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Drive-response scenario of chaos synchronization in identical nonlinear systems
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We present an alternative way of achieving chaos synchronization in identical nonlinear systems with
one-way coupling. We specifically realize this method of chaos synchronization in the van der
Pol —DuSng oscillator and obtain a suitable Lyapunov function to establish the criterion for synchroni-
zation based on asymptotic stability. Synchronization of chaos is further demonstrated for the case of
two identical Duffing oscillators. We also investigate the possibility of secure communication of analog
signals in these systems.

PACS number(s): 05.45.+b

Recently, Pecora and Carroll have introduced the con-
cept of synchronized chaos [1,2] and the method of cas-
cading synchronization [3]. This idea has been in fact
successfully tested in a variety of nonlinear dynamical
systems, including Lorenz equations, the Rossler system,
hysteresis circuits, Chua s circuit, and so on [1—5]. Also,
synchronization of chaos has been investigated in two
mutually coupled identical nonlinear systems [4]. Here,
in this paper, we address the following question: Consid-
ering two identical chaotic systems, can one make a
chaotic trajectory of one system to synchronize with a
chaotic trajectory of the other system with a one-way
coupling element alone without requiring that the system
under study be divided into two subsystems' In such a
model, one system undergoing chaos acts as a master or
drive system, and drives the second identical system,
called the slave or response system. Here, the drive sys-
tem variables run independently of the response system
variables but the response system variables identically fol-
low their drive counterpart under the influence of drive
variables as time elapses. In addition, the response sys-
tem can have different sets of initial conditions than that
of the drive system. As time progresses, the two systems
achieve a perfect synchronization among their state vari-
ables and maintain it, depending upon the one-way cou-
pling strength. %e demonstrate this method of chaos
synchronization with the aid of two physically interesting
models, namely, the van der Pol —DuSng oscillator and
the Duffing oscillator systems explicitly. (We have tested
the eScacy of this method in a variety of other systems as
well. )

As a first case, we consider the third-order autonomous
van der Pol —Duf5ng oscillator system. The schematic
representation of two identical circuits with a homogene-
ous coupling element is shown in Fig. l. In this circuit,
the two van der Pol —Duffing oscillator systems, namely,
the drive and response (circuits within the broken line
boxes), are coupled by a linear resistor (R, ) and a buffer.
The buffer acts as a signal driving element that isolates
the drive system variables from the response system vari-
ables, thereby providing one-way coupling. In the ab-
sence of the buffer the system represents two identical os-
cillators coupled by a common resistor (R, ). In this case,

x = —v[x' —ax —y],
g=x g z

z=py;

(la)

(lb)

(lc)

response:

x'= —v[(x') —ax' —y']+vs(x —x'),
y'=x' —y' —z',

z =py

(ld)

(le)

where the overdot means d/dt. Here, x, y, z, x', y', and
z' correspond to the rescaled form of the voltage across
C&, the voltage across Cz, the current through I., the
voltage across C', , the voltage across C2, and the current
through the inductor L', respectively. a, v, and P are the
rescaled circuit parameters. Here, e(=R'/R, ) is the
coupling parameter. A numerical simulation of Eqs.
(la)-(lc) with the fixed values of v and a exhibits period-

DRIVE

I + +
IL

cz Cp Ci Vci
I

I

I

BUFFER RESPONSE
I

I

I—Cp
I /I~c, ~c~

~8
j I

Rc
, + ~'VJ'

I

1

aa
I

1

FIG. 1. Circuit realization of two identical van der
Pol —DuSng oscillators with one-way coupling.

both the drive and response systems mutually affect each
other. Also, each of the independent systems has a close
resemblance with that of Chua's circuit [4,6] in that the
piecewise linear element of the latter is presently replaced
by a cubic nonlinear element of the form iz=aV„+bV„
(a (0, b )0) [7].

By applying Kirchoff's laws to the various branches of
the circuit of Fig. 1, and after appropriate rescaling [7],
the following set of dynamical equations is obtained:

drive:
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=[—avx —vx'+vy ],
y+ ~4 yet

Zilt

i =y'

(2a}

(2b)

(2c}

where a =(x +xx '+ (x ')z) & 0 and e = (1+ a).
Recently, a criterion based on the asymptotic stability

has been developed as a necessary and sufhcient condition
for the synchronization of periodic and chaotic systems
[2,8). One of the practical ways to establish this asymp-
totic stability is to find an appropriate Lyapunov function
[8]. Now by considering the Lyapunov function of the
form E=(P/2)x' +(vP/2)y' +(v/2)z', then
E= —vPax ' —vP(x ' —y

'
) & 0 (P, v & 0, a & 0}.

