
softened. In Ref. [16] it is in particular demonstrated
that the detected noise level and even its occurrence in a
singular spectrum depend on the time delay used in the
time-delay embedding rather than on the actual amount
of noise in the data. The authors conclude that using
SVD as a noise rejection technique by rejecting noisy
components of the embedding in the basis of singular vec-
tors is dubious and that, seemingly, SVD can reduce
dynamical information rather than noise.

More generally, global vector-field reconstructions are
feasible by using any kinds of embedding techniques,
such as those discussed by Mindlin et al. [17]. Beside
time-delay embedding previously discussed in connection
with SVD, integral filters and differential embeddings
may be used. A good review of these different methods is
given by Casdagli et al. [18]. In a more recent paper,
Gibson et al. clarify the mathematical relationships be-
tween them [19].

In our previous contributions to the topic of global
vector-field reconstructions [9—13] we have used
differential embeddings by using the scalar observable
and successive derivatives. The reconstructed system of
ODE's then takes a simple form that we call the standard
system (or canonical system following Mindlin et al. ter-
minology) exhibiting a single unknown function I' called
the standard (or canonical) function. By using the avail-
able scalar time series of the observable, we are then left
with the problem of evaluating the standard function F
within the framework of the theory of approximation of
functions [20].

To solve this problem, we must start by choosing a
model for the function F, then involved parameters must
be evaluated for instance by using L2 approximations,
i.e., least-squares methods. We previously retained ra-
tional functions (ratios of multivariate polynomials) to
model the standard function F, and successfully recon-
structed ODE's generating Rossler and Lorenz chaotic
attractors, with variable x taken as the observable. Ra-
tional functions present the advantage of allowing one to
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model standard functions with poles, which is indeed
found to be the case for the Rossler and Lorenz standard
systems when x is the observable. However, the existence
of such poles in the model leads to two difficulties. The
first one is that, when integrating the standard ODE's,
trajectories must cross singular sets that, although of Le-
besgue measure 0, lead to numerical instabilities requir-
ing special procedures (see Refs. [9,10,12] for details).
Second, these singular sets have been found to produce a
lack of robustness with respect to the presence of noise
(unpublished). Furthermore, no general theorem of con-
vergence is known for rational functions.

Therefore, new advances have required the implemen-
tation of a more robust method to approximate the stan-
dard function F. This paper is devoted to such a method,
namely, the use of multivariate polynomial L2 approxi-
mations on nets. For polynomial approximations, we
own a convergence theorem, the so-called Weierstrass
theorem [20]. The method is more robust than using ra-
tional functions due to the absence of poles, and it will be
shown that polynomial approximations without any pole
may correctly model exact standard functions with poles.
Simple dynamics like periodic ones may be investigated
by our method. However, this paper will only study
chaotic dynamics providing more acid test cases. The
nets on which polynomials are built are then chaotic nets
generated by the attractor natural measure. Polynomials
are not a priori chosen as Legendre polynomials in the
work by Cremers and Hiibler [21],but are specific to the
attractor under study and actually provide a signature of
it. Also, unknown parameters are not determined from a

optimization as in Refs. [2,15], or [22], but may be
evaluated sequentially.

Although this paper only discusses differential embed-
dings, let us note that the presented approximation tech-
nique may also be used for other kinds of embeddings; for
instance, to model eigenfunctions generated by SVD. It
is also suggested here that global vector-field reconstruc-
tions might benefit from coupling difterent kinds of
embeddings. For instance, after noise reduction by using
a time-delay method with SVD, a clean scalar time series
could be generated and used to construct differential
embeddings. The case of noisy signals is however not
considered in this paper.

The material is organized as follows. Section II recalls
the basic ingredients of our method of global vector-field
reconstructions by using standard functions and intro-
duces the test cases to be investigated. Section III solves
a mathematical exercise required for further use, while
Sec. IV develops the formulation of our multivariate
polynomial approximation technique. Test-case results
are presented in Sec. V. Section VI is a conclusion.

II. STANDARD SYSTEMS AND TEST CASKS

A. Standard systems, standard functions,
and associated transformations

Let us consider a time continuous dynamical system
defined by a set of ODE's,

Xi =fi(Xi,x2,xi),
X2 f (2 xyiX2$ X3)

xi=f3(x»X2, X&} .

(2)

It is then assumed that the observer numerically (or ex-
perimentally) recorded a scalar time signal. By conven-
tion, the observable is taken to be x„ leading to a sam-

pled scalar time series Ix, }; „ in which the integer i
denotes discrete times.

The aim is thereafter to reconstruct a vector-field
equivalent (in some sense} to the OS under the form of a
standard system (SS) made of the observable and of its
derivatives according to

yi xi y2 y2 y3 y3 +(xl y2 y3) (3)

in which the SS phase space is spanned by standard coor-
dinates (y,g2,y3) with y, =x, . When only the time

series [x', },', is known, the knowledge of the number of
equations (and derivatives} to be introduced in the SS
must be independently obtained as discussed in Refs.
[9—12]. In Ref. [13] it has also been stated that Refs.
[9-12] heuristically commented on the existence of SS's
but that a complete study of this problem was postponed
to future work. Actually, this problem might be much
simpler than we thought as explained below. Let us con-
sider the attractor A zs of the OS defined by
x, (t),X2(t),X2(t) and introduce the direct standard trans-
formation (DST) expressing the standard coordinates
[y, } versus the original coordinates x, . We have

3

yi =xi, y2 fl(xi X2 x3) y3 X
Bx~.

(4)

Therefore, the DST is a well defined transformation
without any singularity since the original vector field
(f, ,f2,f3 ) is smooth. Hence A os is mapped by the DST
to the attractor A ss of the SS. The existence of A ss im-
plies that there must exist one standard function I' (y, ),at.
least an approximate one. When the OS is known, alge-
braic manipulations in principle allow one to find the
standard function I'" (y; ) more speciflcally called here the
standard exact function (SEF). The SS in which I' is the
SEF is called the standard exact system (SES). Examples
in Refs. [9—13] and in this paper show that in practice
the SEF may be diScult or even impossible to derive, or
may contain singularities. The existence of the Ass im-
plies that these singularities must likely be pseudosingu-
larities, as discussed in Refs. [9—13]. Obviously, the
method will fail if variables are not coupled, as discussed

dx
dt

:—x=f (x;p},

in which x(t)CR" is a vector valued function depending
on a parameter t called the time, and f, the so-called vec-
tor field, is an n-component smooth function generating a
flow P, (see Ref. [23]). @AIR~ is the parameter vector
with p components, assumed to be constant in this paper.
The system (1) is called the original system (OS).
Without any loss of generality, we shall take n =3 in this
paper. The OS may therefore be written as
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in Ref. [11]. In such a case, measurements on one vari-
able cannot provide information on hidden variables. In
the present work, however, coupling is assumed to exist
(in a nonlinear way}. A general rigorous mathematical
framework associated with these statements remains to
be derived.

