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Monte Carlo study of interfacial properties in an amphiphi&ic system
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A three-component model representing a balanced, amphiphilic system at a three-phase coexistence of
oil-, water-rich, and disordered phases is simulated, and interfacial tensions between all phases are ob-

tained from histogram methods. %'e find that the disordered phase wets the oil-water interface, and that
its tension is reduced due to the presence of the amphiphile by a factor of 93. The determination of the
structure function shows that the system is between disorder and Lifshitz lines. These three factors are
all consistent with the simulated amphiphile being weak. Fluctuations do not reduce the tension

significantly from mean-field estimates, but do alter the location of the wetting transition. The latter is

in accord with the expected behavior of a system in which the interfacial tension is small.

PACS number(sj: 68.10.Cr, 68.10.Gw

One of the most intriguing features of simple mixtures
of oil, water, and amphiphile is that, under appropriate
conditions, the interfacial tension between oil and water
can be reduced by several orders of magnitude [1]. Some
systematics of this reduction are well established. First,
the tension is lowest when the concentrations of oil and
of water are approximately equal, and the system is said
to be balanced. Second, in a balanced system, the tension
decreases as the concentration of amphiphile increases.
There is a limiting value of amphiphile concentration,
however, beyond which the oil- and water-rich phases be-
come unstable to the formation of a uniform disordered
phase. The lowest tension is therefore attained at the tri-
ple point of the three phases. Finally, the tension be-
tween a given oil and water can be reduced sti11 further
by employing increasingly efficient amphiphiles, i.e., ones
that bring about the uniform phase with a smaller and
smaller concentration of amphiphile. This latter correla-
tion between efficient amphiphiles and low oil-water ten-
sions can be understood [2] if one pictures the uniform
phase as consisting of coherent regions of oil and ~ater
separated by sheets of amphiphiles with an average spac-
ing l. Assuming that the amphiphile sheets in the disor-
dered phase are essentially the same as that at an oil-
water interface, the Gibbs free energy per unit volume of
the disordered phase in the balanced system, gd;„can be
written

gd;, = —,'(g.;, +g„„„)+—', (~,„—~g;„,(&)
I ),

where g„-],g„„„arethe Gibbs free energy of the oil- and
water-rich regions, o, is the oil-water interfacial ten-
sion, and g,„,(l) is the interaction between amphiphilic
sheets at the distance l, which is assumed to be attractive.
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At three-phase coexistence, g„&=g„„„=gd;,from which
it follows that o, = g;„,(l)~. At large separations t, the
interaction between amphiphilic sheets must be a de-
creasing function of the distance, so that the tension de-
creases with increasing l. Further, the larger the distance
between sheets, the less amphiphile there is per unit
volume, so that the amphiphile is more efficient. Hence,
the interfacial tension decreases as the efficiency of the
amphiphile increases. In the water and octane system,
for example [3], the concentration of the n-akyl po-
lyglycol ether C5E2 needed to bring about the disordered
phase is 46.6 wt. %, and the interfacial tension is 0.36
erg/cm, compared to the typical value of 50 erg/cm in
the absence of amphiphile. Thus the tension is reduced
by a factor of 130. The more efficient C8E4 brings about
the disordered phase with only 24.4 wt. % and reduces
the tension to 0.041 erg/cm, a reduction by a factor of
1250. From the above argument, it would seem that
thermal fluctuations might be important in bringing
about the low tensions as they cause an entropic repul-
sion [4] between the sheets of amphiphiles, which would
cause I to increase and the tension to decrease.