If E is to vanish identically for t & t i, then x ' and y
'

must be zero for all t & ti. From (2b) this requires that
y'=0 for all t & t& and so z' must also be equal to zero
[9] for all t & t, Thus E v. anishes identically only at the
origin. Therefore, Eqs. (ld)-(lf) are globally asymptoti-
cally stable for the specific value s=(1+a}. Thus both
the drive [Eqs. (la) —(lc)] and response [Eqs. (ld) —(lf}]
systems eventually synchronize for all t & t] for the above
choice of coupling parameter. A synchronized chaotic
behavior of Eq. (1) between x and x' variables for
e= 1+a, a=0.35, v=100, and P=300 is shown in Fig.
2(b). The initial values are fixed as x (t =0)=x (0)=0.1,
y(0)=0. 1, z(0)=0.2, x'(0)=0. 15, y'(0)=0. 2, and
z'(0) =0.3. Furthermore, our detailed numerical simula-
tion results seem to show that the system (1) eventually
synchronizes for all values of c. &0.8. Presently, the
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FIG. 2. (a) Chaotic attractor in the (x-y) plane for a=0.35,
v=100, P=300. (b) Synchronization of chaos in the (x-x')
plane for a=1+a.

doubling bifurcations leading to chaos as the parameter P
is decreased from a large value [7]. If the parameters are
fixed as a=0.35, v=100, and P=300, one observes a
double-band chaotic attractor as shown in Fig. 2(a). Now

let us denote the difference between the unprimed and

primed quantities by "starring" them. Choosing a
specific coupling s=(1+a) and by assigning

(x —x'}=x ', (y —y'} =y', and (z —z') =z', the
differential equations for the difference system of Eq. (1)
are given as

x ' =—v[(x' —(x' }')—ax ' —y *]—vsx *,
= —v[(x +xx'+(x') )x' —ax' —y'] —vex',

x' = —v[(x') —a(x') —y']+ vs(r(t) —(x') ),
y'=x' —y' —z',
i'=Py' .

(1d')

(le')

By assuming that the power level of the information
bearing signal s (t) is significantly lower than that of the
x(t) signal and the solution x'(t)=[x'(t) x(t)] is-
significantly small with respect to s(t), we see that s(t)
can be recovered from the response system as [10-13]

s(t) =r(t) x'(t) =x(—t)+s(t) x'(t) =s '—(t) . (3)

We have numerically solved the system of equations
(la)-(lc) and (ld') —(lf') simultaneously with parameters
a=0.35, v=100, P=300, and a=1.0. The information
bearing signal is assumed to be of a single-tone,
amplitude modulated wav-e, or phase-modulated wave.
For example, with the form s(t)=F sin(cot) (single tone,
F=0.02, to= 1.0}, the information signal s'(t) is
recovered at the response system by adopting Eq. (3).
Figure 3 depicts the power spectra of the signals s(t), the
actual transmitted signal r(t) (=s(t)+x(t}), and the
recovered signal s'(t). As noted in Ref. [12], the com-
ponent of signal frequency s(t) is not discernible or
detectable in Fig. 3(b) because of the chaotic (broadband)
nature of the actual transmitted signal r (t). For the oth-
er signals we have also performed a similar analysis, and
the detailed results will be reported separately. In view of
the typical broadband spectra, the chaotic signal x (t) be-
comes an ideal candidate for spread-spectrum communi-
cation applications [10—12].

The applicability of this method of chaos synchroniza-
tion is not restricted to third-order autonomous systems
alone, but can be equally mell used for second-order

Lyapunov function E for the specific value of E=(1+a)
alone is given. However, it should be possible to choose
an appropriate Lyapunov function E for other sets of c
values, also a question that we have not pursued further.

Interestingly, due to the simplicity of this method of
chaos synchronization, namely, two identical nonlinear
systems with one-way coupling, it can be easily imple-
mented with minimal effort. In fact we have tested the
applicability of the method numerically for a wide variety
of third-order nonlinear systems including the familiar
Chua s circuit, Fitzhugh-Nagumo oscillator, modified
van der Pol oscillator, etc.