The nature of the equivalence between the original and
the reconstructed attractors has been clarified in terms of
(i) a diffeomorphic equivalence and (ii) a topological
equivalence by using knot theory and templates. The de-
tails will appear elsewhere.

We also introduce the inverse standard transformation
(IST) expressing the original coordinates versus the stan-
dard coordinates which may also be derived when the OS
is known. By manipulating the examples later discussed
in this section, the reader will remark that in practice the
IST may also be very difficult or even impossible to
derive, or may contain (pseudo) singularities. Actually, a
bit of algebra shows that deriving the IST is a prere-
quisite to finding the SEF. Therefore, difficulties associ-
ated with the IST are conveyed to the SEF.

Such difficulties associated with the IST and the SEF
should not prevent A ss to exist as previously mentioned,
due to the properties of the DST. Therefore, instead of
looking for the SEF, we may look for an accurate enough
approximation F' to F. In particular, when the OS is un-
known, the SEF cannot be found and global vector-field
reconstruction with differential embeddings are obtained
if accurate enough F*'s are built. The procedure is as
follows.

Simultaneously to the sampled scalar time series

Ix', j, k„vectorial time series Iy', =x'„y2=x'„y3 xi,
y 3

=x', j;, may be obtained by using an accurate
enough finite-difFerence scheme. In practice we used a
centered second order scheme as discussed in our previ-
ous works. Let us, however, note the possibility of using
discrete linear filters based on discrete Legendre polyno-
mials, generalizing finite diff'erencing [19]. The set

[y', ,yz, y3 j; ', is called a net, and N is therefore the net
size. With each point of the net is associated a value

[y3 j. The last equation in (3) shows that we are then left
with a fitting problem to evaluate an approximation F*
to F. Once this problem is solved, we own a standard
reconstructed function F' (SRF}that, when incorporated
in the SS, provides a standard reconstructed system
(SRS). In the limit of a perfect reconstruction, the attrac-
tors generated by the SES and by the SRS must be identi-
cal. The aim of this paper is to implement a new tech-
nique to build SRF's (Secs. III and IV) and to test it on
test cases which are now presented.

B. Rossler system

For the Rossler system, there are three original coordi-
nates (x,y, z). Each of these coordinates may be taken as
the observable, and therefore three different cases can be
investigated.

1. Observable x
The OS reads

x = —y —z, y =x +ay, i =b+z(x —c),

x =x, Y= —y —z, Z= b ——x —ay+z(c —x) .

The IST is found to be
x =x

Y(c —x)+Z+b+x
a+c —x

Z+b+x —a Yz- a+c —x

while the SEF reads

Z =ab —cx +x —ax Y+xZ+ (ac —1)Y

Y(x +b —a Y+Z)+ a —cZ— a+c —x
(9)

This is a case in which the IST and the SEF exhibit a
set of (pseudo) singularities x, =(a +c) of Lebesgue mea-
sure 0. The status of this set and numerical consequences
when integrating the SES are discussed in Refs. [9,10].
Successful reconstructions are obtained by using a model
of rational functions for the SRF [9,10,13]. The
mathematical structure of such a model, however, fits
perfectly the SEF which is indeed a rational function.

2. Observable y

Using a cyclic permutation over coordinates (x,y, z),
original coordinates are now taken to be (y, z, x) and stan-
dard coordinates are (y, Z, X) with a standard function
X=F(y,Z, X). The DST then reads

y =y, Z =x+ay, X =ax+(a —1)y —z .

The IST is

(10)

y=y, z=aZ —I—y, x =Z —ay,
and the SEF reads

X= b+(a —c)X —c—y +(ac —1)Z —ay

—aZ —aXy+XZ+(a +1}yZ . (12)

This is a very simple case where no singularity appears
in the IST nor in the SEF. A rational function model as
in our previous works would be quite suited for this case
where the SEF exhibits a polynomial structure. It will
also provide a nice checking of the polynomial model to
be discussed later and of associated computer programs.

3. Observable z

Pursuing with the cyclic permutation, original coordi-
nates are now (z,x,y) and standard coordinates are
(z,X, Y) with standard function Y=F(z,X, Y}. The DST
reads

with a control parameter vector a, b, c =0.398,2,4 for
which the asymptotic motion settles down to a strange
chaotic attractor [24]; i.e., original coordinates are
x ] x 2 x 3 x,y, z with x being the observable.

The standard system reads

x= Y, Y=Z, Z=F(x, Y,Z),
in which standard coordinates y&,y2, y3 are x, Y,Z.

The DST reads
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Z Z

X=b+z(x —c),
P= —bc+bx+c z —2cxz —yz —z +x z .

The IST is found to be

(13)

y=y )

Z =Rx —y —xz,
X= —R (cr+1)x+(Rcr+1)y

+(o'+b + 1)xz —cryz —x y .

(20)

X b — Y X(X b)—z=z, x=c+, y= —z ——+
z z z2

(14)

and the standard function reads

1Y=b —(X+c)z —X+aY+az +-
2

The research of the IST and of the SEF is however
rather diScult for this case, requiring in particular one to
solve an algebraic third-order equation in x to express
x (y, Z, X). Although readily obtained by using symbolic
computation software, the results are too involved to be
given here. The SEF does not take the form of rational
functions and exhibits singularities for x =0 and y =0.

3. Observable z

X[(ab+3Y)X bY—aX —]+ (b —X) .
2X
z2

(15) Original coordinates are now (z,x,y) and standard
coordinates are (z,X, Y). The DST reads

This is again a rational function case that could be
readily investigated by methods discussed in [9—13]. Let
us note the appearance of a set of singularities for z =0.

Z Z

X = —bz+xy,
Y=b z+Rx +oy (b+ —c+r1) yx—x z .