Fluctuations may also play an important role in the
wetting phenomenon in these systems. The experimental
observations are that the disordered phase wets the oil-
water interface when the amphiphile is weak, whereas it
does not do so when the amphiphile is strong [3,5]. This
correlation was explained using a Landau theory of an
amphiphilic system with short-range interactions [6] that
showed that a transition from a wet to a nonwet interface
should occur at the disorder line [7], the line at which the
large distance behavior of the water-water correlation
functions changes from monotonic to nonmonotonic de-
cay. The former behavior characterizes the disordered
phase brought about by weak amphiphiles; the latter is
characteristic of a microemulsion, the disordered phase
produced by strong amphiphiles. The effect of long-
range van der Waals forces is to cause the wetting transi-
tion to be first order and to occur on the nonmonotanie
decay side of the disorder line [6]. these predictions have
been verified by experiment [8]. Although fluctuations
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are not expected to alter the first-order nature of the tran-
sition, they certainly can affect the location of the transi-
tion. The relative importance of such fluctuations is usu-
ally gauged by the dimensionless ratio w =—kb T l4mog,
where T is the wetting temperature, and g, the bulk
correlation length [9]. In most systems, this ratio is of or-
der unity. In the systems under consideration, however,
this ratio is orders of magnitude larger due to the ex-
tremely small value of the interfacial tension. The ex-
pected effect [10]of the fluctuations in such a system is to
cause the wetting transition to occur on the microemul-
sion side of the disorder line even in the absence of van
der Waals forces. The inclusion of such forces would be
to cause the transition to occur even farther on the mi-
croemulsion side.

Even though the effect of fluctuations may be impor-
tant to the reduction of the interfacial tension and to the
wetting temperature of amphiphilic systems, it has been
little studied. Monte Carlo simulation of a Ginzburg-
Landau model has been used to relate the near vanishing
of the interfacial tension to the location of the triple line
[11]. The absolute reduction in interfacial tensions, how-
ever, is not obtainable from such models. Very recently,
a lattice model was simulated, and the interfacia1 tension
between the oil-rich phase and the disordered phase was
calculated [12]. The effects of finite size on the result
were not estimated. A reduction in the oil-water tension
of a factor of 500 can be inferred from the results. From
the experimental observations above, this is a reasonable
number for a strong amphiphile. Whether or not the
model oil-water interface was not wetted by the middle
phase, as would be expected for a strong amphiphile, was
not addressed. However, from the simulation results,
which do not appear to show a large probability for the
occurrence of an unwetted interface, one concludes that
the interface was wetted by the middle phase, contrary to
expectations.

We have examined the reduction in oil-water tension
and the state of the oil-water interface by Monte Carlo
simulation of a three-component model, which has been
extensively analyzed previously by mean-field theory [13].
A system not far from the four-phase point was examined
in detail, and the interfacial free energies between oil and
middle phases, and between oil and water phases, were
calculated independently using histogram methods [14]
and reweighting techniques [15,16]. Finite-size effects
were found to be important. The tension of the oil-water
interface in the pressure of amphiphile is reduced by a
factor of 93 with respect to its value in the absence of am-
phiphile. This is not a spectacular reduction, but one
that is fully consistent with our result that the oil-water
interface is wetted by the middle phase. Hence, the par-
ticular system studied represents a weak amphiphile. Fi-
nally, by calculating the correlation functions of the sys-
tem, we determine that the rniddle phase is on the mi-
croemulsion side of the disorder line. Thus the transition
from wet to not wet must occur on this side, as is found
in experiment [8]. That the fluctuations alter the location
of the wetting transition from the mean-field location of
the disorder line is in agreement with theoretical expecta-
tions of the behavior of this system characterized by such

a small interfacial tension [10].
The three-dimensional, cubic-lattice model that we

have employed is one in which an oil or water or amphi-
phile molecule is present at every site. The Hamiltonian
that governs the system is

&=—gg g E J&P; P~ g—p gP, +%. , , (2)
a p (ij) a i

where P; =1 if the ith site is occupied by species a and is
zero otherwise. The index a takes the values a, b, and c,
representing water, oil, and amphiphile, respectively.
The first term is simply the sum of all distinct pair in-
teractions between particles. We assume nearest-
neighbor interactions only. Because of the constraint
that there must be a molecule of some kind in each cell,
there are only three independent nearest-neighbor pair
interactions, which we take to be J, K, and C defined by

E„+E~~—2E,~
—4J,

E„+E„—2E„=J+E+2C,
Egg+Ecc 2Egc J+K 2C .

The parameter

(3)

4C =2(Eb, E„)—(Ebb E—„)— (4)

b, =P,,—
—,'(P, +ijb) —3(E„+Eb, 2E„). — (6)

The third term in (1) distinguishes molecule c as an am-
phiphile in that the energy decreases by ~L

~

if it sits be-
tween an a and b and increases by the same amount if it
sits between two a or two b;

(papcpa+pbpcpb papcpb pbpcpa)
amp ~ i j k i j k i j k i j k

i,j,k

where the sum is over all triplets of adjacent sites in a
line, and L &0.

