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Lévy statistics in a Hamiltonian system
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Enhanced diffusion in a Hamiltonian system is studied in terms of the continuous-time random walk
formulation for Lévy walks. The previous Lévy-walk scheme is extended (i) to include interruptions by
periods of temporal localization and (ii) to describe motion in two dimensions. We analyze a case of con-
servative motion in a two-dimensional periodic potential. Numerical calculations of the mean-squared
displacements and the propagators for intermediate energies are consistent with the Lévy-walk descrip-

tion.
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Transport in Hamiltonian systems has been of much
interest as it is one of the fundamental processes in many
nonlinear conservative systems, especially since it has
been noticed that trajectories in such systems do not
necessarily follow a simple Gaussian behavior, but may
rather obey different statistical rules [1-5]. One of the
problems which has been actively studied is motion due
to a periodic two-dimensional potential, mainly because it
can model, among other relaxations, atom diffusion on a
surface in the classical limit [6,7]. In the latter case both
molecular dynamics calculations and experiments have
pointed towards the existence of long flights, or correlat-
ed walks. Although various models have been proposed
to explain these correlations, the nature of this diffusional
process is still not completely understood [8].

Trajectories with long flights on all scales are by now
common in many nonlinear systems and have been shown
to lead to anomalous diffusion [2-5, 9-11]. Examples for
anomalous diffusion in dynamical systems cover both dis-
sipative and Hamiltonian systems. One finds diffusion
anomalies in numerical studies in one-dimensional maps
[5,9], in the Chirikov-Taylor standard map [1,11-14], in
stochastic webs [4], and in experiments on tracer
diffusion in flow systems [15-17], where enhanced
diffusion has been recently directly observed [17]. Such
anomalies have been analyzed in terms of a new statisti-
cal description based on Lévy stable distributions, which
generalizes the central limit theory [18,19].

In this paper we study the classical motion of a particle
subject to the potential surface

V(x,y)=A +B(cosx +cosy )+ C cosx cosy , (1)

where the third term is responsible for the nonintegrabili-
ty of the corresponding Hamiltonian. This problem has
been studied by Geisel, Zacherl, and Radons (GZR) [3]
and by Chernikov et al. [4] and has been shown to exhib-
it both regular and enhanced diffusion, namely, mean-
squared displacements which grow as (r%(t))~t°,
1 =a<2. Here we show that this problem also belongs to
the class of Lévy walks.
We begin with the equations of motion of the particle:
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9,x=p, , 9,p,=(B +C cosy)sinx ,
(2)
9,y=p, , 8,p,=(B+C cosx)siny ,

which we studied numerically. In the numerical calcula-
tions, instead of the ordinary differential equations given
in Eq. (2), we used second order differential equations and
applied a multistep, Stormer type, predictor-corrector
formula of order 11 [20]. With this method and with an
integration step of Az =0.01, the energy was conserved as
|AE /E| 510719 after 10 integration steps.

Our numerical experiments indicate that the accuracy
provided by this method is appropriate for the energy
range 3 S E S4; however, for energies E S3 and E X 4 the
lengths of laminar motion are restricted by the accuracy
so that a power law for the mean free paths is observed
only on scales of ¢ $10° and a crossover for the mean-
square displacement to regular diffusion takes place at
longer times. Similar restrictions on the lengths of lami-
nar phases are expected to arise when noise is added to
the equations of motion, which is required when more
realistic systems have to be modeled. Depending on the
strength of the noise, the lengths of the laminar phases
are limited and, consequently, regular Brownian motion
is expected at long times. In this respect the finite com-
putation accuracy and the noise have the same effect on
the motion.

We investigated for different energies E the time
dependence of the moments of displacement, the propa-
gator, the probability distribution of the mean free paths,
and related quantities. The numerical results demon-
strate consistently that there is a range of parameters in
the problem for which enhanced diffusion is observed.
Here we concentrate on the set of parameters studied
previously by GZR [3]: 4 =2.5, B=1.5, and C =0.5.
GZR reported on enhanced diffusion for energies
2SE=4.5 and unraveled the characteristic island-
around-islands structure in the phase space. Further-
more, GZR studied the distribution of the mean free
paths and the power spectrum of the time-dependent ve-
locities and proposed an enhanced diffusion behavior
characterized by an energy-dependent exponent. Part of
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these results were also reported by Chernikov et al. [4].
Our study recovers these findings on enhanced diffusion
and establishes that the Lévy-walk approach is appropri-
ate.