(21)

C. Lorenz system

Again, three cases may be considered.

l. Observable x

The OS reads

x =cr(y —x), y =Rx —y —xz, z = bz+xy—, (16)

The research of the IST and of the SEF is also rather
complicated for this case, requiring in particular one to
solve an algebraic fourth-order equation in x to express
x(z,X, Y). This equation is however bisquared. Again,
results are too involved to be presented here. The SEF
does not take the form of rational functions and exhibits
singularities at least for z =R.

with a control parameter vector (R,o,b)=(28, 10, —,') for
which the asymptotic motion settles down to a strange
chaotic attractor [24,25]. Standard coordinates are taken
to be (x, Y,Z). The DST reads

x =x, Y =cr(y —x), Z =0 [(R +a )x —(cr+1)y —xz] .

(17)

The IST is found to be

D. Thermal lens oscillations

In trying to understand thermal lens oscillations
(TLO's) and associated hot-wire experiments ([26,27] and
references therein), a so-called simple model leading to a
three-dimensional (3D) dynamical system has been
developed [28]. Strange chaotic attractors are produced
by this TLO model. For instance, let us consider the fol-
lowing dynamical system leading to the chaotic attractor
in Fig. 9, Ref. [28]:

x =x, y =x +—,z =(R —1}— [(cr+1)Y+Z],1

G'X

(18)

X=y )

y = [R (1+x)(1+z)—1]y

—[R (1+x)(1+z)]' ( sinhy —y)
while the SEF reads

Z =bo (R —1 }x b(0. +1)Y —(b +0 +1)Z—
2nR (1+x)(1+z)
R (1+x)(1+z)+1 sinhx,

3 Y[(cr+1)Y+Z] (19) 1+zZ=S 1—
(1+x)

(R 1)1/2iyi 1/2(1+ 5001)

This is again a rational function case in which the IST
and the SEF exhibit singularities for x =0. The use of a
rational function model is discussed in Refs. [11—13].

in which

R =10.1696, S =2 (23)

2. Observable y

Using again cyclic permutations, original coordinates
are y, z, x and standard coordinates are denoted by
(y, Z, X). The DST reads

The exponent (5001) in Eqs. (22) provides a sharp
cutoff corresponding in the physical model to a transition
between convective and diffusive heat transfer. The pre-
cise value of this exponent is not essential, but it must be
great and odd. Due to the sharp cutoff and to the corn-
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plicated structure of the vector field, this model is expect-
ed to provide a very acid test for global vector-field
reconstruction techniques.

With standard coordinates (x, Y,Z), the DST is readily
found to be

(24)

(u +v)(u +u+1}
2

+ u+1 (30)

Equation (30) is very convenient for numerical evalua-

tion but (27) involving inequalities is not. The reader
may however establish that the algorithm (27)—(29) may
be replaced by a fully explicit one, evaluating n according
to

However, the research of the IST and of the SEF leads to
tremendous technical diSculties that we were not able to
solve with a reasonable effort. n =int(x} .

(31)

(32)

III. MATHEMATICAL PRELIMINARIES

The polynomial approximation method in this paper
will use polynomials denoted P, p C t1,2, . . . I, depend-
ing on three standard coordinates y&,y2, y3, therefore in-

volving terms reading y J&,y2, y3, j,u, v E0, 1,2, . . . .
Hence an explicit biunivocal correspondence (BC} be-
tween integers p and triplets (j,u, v) denoted p+-+(j,u, u)
will be useful. Establishing such a BC is conveniently car-
ried out in two steps.

A. First step

We start by establishing a BC p~(u, u) between in-
tegers p E1,2, . . . and doublets (u, v), u, v E0, 1,2, . . . .
There are infinitely many such BC's because N is equipo-
tent to N (and more generally to N"). However, to serve
our later purpose, we choose a BC obtained by arranging
doublets (u, v) in lines according to

B. Second step

nw —i=
N+2

3 (33}

The number of triplets with (j+u +v) ~ N is similarly

N+3
3

(34)

Therefore the number of triplets with (j +u +u) =N we
have to construct is

Doublets (u, v) with p~(u, u} having been defined in
Sec. III A, let us now construct triplets (j,u, v). Let us as-
sume that we have constructed all triplets (j,u, u) such
that (j+u+v) ~(N —1) and that we are going to con-
struct all the triplets such that (j+u + u) =N

The number of triplets with (j+u+u)~(N —1) is
found to be

(0,0) line 1,
(1,0},(0, 1 } line 2,
(2,0), (1,1),(0,2) line 3,

(25)

and numbering them sequentially according to the
scheme

n, = N+3
3

N+2 (N+1)(N+2)
. 3. 2

N+2
2 (35)

1 line 1,
2, 3 line 2,
4, 5, 6 line 3 .

(26)

n(n+1) (n+1)(n+2) +1
2

&p&
2

(ii) Let us set

n(n+1)k=p—

(27}

(28)

(iii} Then

(u, v)=(n —k+1,k —1) . (29)

Conversely, let (u, v) be given. It is again an exercise to
establish that

Let us consider one integer p in (26) and ask which is
the corresponding doublet (u, v). It is an exercise to show
that the question may be answered by applying the fol-
lowing algorithm.

(i) Evaluate n complying with

which is equal to the number of doublets (u, v) with
(u+v}&N. Therefore, all triplets with (j+u+v}=N
may be obtained from doublets (u, v) with (u + u) & N by
adding a first integer j according to the following scheme.

(i) Add integer N to all doublets (u, v) with (u +v) =0,
to produce triplets (N, u, v }with (j +u + u) =N

(ii) Add integer (N —1) to all doublets (u, u) with
(u+v}=1 to produce triplets (N —l, u, v) with
(j+u+v)=N, etc. , ending with the following.

(iii) Add integer 0 to all doublets (u, u) with
(u+u)=N to produce triplets (O, u, u) with (j+u
+u)=N.