It is convenient to reformulate the three-component
mixture in the language of a spin-1 magnetic system. To
do so, we define the spin variable S, at the ith site via

P,-'=S; (, 1+S;)/2,

P,"=—S;( I —S; )/2,
P =1—S;

(8)

so that S;= 1, —1,0 corresponds to the presence at site i
of a molecule of type a, b, or c, respectively. In terms of
the spins, the Harniltonian of Eq. (2) takes the form

is related to the difference between the interaction of am-
phiphile and water and of amphiphile and oil. In a bal-
anced system C=0. The second term in Eq. (2) contains
the chemical potentials. Due to the constraint, there are
only two independent ones, which we take to be

H =
—,'(P, —

Pb )+3(E„Eb,), —

and
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g [JS,S +KS; S +C(S,S +S, S )]
&i j )
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—0 5

I I 1

Disorder line
Lifshitz line

to within a constant. The first sum is over all pairs, the
second over all sites, and the third over all groups of
three neighboring sites, which are in a line.

We have studied the model with parameters (all in
units of J) C=H=O, corresponding to a balanced sys-
tem, and K=0.5, and at temperature T=2.78. The
phase diagram as a function of b„the amphiphile chemi-
cal potential, and L, the strength of the amphiphilic in-
teraction, is shown in Fig. 1. For very weak amphiphiles
(~L

~
small), there is a region of oil-water coexistence for

small b„corresponding to low amphiphile concentration.
As the concentration increases, a continuous transition to
the disordered state is encountered. No lamellar phase
appears. For stronger amphiphiles ( ~L

~
larger), the tran-

sition to the disordered phase becomes first order, and a
lamellar phase is encountered at larger concentrations of
amphiphile. The disordered phase exists in the narrow
region between the line of three-phase coexistence and
the lamellar phase. At a suSciently large negative value,
L4 = —5.5+0.2, the four-phase point is encountered,
below which oil and water coexist with the lamellar
phase. We have examined the interfacial properties in
detail at the value L= —5. The mean-field phase dia-
gram at the same temperature is shown, for comparison,
in Fig. 2. One notes that the region in which the disor-

t ricr, /

t&'

L
—3

—l. 5 0—W

—'?

2. 5 lam

-3.5—

FIG. 2. Phase diagram of the same system as in Fig. 1, but as
obtained from mean-field theory. The disorder and Lifshitz
lines are shown with short and long dashes, respectively.

f, /ka T=—

dered phase intrudes between oil-water coexistence and
the lamellar phase is increased significantly. This is in
agreement with other studies [11,17].

In order to study the interfacial properties, we simulat-
ed systems that were 2L XL XL with periodic boundary
conditions in all directions. This geometry was chosen
because two interfaces will be present at oil-water coex-
istence, and several internal interfaces are expected in the
disordered phase. It was necessary to allow the system
adequate room to create these interfaces. As the inter-
face that is most energetically favored is the (111) inter-
face, the lattice is constructed so that the (111)planes are
perpendicular to the long axis of the system. In order
that finite-size efFects could be examined, we took L = 10,
12, 14, 16, and 20. We determined interfacial free ener-
gies using an extended version of the histogram method
of Binder [14]. Let 4 be some extensive quantity, whose
distribution function JV(4) has two distinct peaks of
height N,„attwo-phase coexistence. The method as-
sumes that the main contribution to the minimum N;„
of JV between the two peaks arises from configurations
with two interfaces separating one-phase regions. Hence
the interfacial tension is given by

'1 (10)2A" N...