In Fig. 1 we present a typical trajectory obtained from
the numerical solution of the equations of motion for the
energy E =4. We notice the self-similar nature of the
trajectory with laminar phases on all scales. The inset
supports this impression and also shows that on the scale
of a unit cell the trajectory follows a wiggly curve.

Lévy distributions have been introduced in order to de-
scribe the enhanced diffusion on the basis of broad distri-
butions of single motion events [5]. These distributions
are consistent with the self-similar properties of the tra-
jectories. Lévy distributions L, (x), however, exhibit
diverging moments for y <2, a fact which makes the
description of anomalous diffusion in terms of stable laws
problematic. Therefore, space-time correlations were
proposed by, for instance, assuming motion at constant
velocity. The latter assumption can be formulated in
terms of a & function for the space-time correlation in the
probability distribution of the motion events [21,22].

In our statistical analysis we first discuss the
continuous-time random walk (CTRW) framework of the
Lévy walk process in one dimension. We then extend the
original derivation to include (i) the case when temporary
spatial localization takes place intermittently and (ii) the
case of motion in two dimensions.

We briefly outline the main ingredients in the Lévy-
walk process. We choose the velocity picture in which
the particle moves continuously at a constant velocity
and changes directions at random [5]. Let v (¢) denote a
stochastic time-dependent function such that the motion
takes place at a constant velocity for some time after
which the direction and the length of the next motion
event is chosen randomly but at the same velocity. The
motion events are uncorrelated and the duration times of
the motion events follow a probability distribution (¢).
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FIG. 1. A typical two-dimensional trajectory r(¢) resulting
from the equations of motion for E =4 after time ¢t =10°. The
inset shows a part of the trajectory on an enlarged scale to
strengthen the impression of the self-similarity.
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This idealized picture of the motion defines the proba-
bilistic description and has been introduced within the
CTRW approach [5,21,22]. To account for the space-
time correlation mentioned above, the approach is based
on a space-time coupled memory function ¥(r,t), the
probability to move a distance r in time ¢ in a single
motion event and to stop at r for initiating a new motion
event at random:

Yr,0)=18(|rl —0)y(1) , (3)

where length and time are given in dimensionless units.
In our analysis we use the power law [3,5,9]

Y~ 7 y>0. 4)

An equivalent approach to ¥(r,t) would be to rewrite ex-
pression (3) in terms of the & function and the distribu-
tion of mean free path ¢(r) [5]. It is the broadness in the
distributions ¥(¢) and ¥(r) which is responsible for the
anomalous behavior.

We further introduce W¥(r,t), the probability density to
move a distance 7 in time ¢ in a single motion event and
not necessarily stop at r:

\I’(r,t)=%8(|r|—t)ftwdﬂp(r) . (5)

¥(r,t) and W(r,t) are the relevant quantities for the
description of the motion. The motion consists of a se-
quence of these events and the propagator P(r,t) can be
cast in the following way:

P(r,t)=¥(r,1)
° ’ Lo (Y I Y]
+ [ 7 ar [drgir e = —t)
+ (©)

The first term denotes the probability to reach location r
in time ¢ in a single motion event. The second term is the
probability to reach r at time ¢ with one stop and so on to
include all combinations of motion events. In the
Fourier-Laplace space (r —k,t —u), the convolution in-
tegrals simplify and the series in Eq. (6) can be given in a
closed form as [5]

Plk,u)=W(k,u)/[1—¢(k,u)] . ©)

Here and in what follows we make use of the convention
that the variables denote in which space (Fourier and/or
Laplace), or for which spatial dimension, the function is
thought to hold.

Based on the propagator, the calculation of the mean-
squared displacement is straightforward:

(r¥u))=—3P(k,u)ly = > @)

and depending on ¥, ballistic-type, intermediate-
enhanced, and regular diffusion are obtained [5]:

t?, 0<y<l1
(re))~ {377, 1<y<2 9)
t, 2<y.

For the intermediate-enhanced diffusion regime 1<y <2
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relevant to the behavior discussed in this paper, the prop-
agator is well represented by the Lévy stable distribution

(5]

t7VTL(E), r<t

P(r,t)~ 0 (10)

, r>t,

where & is the scaling variable £=cr /t!/7.