Therefore, in any case, we have (j+u+v)=N as re-
quired. Each constructed triplet is different from all oth-
ers and the construction ensures that the number of trip-
lets with (j+u +v}=N is equal to the number of dou-
blets with (u +v) ~ N, i.e., equal to (2

+
) as required by

Eq. (35). Hence, our construction is perfect.
To gain a better insight into this construction method,

let us examine how it works for the first values of N, con-
sidering doublets given in Eq. (25). Triplets (j,u, u) with
(j+u +u) =0 have only one parent (0,0) to which we add
a first integer N=0 to generate (0,0,0}. Triplets (j,u, u}
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(1,0,0)
(0, 1,0), (0,0, 1) line 2

(36)

with j+u +v)=1 have three parents, the doublet (0,0)
with (u +v) =0 to which we add N =1 to obtain (1,0,0)
and doublets (1,0)(0,1) with (u +v)=1 to which we add
(N —1)=0 to obtain (0,1,0) and (0,0,1). Similarly, triplets
(j,u, v) with (j+u +v)=2 have six parents, one (0,0)
with (u +v)=0 in line 1 of (25), two with (u +v) =1 in
line 2, and three with (u + v) =2 in line 3.

The resulting triplets may be arranged in lines with
(j+ u + v) =est in a line, and each line may be subdivided
into sublines such as (u +v)=est in a subline leading to
the following pattern:

(0,0,0) line 1

u =N —j —k+1, (41')

N =int(x), (45)

Equations (38) and (39), which evaluate N and j, are
numerically inefficient because they involve inequalities.
It is left to the reader to demonstrate that they may be re-

placed by the following set of formulas:

a =6(p Ei)
1/3

a (27a —4)'x= —+
1/3

a (27a2 4)1/2
+

(2, 0, 0)
(1, 1,0), (1,0, 1) line 3

(0,2, 0), (0, 1, 1), (0,0, 2) 2E + 1 —5'/
(47)

clearly illustrating the construction method. The BC:
p~(j, u, v) is then defined by sequentially numbering the
triplets in (36) according to

j=int(y+I) .

Conversely, let (j,u, v) be given. Then we have

(48)

line 1 j+u+u+2 u+u+1
+

u+1
(49)

34 line 2

(37)

In Eqs. (43) and (46), e& and e2 must comply with

0&@&,@2&1 . (50)

67
8910

line 3

Numerical checking of the algorithm leads us to recom-
mend e, =@2=0.3. On a Stardent 3000 computer, the al-
gorithm then works perfectly well up to p =10 .

N+3
3

(38)+1.&p&

From (36) and (37), the BC, p~(j, u, v), may be explic-
itly written down. This is a rather tedious exercise which
is left to the reader. Results are however given below.

Let p be given. Then the triplet (j,u, v) is found by ap-
plying the following algorithm.

(i) Evaluate N satisfying

N+2

IV. POLYNOMIAL APPROXIMATION
TECHNIQUE

A. Complete multivariate basis of polynomials

We introduce the notation

F13 ZV3 (~i~2y3 ~ (51)

in which p~( j,u, v) according to the BC introduced in
Sec. III. Then, we introduce a multivariate family of
polynomials P", k E 1,2, . . . :

(ii) Evaluate j satisfying
yk y Ak( )n (52)

N+2
3

(iii) Then

N+2
3

(iv) And

N —j+1
+ &p

N+3

N —j+1
2

N —j+2
+ 2 +1.

(39)

n =1

The first members of the family read

yl A 1

{t = A +Any

p =A, +A~, +A3y2,

P =A, +Any, +A3) +A4y

p~ = A, + A ~, + A 3y& + A 4y 3+ A 4y

(53)

(54)

(55)

(56)



orthogonality relations. Using Eq. (60), Eq. (65) may be
rewritten as

showing that the BC, P~(j,u, v), generates a multivariate
triangle family of polynomials generalizing the monovari-
able case discussed in Ref. [29]. Coefficients A„" on the
upper border of the triangle are called leading coefficients
(LC's}. Monomials (yly2y3)" may then be determined
uniquely and recursively from linear combinations of
itL"'s. For instance,

n i

g A;"+'B,'its~+a„A„"(y,y2y3)"+' (66)
t=1 J=1

Let us introduce an inner product (, ) to be defined
later and write the orthogonality condition

(yn+1 yn) (67)(58}

Equation (66}then readily leads to
A1

—B2yl+B 2 y2

+,
—i2„A„"((yly2y3)"+',p")

B„"(P",P")
(68)

(59)
Similarly, writing successively the orthogonality condi-
tionsMore generally, we have

k

(yly2y3)"= X B."4" (y +n1 yn
—k) —0 (69)(60)

n=1
we recursively obtain

Clearly, the family iI}" is only usable if we demand
An"%0 for all n Let u. s now consider a multivariate poly-
nomlal P(yl y2 y3}:

A n(( }n+1 yn
—k)

(yn
—k yn

—k)
A n+1 1

n —k gn —k
n —k

N

P(yi y2,y3}= g ck(yiy2y3) ~

k=1
(61)

i =n —k+1

With N ~(N „N2,N3 ), partial degrees with respect to
y„y2,y3 are N„N2, N3, respectively. By using (60}, Eq.
(61) may be rewritten as

(70)k=1,2, . . . , n —1.
The orthogonalization scheme must be completed by

providing companion relations to evaluate the coefficients
B' appearing in Eqs. (68) and (70). Equation (52} may be
rewritten as

N

P(yi y»y3) X d~4 (62)

Therefore the family P', . . . , P forms a complete basis
for all polynomials up to degrees X, ,Xz,N3 with respect
to yi, y2,y3. In the limit N~ ~, we obtain a complete
basis for all 3D polynomials.

k —1

&
= X A;"(»y2y3)'+Ak(»y2y3)' (71)

which, together with Eq. (60), implies

k —1 i
yk y g AkBi ya

Ak i=1 a=1

B. Orthogonalization k —1

We now design an orthogonal triangle family of poly-
nomials. It will be found that the construction of the
family is unique except for the values of the LC's. How-
ever, contrasting with 1D case [29], it is not possible to
express pj from iI}"'s, k &j, by using a recurrence relation.