FICx. 1. Phase diagram at T=2.78 in the plane of the amphi-
philic chemical potential, 6, and strength, L, as determined by
histo grams obtained from Monte Carlo simulation of a
20 X 10X 10 system. The transition from the disordered middle

phase (D) to coexisting oil- and water-rich phases (0-W) is
shown by a full line. It is second order down to a tricritical
point located between —1.5 )L ) —2.0, and first order beyond.
The approximate position of the tricritical point is shown with
an arrow. The line of these transitions ends at L = —5.5+0.2,
at which a transition to a lamellar phase {1am) is encountered.
The dashed line shows the approximate location of first-order
transitions from middle phase to lamellar phase, determined in
an 8 X 8 X 8 system.

where A is the interfacial area.
At three-phase coexistence, two-dimensional histo-

grams have to be analyzed. From it, all interfacial ten-
sions are obtained. Because in this kind of analysis, the
statistics of the histograms need to be reasonably good
even in regions in which the value of the distribution
function is small, we used a non-Boltzmann weighting
scheme [15,16] in part of the simulations: configurations
C are distributed according to

N()(C ) ~Ps„„,„„(C) WM, Q),
where M=+, S, /+, 1, Q=g;S; /g;1, Ps»„~,„„

is the
standard grand canonical distribution, and the additional
weighting factor 8'favors configurations with interfaces.
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constant. Obtaining o, , the tension between oil-rich
and water-rich phases, is complicated by the fact that
there are two interfaces separating these phases because
of the periodic boundary conditions, and the contribution
to the histogram from these configurations is, for small
systems sizes, not far from the peak in the histogram
representing the middle phase. The desired contribution
appears as a shoulder on the larger peak in JV(O, Q) in
Fig. 4(c). We calculate the interfacial tension by compar-
ing the area, N2;„under that shoulder to the height of
the peaks N2, „representing the oil or water phase in

JV2(M): cr, (L)a Ik~T= —(1/2V3L )ln($2;„I
E2,„).Note that the value of N2;„has a large uncer-
tainty due to the fact that we do not know how far the
shoulder extends into the middle phase peak. However,
since we are only interested in the logarithm of N,
the error in o, (L) is not large.

The results are listed in Table I. The values of the in-

terfacial tensions change dramatically as the system size
increases, and these changes affect the perceived wetting
properties. The simulations at L =10 and 12 indicate
that the middle phase does not wet the oil-water interface
[e, (L) &20,(L)], while in the larger samples it is

clearly seen that this is not the case. The system passes
from one behavior to the other at a characteristic length
L, =—12.

In order to relate this wetting behavior to the degree of
internal structure of the microemulsion, we calculated
correlation functions G (n) and structure functions 1 (q)
in the (111)direction in the disordered phase ( b = —6.9,
very close to three-phase coexistence).

tion length, and that this will also affect the amplitudes.
From the decay of the correlation function over the first
six lattice sites, one can extract a correlation length
g/a= 1+0.1. This yields the ratio 2vrg/d=0. 52. Thus
the system is between the disorder line, 2~(/d=0, and
the Lifshitz line, Zm.g/d = 1. At the latter, the peak in the
structure functions first moves off of zero wave vector.
The period of the oscillations turns out to be the same as
the characteristic length L mentioned earlier. This may
be coincidental. However, it suggests an intuitive picture
for the finite-size behavior of the interfacial tensions. On
a small scale, less than the oscillation length of the corre-
lation function, the oil and water regions appear to be
coexisting bulk phases separated by a single sheet of am-

phiphiles. However, on a larger scale, these regions are
seen to be oil and water domains of the middle phases,
which wet the interface.

In order to estimate the values of the interfacial ten-
sions in the limit of infinite sample size, a rigorous finite-
size scaling analysis would be desirable. Unfortunately,
finite-size scaling of interfacial tensions in three dimen-
sions is nontrivial even in simple systems, because finite-
size corrections proportional to L lnL and to L both

Li —3
i.=-1 6

G(n)=(SOS ), p=na(x+y+z), (12)

r(q) = y e'q'S,
v'3q= (x+y+z). (13)

Samples with dimensions L XL XL, L = 16, 32, and 40,
with the (100), (010), and (001) directions parallel to the
edges of the cube were used.