We now extend this derivation to the case where the
motion is interrupted by phases of spatial localization,
which means that the particle does not move at a con-
stant velocity at all times but that the phases of laminar
motion are intermittently interrupted by periods of no
motion on the scale of typically one unit cell. These lo-
calization periods result from multiple scattering of the

P(r,0=W(r,0+ [ Yr,t)Ble —t')dt’
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particle within a unit cell. A similar phenomenon has
been proposed by Solomon, Weeks, and Swinney for
tracer diffusion in a flow system [17]. We denote the
probability distribution of the localization times by (¢)
and consider the power-law behavior

Pt)~e 771, (1n
We also introduce
o= [ "driin), (12)

the probability distribution for not having moved until
time ¢. For the description of the propagator we assume
that the observation starts with an event of motion at
constant velocity and we can thus write

+ [ ar fla [ a0 ==+ (13)

where the first term denotes the probability to reach location r in time ¢ in a single motion event. The second term is
the probability to reach r at an earlier time and to stay localized until time ¢. The third term is the probability to reach
r in time t in two motion events interrupted by one period of localization. The sum has to be extended over all possible
combinations of motion events interrupted by periods of localization. Taking the Fourier-Laplace transform and sum-
ming over even and odd terms independently, we obtain

P(k,u)=[W(k,u)+W(u)p(k,u)]/[1—k,u)P(u)] . (14)

A similar expression is obtained when the walks are initiated by a localization event followed by motion at constant ve-
locity. Furthermore, for the analysis of iterated maps in terms of CTRW’s we have demonstrated that stationary condi-
tions are an important issue. The consideration of stationary conditions is beyond the scope of this paper; details will
be given elsewhere [23]. For the derivation of the mean-squared displacement we make use of Eq. (8) which leads to

(riu)) = —[1—(k,u)P(u)]) ' [82W(k,u)+ P (u)dl Yl k,u)]

—[W(k,u)+W(u)pk,u) ][ 1— ok, u)P(u)] ™ 2wt wik,u)l, =g - (15)

From this expression we obtain for the dominant term at
long times:

27T 1<y <2, <1

2 ~
)~ o= , l<y<2,7>1.

(16)
Equation (16) indicates that depending on the two ex-
ponents ¥ and ¥, the motion shows enhanced, regular, or
dispersive behavior. It should be noted that for 7 > 1, for
which #(t) in Eq. (11) has a finite first moment, the
enhancement reduces to the result obtained by the origi-
nal Lévy-walk scheme. A different time dependence for
the combined laminar-localized case has been proposed
by Zaslavsky et al. [24].

We now present a schematic derivation of the propaga-
tor for motion in two dimensions. According to the
structure of the potential, Eq. (1), we assume that the
motion takes place exclusively parallel to the axes. Again
we consider motion at a constant velocity and we assume
that the previously discussed periods of localization are
absent which would be justified for example for values
¥ > 1. For this motion we formulate the probability dis-

tribution for a single motion even analogously to Eq. (3)
as

Y(r, 1)~ L[8(»)8( x| — 1)+ 8(x)8([y | —)(r) ,  (17)

where r=(x,y). In Fourier-Laplace space this expression
is cast as

Wk, u)=19(k,,u)+ 31k, u) , (18)
and the probability distribution in analogy to Eq. (4) is
V(k,u)=3V(k,,u)+3¥(k,,u) . (19)

For the small (k,u) expansion we obtain for the
intermediate-enhanced diffusion case the asymptotic
behavior

P(r,t)=P(x,t/2)P(y,t/2), 1<y<2 (20

where P(x,t) and P(y,t) correspond to the one-
dimensional problem given in Eq. (10). Thus we obtain

tT2YL (6L, (), |x|+|yl <t

Pt~ o, |x|+Iyl>t,

(21
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FIG. 2. Typical realizations of the one-dimensional trajecto-
ry x(t)+y(z) for energies as indicated.

where &,m are the two scaling variables £=cx /t!?,

n=cy/t"Y. From the symmetry in Eq. (21) it is quite
natural to consider for the purpose of presentation the
projection of the walk onto the axes x or y so that the
one-dimensional case is recovered. We apply