It is assumed that the family has been built up to n, i.e.,
we own P', . . . , P" with P' orthogonal to itij, for all i and
for all jAi. Therefore, coefficients A', , A 1, A2, . . . ,

We now build iI}"+'given by

a=1

(72}

leading immediately to

gk 1
k

k

(73)

Bky — Bk y y AkBi y (74)
i =1 a=1

n+1
yn+1 —y A n+1( }i Taking the inner product of (74) with P", and using

orthogonality, then lead to
(63)

Setting k —1

B„"= Bk g A,"B„', r =—1,. . . . , k —1, (75)'=a A"n+1 +n n (64}

with arbitrary values of a„&0,we have completing the scheme. In practice, because LC's are left
arbitrary, we have chosen0"+'= g A;"+'(yiy2y3)'+~. A."(yiy2y3)"+' (65}

A =1k

i.e., we also have

(76)

i.e., we must evaluate n coefficients A;"+' knowing n

GLOBAL VECTOR-FIELD RECONSTRUCTION BY USING A. . .
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C. Inner product

Let us consider the net Iy', ,y2, y 3 ]; ', generated by the
standard coordinates as defined in Sec. II A and two func-
tions G(y„y2,y3), H(y„y2, y3) defined on this net. We
introduce

N

(G,H) = g G (y', ,y 2,y 3 )H (y'„y 2,y 3 )

(78)

net

It is then an exercise to check that (G,H) is indeed

satisfying properties required for an inner product [29].
This is the definition to be used in this paper. Further-
more, we have

in which
~~ ~~

is a seminorm [29].

D. Fourier coe%cients

(79)

By using the inner product (78), Secs. IVA and IVB
provide a formulation to build a complete orthogonal

family of multivariate polynomials P". These polynomi-
als are not a priori defined but generated by the net, i.e.,
by the natural measure of the attractor. We are now
looking for an approximation F* of the standard function
which is known at the net points:

3 F(yI,y2, y3 ), i E [1, . . . , N ] (80)

The approximation F* is researched as an expansion over
polynomials P" according to

F'= g c,'(t' .
j=l

(81)

A best L2 approximation (in the least-squares sense) is
obtained when (F' F) is orthogon—al to all the P"'s (see
Ref. [29]).Therefore, the condition is

N

g c'P~ FP" =0, k =—1 2, . . . . (82)
J=1

The orthogonality property of the polynomials P" then
implies that the Fourier coefficients are given by

Xy3(("(yi y3 y'»
(F,PJ

(QJ pJ)
(83)

A somewhat similar method for constructing basis
polynomials is discussed by Giona, Lentini, and Cimagal-
li [30]. However, by not using BC's, the obtained formu-
lation looks to be of great complexity, as stated by the au-
thors. In particular, polynomials are denoted by using a
number of subscripts equal to the number of variables
making relationships fairly difFicult to read. Further-

&k =BI"=&

leading to trivial but useful simplifications. A somewhat
equivalent Gram-Schmidt procedure to produce an
orthonormal basis will be discussed elsewhere.

more, the obtained family of polynomials does not look
like it forms a multivariate triangle family. Actually,
however, the triangular character of the family does exist
but is hidden by the notation. For instance,
in Ref. [30], Eq. (16), the first members of a family
in the 2D case would be formed by taking

in that order. Qiona,
Lentini, and Cimagalli [30] apply their method to the
reconstruction of vectorial time series (not of scalar time
series).

N

g c~g~=0 c =0 for all j .
j=1

(84)

Equation (84) must hold for each point on the net and
therefore represents N equations to be satisfied by N
polynomials. Let us assume that we have built Nq poly-
nomials according to our constructive algorithm. They
are orthogonal and therefore linearly independent. Equa-
tion (84) generates N equations containing N polynomi-
als at each net point. If we are trying to build a
(N + l)th polynomial, then Eq. (84) generates N equa-
tions containing (Nq+1) polynomials at each net point.
Since there is now one more coefficient c than the num-

ber of equations, we deduce that the (Nq+1)th polyno-
mial is not linearly independent. Since it is not linearly
independent but must be orthogonal, it must be zero.

N+1 N+1
Then ((t ', P ' )=0 and the algorithm of construc-
tion must stop due to the inner products appearing in the
denominators. Therefore, for a net with Nq points, the

construction must stop when P', P, . . . , P ' are built.

F. A set of spectra and interpretation

The presented formulation generates a set of spectra
that is worthwhile discussing. The first spectrum is the
spectrum of coefficients A ' defining the basis polynomials

It may be called the direct basis spectrum. It is an
exercise, working by recurrence, to show that in the limit

the inner products ((t",4") are proportional to
N but that the direct basis spectrum and therefore the
polynomials do not depend on X, only involving mo-
ments ((yiy2y3 Y) in which the average ( ) is taken with

respect to the natural measure of the attractor. For in-

stance, it is readily shown that

(85)

(y, )(y, &
—(y,y, &32=

(y2i &
—(y, &'

In the 1D case, the matrices A ' and B' may be comple-

K. Number of allowed polynomials

With the definition (78) for the inner product, the num-
ber of allowed polynomials P" is not infinite but actually
depends on the number of points in the net. Indeed, if we
are allowed to build N polynomials, these polynomials
must be linearly independent since they must be orthogo-
nal. We recall that N polynomials P" are linearly in-

dependent if, by definition,
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mented by setting to zero the undefined elements, then
leading to extended matrices [ A ' ] and [B'] which are
each other's inverse [29]. Therefore, the set of
coefficients BJ' forms a spectrum that may be called the
inverse basis spectrum. Although the triangular matrices
A '- and B'- are still companions essentially containing the
same information and enjoying similar properties, the ex-
tended matrices [ AJ ] and [B']have not been found to be
each other's inverse in the multivariate case [see Eqs. (73)
and (75)].

From the basis spectra A' and BJ, it is possible to
define a compound basis spectrum C' according to

F'= g
i=1

A (yiy2y3)
j=1
N

g c. A (yiyzy3)

leading to

j=1 i =j

N
P

with

F"= g E (yiy2y3)~

(91)

(92)

C&=A', i ~J
N —i+1

Cj BN j+1 p l —J
q

(87)

with the reInark that

N —i+1 (88)

From an aforementioned remark exemplified in Eqs.
(85} and (86}, it follows that all these basis spectra form
signatures of the metric properties of the attractor with
respect to the natural measure. However, because y2 =y1
and y~ =yz for standard systems [Eq. (3)], they may also
be expressed as describing the coupling between the origi-
nal observable x, =y1 and the phase velocity components

y1 and y2.
The set {c'] of Fourier coefficients [Eq. (83)] forms the

Fourier spectrum. Again, this spectrum does not depend
on Nq in the limit Nq ~ ao. Equation (83) shows that it
contains information on the coupling between the metric
properties and the phase velocity component y3. For in-

stance,

(89)

(90)

Recalling again y2 =y, and y3 =y2, it is seen that this
spectrum describes the coupling between the original ob-
servable x1 =y1 and all phase velocity components

y1y2y3. It therefore contains information on the cou-
pling between x1 =y1 and y1,y2 present in the basis spec-
tra, plus information on the coupling between x1 =y1 and

y 3 which is not present in the basis spectra. Also, be-
cause conversely y3 =F(y i,y2, y3), the Fourier spectrum
may also be expressed only in terms of statistics with
respect to moments taken from the natural measure.
This discussion shows that all the previous spectra in-
volve statistics that may be described either only in terms
of moments ((y,y2y3) ) taken from the natural measure
or in terms of coupling between the original observable
and phase velocity components. The corresponding in-
terplay between metric and dynamical properties in stan-
dard systems might be worth investigating later.