The results are shown in Figs. 5 and 6. The correlation
function clearly oscillates, and its period is approximately
d/a=12+2. Note that due to the periodic boundary
conditions, the oscillations are squeezed or dilated de-

pending on how well the system size matches the oscilla-

0.01

fg g y g @ g 8 SA R N Y

8 10 12 1(~ 18

0.005

TABLE I. Results for the interfacial tensions between oil and
middle phases, o., (L), and between oil and water phases,

o, (L) calculated in systems of size L XL XZL for various sys-

tem sizes. The value of the chemical potential of the amphi-

phile, 5, at three-phase coexistence, and the number of Monte
Carlo steps (MCS) per site is shown.

a'o., (L)Ik&T a'o. (L)IkgT

-0.005

—0. 01

K

f~
0

K X

X X

10
12
14
16
20

0.0064+0.001
0.0049+0.0006
0.0038+0.0006
0.0029+0.0006
0.0029+0.0006

0.0023+0.002
0.0046+0.002
0.0087+0.002
0.0092+0.002

—6.98
—6.99
—6.99
—6.995
—6.998

2. 5 X 10'
2.0X10'
4.0X 10
6.OX 10'
3.6X 10'

10 1(.-) " 8

FIG. 5. Correlation function G(n) in the (111)direction. A

portion of the function in (a) is shown magnified in (b) so that
the oscillations are more clearly seen.
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100
L=16 o

L=32 +

L=40

10

0. 1
0. 2 0. 3 0. 5 0.7

q/a

FIG. 6. Structure function I'(q) for q in the (111)direction.

turn out to be relevant [16,19). Obviously the quality of
our data is not good enough to allow for a three-
parameter fit, as would be required. On the other hand,
we found that the two values of a, (L ) for the largest
two values of L for which it was obtained, L =16, 20,
were essentially the same, as were the two values of
o, (L) for the two largest values of L, 14 and 16, for
which it was calculated. A similar analysis in the three-
dimensional Ising model showed that the values of the in-
terfacial tensions at L = 16 differed from their asymptotic
values by less than 20%. Therefore we believe that
cr, a /k&T=2. 9X10 +0.6X10 is a realistic esti-
mate for the interfacial tension between rniddle phase and
oil or water [20], and 9.2X10 +2X10 for the analo-
gous dimensionless free energy per unit area of a single
sheet of amphiphile separating bulk oil and water phases.
Because the middle phase wets the oil-water interface, the
macroscopic interfacial tension between oil and water is

just twice o, , i.e., o, a /ksT=5. 8X10 1.2X10
Without any amphiphile, the model reduces to a simple
three-dimensional Ising model, which, at T/J=2. 78, has
the interfacial tension o Ia /ks T=0.54 [21]. This is the
tension of a (100) interface, but as this temperature is well

above the roughening temperature the interfacial free en-

ergy is expected to depend only weakly on orientation.

Thus the amphiphile reduces the interfacial tension by a
factor of 93. This is consistent with the interface being
wetted by the middle phase as a comparison with the sys-
tem, water, octane, C4E, shows [3]. In that system, the
oil-water interfacial tension is reduced by a factor of 130,
and the interface is wetted by the middle phase. The
presence of a lamellar phase in our system, however, is
not consistent with the weak amphiphile C4EI which
produces no such phases.

It is not simple to compare our results for the interfa-
cial tension directly with those of mean-field theory, be-
cause the phase diagram is altered significantly by the
presence of fluctuations, as indicated by the comparison
of Figs. 1 and 2. Nonetheless, reductions in the interfa-
cial tension calculated within mean-field theory for the
same model in systems near the four-phase point have
ranged [13] from 30 to 100. It would appear, therefore,
that fluctuations are not responsible for the low tensions
calculated in model systems with short-range interac-
tions. We infer that this is also the case in physical sys-
tems. It could be argued that fluctuations offset the effect
of attractive long-range interactions that, according to
Eq. (1) and the argument following, tend to increase the
magnitude of the interfacial tension, and we cannot rule
this out.

What is clearer, however, is that fluctuations affect the
location of the wetting transition. As do long-range
forces, fluctuations drive the transition from the disorder
line, the location predicted by mean-field theory, to the
microemulsion side of it, the location where it is, in fact,
observed experimentally.

We have benefited from enlightening discussions with
Dan Kroll, Kurt Binder, and Gerhard Gompper, to
whom we extend our thanks. We are grateful to Profes-
sor Herbert Wagner for his hospitality at the Ludwig-
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