P(r,0)=18(r —y) [ P(r,0)dx +18(r —x) [ P(r,t)dy
~t7VTL (&), r<t, 1<y<2 (22)

where the scaling variable is E=cr /t!/?, as in Eq. (10).
As a consequence of the fact that the motion takes
place exclusively along the x or y axes, we may represent
the two-dimensional trajectories r(z) as a one-dimensional
trajectory x (¢)+y (t) as a function of time. In Fig. 2 the
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FIG. 3. Relevant distributions of individual motion events
calculated from a trajectory of length t =10% for the energy
E =4. Plotted are the distribution ¥(¢) of times of laminar
motion and the distribution y(r) of mean free path as solid lines.
The distribution #(¢) of times of localization is given by the
dot-dashed line. The dashed line indicates the slope of —2.25
corresponding to the exponent y =1.25.
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FIG. 4. The time evolution of the moments of the displace-
ment calculated from a trajectory of length ¢t =10® for the ener-
gy E =4. The ratios of the mean-squared displacement and the
square of the mean absolute value over time ¢ are given by solid
lines. For ¥ =1.25 the upper dashed line indicates the slope of
2—y=0.75, and the lower dashed line, the slope of
(2/7)—1=0.6, respectively.

trajectory x(t)+y(t) is displayed for energies E =2.5
and 4. For E =2.5 we notice that phases of laminar
motion are interrupted by periods of localization. For
E =4 these periods ar hardly visible and a pattern is ob-
served which is very similar to the one found for one-
dimensional iterated maps [5].

In Fig. 3 the distribution ¥(r) of mean free paths and
the probability distribution ¥(z) of laminar phases are
presented. At longer times the two probabilities follow
approximately the same power law. This indicates that
the 8-function correlation introduced in Eq. (3) is ap-

FIG. 5. The propagator P(r,t) calculated from a trajectory
of length ¢t =10% for the energy E =4 according to Eq. (22).
Plotted as solid lines are P(r,?) in the scaling representation for
times ¢ as indicated and for the scaling variable £=r /¢!’ with
¥ =1.25. The bell shaped dashed line is the stable law cL,(cx)
with ¢ adjusted to the experimental results. The vertical dashed
lines at r =*uvt denote the probabilities of motion at constant
velocity v in a single laminar phase.
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propriate. The exponent y =1.25 was obtained, a value
found previously by GZR [3]. Shown in this figure is also
¥(t), the distribution of localization times. For E =4 the
distribution ¥(¢) drops quickly for times ¢ >10%. With
decreasing energy E the distribution 1(¢) gets broader
which is consistent with the energy-dependent periods of
no motion in Fig. 2. However, for longer times the ex-
ponent ¥ was always larger than 1, 7 > 1.

In Fig. 4 the time evolution of the displacements is
shown. Plotted are the absolute value as {|r(¢)| )2/t and
the mean-squared displacement as (r%(t))/t for E =4.
The denominator ¢ was chosen to strengthen the impres-
sion of the enhancement in the diffusion relative to the
simple Brownian motion. We notice a small but
significant difference between the behaviors of the two
quantities. The predicted power-law behaviors are
(r¥(t)) ~t*7, according to Eq. (16),and (|r(2)| )2~t%"7,
according to the scaling property of the underlying Lévy
process [24,25]. With the exponent y =1.25, both quan-
tities follow reasonably the assumed power-law behavior.

Finally, in Fig. 5 we give the results for the propagator
corresponding to Eq. (19) in the scaling representation.
For y =1.25 the scaling is obeyed on progressively larger
scales with increasing time. Furthermore, the calculated
P(r,t) follows reasonably the stable law. The peaks at
the center and at the outermost wings result primarily
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from stationary condition effects, which were analyzed in
detail for one-dimensional maps [5,26]. The theoretical
locations and probabilities of the peaks in the wings were
obtained from the analysis in Ref. [26] and from the step
units used in the histograms.

To summarize, our numerical analyses indicate that
the Lévy-walk model based on motion at a constant ve-
locity is very appropriate and that the power law as-
sumed for the probability distributions characterizing
single motion events works reasonably well. The corre-
sponding exponent ¥ was observed to vary only in a small
range 1 <y < 1.3 for energies 2.5 <E <4.5. We conclude
that the Lévy-walk approach provides a promising
method for the description of anomalous transport
behavior in dynamical systems.
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