Finally, from Eqs. (81) and (52), it follows that the ap-
proximate standard function F may also be written as

N

E, = gc A,'.
1 —j

(93)

The form (92) is the most efficient for integrating the
standard reconstructed function F*. It shows that all in-
formation required to know the standard reconstructed
vector field is actually contained in a number of
coefficients K equal to N, the number of polynomials.
If N is small for a successful reconstruction, then the
chaotic trajectory will be encoded in a small set of values.
This set may be called the standard polynomial spectrum
or, in short, the E spectrum. It provides the most concise
signature of the attractor. Graphical displays of spectra
are of interest. However, to avoid overloading this paper,
only E spectra will be displayed due to their particular
relevance. We are now going to systematically investi-
gate how the approximation formalism presented in Secs.
III and IV behaves in practice, using the test cases
presented in Sec. II. Computer programs in which this
formalism is implemented are available on request.

V. RESULTS

In this paper, OS and SES trajectories are obtained by
using a standard fourth-order Runge-Kutta algorithm.
OS trajectories are obtained by integrating the equations
of the original system while SES trajectories are obtained
by integrating the OS and applying the DST to each sam-
pled point. SRS trajectories are obtained by using the
form (92) with a variable step-size algorithm and routine
taken from [31]. Except when explicitly stated otherwise,
displayed trajectories last for 100TO with a sampling rate
of 100 points per To, in which To is the pseudoperiod of
the attractors (To is about 6.2, 0.73, and 2.7 for the
Rossler system, the Lorenz system, and the TLO model,
respectively; it may be shown that OS and SS own the
same pseudoperiod). Before recording trajectory data,
transients are killed during 100TO.

Reconstruction spectra are evaluated by running the
OS with a fourth-order Runge-Kutta routine, with con-
stant time step 5t. This same time step is used to evaluate
standard coordinates according to a second-order cen-
tered finite difference scheme. The reconstruction also
depends on N, the number of points on the net, N„ the
number of net points sampled per To, and N, the num-
ber of retained polynomials. The vector (5t,Nq, N„N&)
is called the (reconstruction) driving vector. All
displayed K spectra are presented under the form
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KJ+ =e1KJ ~' in which e is sgn(KJ ) and a is conveniently
chosen to better emphasize the features of the spectrum
when spectrum components exhibit big diff'erences in
their order of magnitude.

A. mossier system, observable x O
O

'

The OS and the SES are displayed in Figs. 1 and 2, re-
spectively. Although the SEF takes the form of a ration-
al function, reconstructions are found to be very easy and
robust, i.e., exhibiting a very small sensitivity with
respect to the driving vector. Very satisfactory results
are regularly obtained by using X =33—38 and 47. Even
with X =6 polynomials, the general structure of the SES
with a bit of fractality may be observed, although in this
case the SRS does not compare favorably enough with
the SES. Due to such a strong robustness, successful
reconstructions may be obtained by decreasing X to
small values. In Fig. 3, we provide an example with a
driving vector equal to (10,500, 5, 33), i.e., the original
system has been sampled over 100TO. It is possible to ob-
tain satisfactory reconstruction by sampling over a small-
er number of pseudoperiods if both N and N, are in-
creased in an adequate way, i.e., by oversampling. It is
certainly remarkable that the rationa1 function of the SES
may be correctly approximated by using only 33 polyno-
mials (i.e., 33 components in the K spectrum) with such a
limited amount of data. With driving vectors of the form
(10,100,5,N ) no satisfactory reconstructions are ob-
tained, but SRS s sti11 may exhibit periodic orbits or frac-
tal orbits well reminiscent of the SES attractor. A K
spectrum is displayed in Fig. 4 for X =100. It is clear
that the relevant information is contained in the range
j &50, in agreement with previous comments. There is
also some information around j =60 but it is likely to be
parasitic because reconstructions with N =60 are no
more successful. Let us also note that taking more poly-
nomials than necessary not only adds parasitic K 's but
also spoils the small order K, 's.
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O.pp
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FIG. 2. Rossler system, observable x, SES.
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FIG. 3. Rossler system, observable x, SRS with driving vec-
tor (10,500, 5, 33).
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FIG. 1. Rossler system, observable x, OS.
FIG. 4. Rossler system, observable x, K spectrum with driv-

ing vector (10 ', 10', 100, 100).
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O
PI

0
0

representing a sampling over only one pseudoperiod. It is
also certainly remarkable that sampling over only one
pseudoperiod is enough to reproduce the fractal structure
of the system which can only be apparent by integrating
it over a large number of pseudoperiods. We did not
succeed in reconstructing the system with only N =9.
The smallest successful value Nq =10 is &ust the number
of required polynomials, i.e., 9, plus one, i.e., nearly iden-
tical to the theoretical limit discussed in Sec. IV E.

Calling E; and K;* the components of the exact and
reconstructed E spectra, respectively, we may define rela-
tive errors e; according to

El

(95)

FIG. 5. Rossler system, observable y, SES.

B. Rossler system, observable y

+K7yX+K8Z +K9ZX, (94)

from which the exact K spectrum is obtained by
identification, explicitly showing that only nine polyno-
mials are required for the SRF. It has been possible to
obtain perfect reconstructions by decreasing N down to
such a small value as 10. An example is provided in Fig.
6 for a driving vector equal to (10,10, 10, 10), i.e.,

The SES is displayed in Fig. 5. It is recalled that the
SEF in this case is indeed a polynomial. Therefore the
SRF in our algorithm exhibits the same mathematical
structure as the SEF. As a consequence, reconstructions
in this case are found to be exceptionally robust. It is
also possible to readily compare the reconstructed K
spectrum and the exact one. With standard coordinates
reading (y, Z,X), the SEF given in Eq. (12) also reads

F' =K&+E2y+K3Z+K4X+Ksy +E6yZ

In the case of Fig. 6, for i F 1, . . . , 9, the e s range be-
tween 0.00060% and 0.0039%, with an arithmetic aver-

age equal to 0.0015%. For E,o, which is theoretically
equal to 0, we have K;0=10, a very small value,
indeed. Such a high degree of accuracy does not make it
useful to present K spectra.