In the following, we focus on the use of a synchroniz-
ing chaotic signal, in which the above synchronized set of
chaotic van der Pol-DuSng oscillators can be effectively
utilized as a vehicle to transmit analog signals in the con-
text of secure communications. A method of transmit-
ting signals in a secure way through a cascaded chaos
synchronization approach has been recently reported
[10-13]. For the subsequent numerical analysis, we use
the x (t) signal of the drive system [Eqs. (la)-(lc)] as a
noiselike "masking signal" and s (t) as an information sig-
nal to be transmitted in a potentially secure way. Now
let us consider the actual transmitted signal
r (t) =x (t)+s (t). Then the response system [Eqs.
(ld) —(1f}]is now modified as
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nonautonomous nonlinear systems as well. To illustrate
this, we consider here the familiar Duffing oscillator. The
chaotic dynamics of this system has been extensively in-
vestigated [14]. Following the above method, we consid-
er the drive and response systems, for the Duffing oscilla-
tor as

611ve:

, V t

X =P

y = —
py x+—I' cos(cot);

(4a)

(4b)

-7
—p ~ 5 4-5 —4 5

response:

x'= y'+ e( x—x'),
y'= py' —(x') —+I' cos(cot),

(4c)

(4d)

FIG. 4. (a} Chaotic attractor in (x-y) plane for p =0.05,
F =7.5, and co=1.0. (b) Synchronization of chaos in the (x-x'}
plane for @=1.0.

where p, F, and e are parameters. c, is the one-way cou-
pling parameter. When a=0, Eq. (4) represents two in-
dependent identical DufBng oscillators. When c &0 Eqs.
(4a) and (4b) act as the drive system and Eqs. (4c) and (4d)
act as the response system. Figure (4a) shows the chaotic
attractor for p =0.05, F =7.5, co=1.0, and c.=1.0. The
initial conditions are fixed as x (0}=0.2, y (0)=0.1,
x'(0) =0.1, and y'(0) =0.2. Figure 4(b) shows the synch-
ronization of chaotic behavior that exists between x and

x'=y'+e(r (t) x'), —

y'= —py' —(x') +F cos(cot) .

(4c')

(4d')

x' for e =1.0. By following the approach of transmitting
analog signals as in the case of the van der Pol-DufBng
(VPD} oscillator, we can utilize the Duffing oscillator sys-
tem (4) also to transmit analog signals. Then the
response system Eqs. (4c) and (4d) is now modified as

(a) s(t) (a) s(t)

Cg
CL

0
(c) s'(t ) (c)

-25
0

!
A i~ ~

~ )1 +~ggg ms~~~~

FIG. 3. Power spectra of the signals (a) s(t)=Fsin(cot)
(I' =0.02, m=1.0, g=1.0); (b) r(t); (c) s'(t}.

FIG. 5. Power spectra of the signals (a) s(t}=Fsin(At}
(F=0.02, A=0.2, @=1.0); (1) r(t}; (c) s'(t).
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Here the x (t} signal from Eqs. (4a) and (4b) acts as the
masking signal and r(t)=x(t)+s(t). By assuming that
the information signal of the form s (t)=f sin(Qt) (single
tone, f=0.02, 0=0.2), Fig. 5 shows the power spectra
of the information signal s (t), the actual transmitted sig-
nal r (t), and the recovered signal s'(t). Also, for the ex-

perimental feasibility of investigating the secure transmis-
sion of analog signals, a suitable analog simulation circuit
for the DufBng oscillator can be employed. %e have test-
ed this method of chaos synchronization in a wide variety
of second-order nonautonomous nonlinear systems also
including the forced LCR circuit equations, van der Pol
oscillator, second-order nonautonomous VPD oscillator.

In summary, we have discussed an alternative way of
investigating chaos synchronization in identical van der
Pol-Du5ng and DuIng oscillators with a one-way cou-
pling element. A criterion for synchronization of chaos
based on the asymptotic stability analysis for the case of
the van der Pol —DuSng oscillator has been discussed. In
addition, we demonstrated the possibility of sending sig-
nals in a secure way with this kind of identical chaotic
system with a one-way coupling element.
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port from the Department of Atomic Energy, Govern-
ment of India.
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