C. Rossler system, observable z

The SES is displayed in Fig. 7. Many runs with vari-
ous driving vectors have been carried out but no success-
ful reconstructions have been obtained in this case, even
by increasing N up to 10 (representing a rather extrava-
gant amount of data, indeed}. It however regularly hap-
pens that some SRS's that are reminiscent of the SES
may be obtained in the same manner as in Fig. 8 (tran-
sients not killed} for a driving vector equal to
(10,10,1,63}. Such SRS's generally correspond to N
roughly equal to 60, say, in the range (55,70}. The K
spectrum in Fig. 9 indeed shows that some information is
present for j=60. It is likely that this information is not
parasitic in this case, but essential to the quality of the
reconstruction. Unfortunately, when the required num-
ber of polynomials increases too much, an accurate evalu-
ation of the E spectra becomes more and more difBcult

00-
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0
CV
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0

0
0

00-
I

00-
rv

I

FIG. 6. Rossler system, observable y, SRS with driving vec-
tor (10,10, 10,10). FIG. 7. Rossler system, observable z, SES.
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FIG. 8. Rossler system, observable z, SRS with driving vec-

tor (10,10,1,63).
FIG. 11. Lorenz system, observable x, OS.
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FIG. 9. Rossler system, observable z, K spectrum with driv-

ing vector (10 ', 10', 100,75).
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FIG. 12. Lorenz system, observable x, SES.
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FIG. 10. Rossler system, observable z, SRS with driving vec-
tor (10,10,1,200).

FIG. 13. Lorenz system, observable x, SRS with driving vec-
tor (10,10,1, 18).
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for two reasons: (i} the order of the moments involved in
our algorithm increases (see Sec. IV F) and therefore their
evaluation requires to increase the size of the net to pro-
vide accurate enough statistics, and (ii) the algorithm
proceeding recursively, errors accumulate when higher-
order polynomials are evaluated. Therefore, in some
cases, the required value of N may be too great to be in
practice affordable. This is illustrated by commenting on
a last run with driving vector (10,10,1,N&). With
such a big value of Nq =10, structures reminiscent of the
SES are observed for nearly all N 's in the range (60,200),
with the example for N~ =200 displayed in Fig. 10 (tran-
sients not killed}. The lower limit of this N range, i.e.,
60, confirms the relevance of the information in the K
spectrum for j=60, and the robustness of the structure
of Fig. 10 when N is varied in the range indicates that
higher-order polynomials do not add significant parasitic
contributions to the K spectrum.
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FIG. 15. Lorenz system, observable x, I( spectrum with driv-

ing vector (10,10', 100,50).

D. Lorenz system, observable x

The OS and SES are displayed in Figs. 11 and 12, re-
spectively. Let us note the very big disparity in coordi-
nate scales exhibited by the SES. From many runs, it is
observed that reconstructions leading to structures rem-
iniscent of the SES are regularly obtained for N =18.
An example is provided in Fig. 13 (transients not killed)
for a driving vector equal to (10,10,1, 18). Such
structures usually lead to small-order limit cycles without
any fractal structure when transients are killed. They
have essentially been observed only for a limited number
of N~'s, namely, 14, 15, and 18, up to N =10 . There-
fore, these N~ values play a special role. The value
N =18 seems to be the most interesting, because fairly
good fractal reconstructions may be obtained in this case
with an example in Fig. 14 for (10,10,100, 18). Unfor-
tunately, such reconstructions are not robust with respect
to a change in the driving vector. As an example, a run
with a dense net (N =10 ) has finally been carried out
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FIG. 16. Lorenz system, observable y, SES.

0
ZH

0
00-
0

0
0

0
00-0

O

0-0
(V

O
0
O
O

0
00-
Pl

0
0
Pl

0
0

0
0
N

I

O
00-
pl

O
0

O
O

I

FIG. 14. Lorenz system, observable x, SRS with driving vec-
tor (10 ', 10,100, 18).

FIG. 17. Lorenz system, observable y, SRS with driving vec-
tor (10,10,100,47).



G. GOUESBET AND C. LETELLIER

with driving vector (10,10,100,N ) for N up to 100.
For such a big N, structures reminiscent of the SES are
obtained for nearly all Nz's but without any fractal struc-
tures. A K spectrum is given in Fig. 15 showing that
most of the information is contained in a small number of
polynomials. The peak for j =18 is small but the corre-
sponding polynomial is expected to be essential. It is
likely that the difficulty in obtaining robust fractal recon-
structions for this case is partly associated with the big
disparity in scale coordinates.

E. Lorenz system, observable y

The SES is displayed in Fig. 16, exhibiting a strong
similitude with the SES from variable x, including a big
disparity in coordinate scales. Reconstructions are robust
in the weak sense, i.e., structures reminiscent of the SES
are regularly obtained for nearly all N 's, in contrast with
the case of variable x for which N = 14, 15, and 18 were
privileged. Also, rather satisfactory fractal reconstruc-
tions are regularly obtained with an example in Fig. 17
for a driving vector equal to (10,10,100,47). We even
succeeded in obtaining a fairly good reconstruction with
only N =13 polynomials for (10,10,1, 13). Unfor-
tunately, such fractal reconstructions are not robust. It is
again likely that N values should be increased to extra-
vagant values to provide a satisfactory convergence. In
particular, clues to convergence are observed for
Nq

= 10, with a driving vector (10,10,1,N ). In this
case, a rather satisfactory reconstruction is observed for
X&=44 (Fig. 18) and other fractal reconstructions, al-

though much less satisfactory, are observed for N from
56 up to 82. A E spectrum is shown in Fig. 19, presenting
many similarities with the E spectrum for observable x.
It is again likely that the difficulty in obtaining robust
fractal reconstructions for this case is partly associated
with the big disparity in scale coordinates.
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FIG. 19. Lorenz system, observable y, E spectrum with driv-

ing vector (10,10', 100,75).

FIG. 18. Lorenz system, observable y, SRS with driving vec-
tor (10,10', 1,44).

F. Lorenz system, observable z

The SES is displayed in Fig. 20. In contrast with the
OS, and SES's with variables x and y, this attractor
displays only one wing. This is an interesting point be-
cause, considering the symmetry of the Lorenz vector
field (x~ —x,y~ —y), Rossler [32] stated that "a trick
which exploits the inherent . . . symmetry between the
two leaves of the Qow, so that in e8'ect only a single leaf
needs to be considered has yet to be found. " He then
went on by publishing his so-called Rossler system lead-
ing to a chaotic motion on a single band. Because the
Lorenz system is a model, he stated that his system is a
"model of a model, " therefore emphasizing the fact that
he was indeed looking for a reduction from the two-leaf
motion in the Lorenz system to a single-leaf motion. It
therefore appears that SS's (SES and SRS's) naturally
provide the trick asked for by Rossler.

Let us note that there is still a big disparity in coordi-
nate scales. However, in this case, probably in connec-
tion with the simple structure of the liow (although the
SES vector Seld was so complicated that we decided not
to write it down), reconstructions are very robust. Very
satisfactory reconstructions are obtained with nearly no
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FIG. 20. Lorenz system, observable z, SES.
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dependence on the driving vector, for NN E =(46,59).
An example is provided in Fig. 21 for a driving vector
equal to (10,10,100,46). Due to the strong robustness
for this case, it is possible to decrease X to very smal
values, with an example in Fig. 22 for (5.10,100, 1,50),
although some deterioration with respect to the previous
fi be observed. The E spectrum exemplified ingure may e

A1-F' 23
'

ll correlated with the above remarks. A-1g. 1s we
though most components are obtained for j &, t e
small components for j )35 must be essential to the qual-
ity of the reconstructions.

G. TLO model

For the vector field of Eq. (22), the OS and the SES are
displayed in Figs. 24 and 25, respectively. The Hat bands
in these attractors are associated with the sharp cutoff
term in the vector field and expectedly make this case a
very acid test. Expected dif5culties are well confirmed by
the complex structure of the E spectrum (Fig. 26), ex ib-
iting many disjoined bursts of peaks spreading up to at
least} j =200. Indeed, we did not succeed in satisfactori-
ly solving this case even after having systematically tested
several thousands of driving vectors.

Most of the time, a limit cycle, however not well rem-
iniscent of the SES, is obtained by using only N&=11
polynomials. Many limit cycles, now well reminiscent of
the SES skeleton, are regularly observed for N~ E [23,48],
possibly period doubled, as illustrated in Fig. 27 for
(10,10,2000, 23) representing a sampling over 500TD
and Fig. 28 for (10,10,2, 24) representing a sampling

500000T . The value N =47 deserves a specialP
wellmention because it regularly provides structures very we

reminiscent of the SES, looking like transient chaos, but
even uat lly converging to simple limit cycles of order 1 or
2, or diverging. An example is shown in Fig. or
(10 10 100 47} in which transients have been killed

outfor 20TO. This trajectory, however, diverges after abou
150TD. The best no-diverging trajectory which is, howev-
er, very far from being fully satisfactory (Fig. 30 has

FIG. 28. TLO system, observable x, SRS with driving vector
(10,10,2, 24).
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FIG. 29. TLO system, observable x, SRS with driving vector
(10 , 10,100,47).
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FIG. 30. TLO system, observable x, SRS with driving vector
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been obtained with a big number of polynomials, for
(10,10,10,165). Such a big value of N is associated
with the rightmost burst of peaks in the K spectrum. It is
therefore likely that such a dif5cult case would require a
large number of polynomials, which in turn, as previously
discussed, would require extravagant values of X . In
particular, runs with N =10 and 10 have been carried
out without leading to noticeable improvements.

VI. CONCLUSION

We have presented a global vector-field reconstruction
technique relying on standard systems in which the so-
called standard function is approximated by using a mul-
tivariate L2-polynomial approximation on nets. Several
test cases have been investigated. These test cases may be
separated into three classes: (i) a class for which recon-
structions are easy and robust, allowing very satisfactory
results with a very small amount of data, including the
Rossler system, with observables x and y, and the Lorenz
system with variable z; (ii) a class for which rather satis-
factory reconstructions are obtained but in a no-robust
way, including the Lorenz system, with observables x and

y; and (iii} a class for which no satisfactory reconstruc-
tions are obtained, although some structures reminiscent
of the correct one may be produced, including the
Rossler system with observable z and the TLO system
with variable x. Validations relied on the comparison be-
tween SES and SRS graphical displays but could have
also relied on the comparison between invariants such as
generalized dimensions as done in our previous works
[9—13].

Some indications on future works are now provided.
Although our technique relies on standard systems, the
approximation technique itself could be used in other ap-
proaches, such as using eigenfunctions generated by SVD
or for map reconstructions and forecasting. For a given
system, reconstructions are more or less easy, depending
on the chosen observable. This fact suggests that, for a
given observable x, easier reconstruction might be possi-
ble by using a derived observable f (x) with the proviso

to know how to choose a best function f. More general-

ly, generalized standard systems might be introduced in
which the first components of the SS vector field would
be given by known functions of the standard coordinates
with again a single standard function to be determined.
In particular, when the standard coordinate scales are
very different, such as for the Lorenz system, such gen-
eralized standard systems may be easily derived in order
to renormalize the scales. This leads to so-called
squeezed systems that we previously used to decrease
biases involved in generalized dimension computations
[9—13].

Also, the approximation technique presented in this
paper can likely be improved, for instance, by using a
perturbation procedure in which, a first approximation of
the standard function being obtained, a second step using
again our polynomial procedure could be used to improve
the approximation. The first approximation could be
chosen by selecting the most significant polynomials.
Systems pertaining to classes (ii} and (iii) should be select-
ed as test cases for checking improved methods. In par-
ticular, the TLO system provides a particularly interest-
ing acid test.

When using rational functions, the method was not
very robust with respect to the presence of noise (al-

though it could, however, afford a bit of it}, due to the
presence of aforementioned singularities. The present
technique without any singularity should perform much
better. Of course, a prior step should concern noise re-
moval, for instance, by using Fourier filtering, wavelet
transform filtering, or SVD filtering, among others.

All these lines of research are now to be investigated
and should eventually provide a new tool of interest for
the study of experimental data, including the automatic
production of phenomenological models and forecasting
techniques for flows (and maps).
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