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A simple minimum energy dissipation model has been used to simulate the distribution of rivers and

river basins in a region with a square boundary. The cumulative distribution of basin areas N( A & A )

was found to have a power law form X( A & A *)—A ' "with an exponent (~—1) that is close to the

value of
2

obtained from a simple scaling theory. The boundaries of the river basins were found to be

self-similar with a fractal dimension of about 1.10. In many respects (distribution of stream internal link

lengths, distribution of energy dissipation, basin boundary geometry, etc.) the results obtained from this

model are similar to data obtained from natural channel networks. In other respects significant

differences remain. In particular, the main channels of the individual rivers are much straighter than

those of real rivers.

PACS number(s): 64.60.Ht, 92.40.Fb, 92.40.Cy, 02.60.Pn

I. INTRODUCI'1ON

River networks have been of interest to both geologist
and physicist for many years. River networks exhibit a
rich scaling structure, and the efFects of this scaling struc-
ture on the behavior (hydrological response) are of con-
siderable practical importance both in terms of present
day phenomena (flooding and drought) and past events
(the formation of oil reservoirs, for example). Rivers
have frequently been cited as familiar examples of natural
fractal structures [1], but the nature of the scaling
geometry and the manner in which it is formed and
evolves remain poorly understood. A variety of models
has been studied including simple statistical models [2—8]
and erosion models [9,10]. Rinaldo et al. [11]have pro-
posed a model to describe the structure of river networks
based on a minimum energy dissipation principle. Given
the position of an outlet and the outer boundary of a
basin, the structure of the minimum energy dissipation
river network that drains the basin is obtained. It was
demonstrated by Rinaldo et al. [11]that the structure of
the river networks obtained from this model is similar in
many respects to that of natural river networks obtained
from digital elevation maps. For example, the structural
characteristics of the minimum energy dissipation
drainage network, such as Horton's law of stream
lengths, the stream bifurcation ratio, and the multifractal
spectrum of the width function, were found to be similar
to those of natural drainage networks. The model
presented here is based on that of Rinaldo et al. We
demonstrate that as a consequence of the minimum ener-

gy dissipation principle, the drainage area self-organizes
into a spatial structure, which has a power law distribu-
tion of drainage basin areas, self-similar fractal basin
boundaries, and a self-similar network structure.

The idea that patterns formed by natura1 process are
organized to minimize energy consumption is not new. A
number of examples were collected by Stevens [12] in or-
der to illustrate this idea. Murray [13]derived a relation-

ship between the radius of a parent blood vessel and the
radii of its daughter vessels by minimizing the power
needed to maintain the blood flow. In this case the total
power is the sum of the power required to overcome fric-
tion as described by Poiseuille s law and the metabolic en-

ergy involved in the maintenance of the blood volume
and vessel tissue. Arterial branching and junctions have
also been studied in the same context by Zamir and Bi-
gelow [14,15] and Woldenberg and Horsfield [16]. Based
on equilibrium thermodynamic considerations, Leopold
and Langbein [3] studied landscape evolution by maxim-
izing the "entropy" of the landscape. Yang [17] and Ho-
ward [18] also used the concept of minimum work in
their studies of the development of stream networks. Re-
cent studies indicate that the spatial distribution of earth-
quakes also tends to minimize the stress potential on the
earth [19].

The work of Rinaldo et al. [11] on optimized river
channel networks is based on three assumptions that
were postulated by Rodriguez-Iturbe et al. [20]. These
three postulates are the following:

(i) Equal energy dissipation per unit area of channel
anywhere in the network.

(ii) Minimum energy expenditure in any link of the
river network.

(iii) Minimum total energy dissipation in the whole net-
work.

The first postulate is equivalent to the statement that the
velocity of water flow is constant throughout the network
[20], which was confirmed by field data [21]. The second
postulate explains [20] other relationships observed in na-
ture [22], that is, the depth d and the width w of channels
scale with flow Q as d —Q and w —Q . Following
Rodriguez-Iturbe et al. [20], it can be shown from the
first and second postulates that the optimized energy dis-
sipation at any link is proportional to the product of the
square root of the flow in that link and the length of that
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link. If P; is the energy dissipation in link i, Q; is the
mean annual How in link i, and L, is the link length, then

P; =aQ,O L; T. he third postulate requires that the total
energy dissipation of the whole network g; P;
=g, a.Q, L; be the smallest possible. This postulate is a

global optimum requirement for the whole drainage
channel network.

In the model of Rinaldo et al. [11], the boundary of
the lattice used in the simulation was also the boundary
of a single river network. The strong dependence of the
river network's structure on its boundary has been shown
by Rigon et al. [23]. In this work, the third postulate is
extended from minimum energy dissipation of the whole
river network in a single drainage basin to minimum en-

ergy dissipation of all river basins that cover a drainage
area. Thus the boundary of each basin is determined in a
natural way by the competition and cooperation between
the basins that share common boundaries. In the model
described here the lattice boundary is used as the bound-
ary for the drainage area and the rivers are allowed to
exit at any position on this boundary. The model might
be further improved by using a more realistic, possibly
fractal, boundary for the entire system.

A river basin BJ is defined as the area drained by a sin-

gle river network that leads to a single outlet on the
boundary of the area A. Suppose A is covered by the set
of basin 8J, j=1,2, 3, . . . , n. The model requires that

g (g;P; ) have a minimum value, where the index i sums
over all the links that belong to the basin BJ and the in-

dex j sums from 1 to n. For any particular partition of
the area A into n river basins (defined by the basin boun-
daries) a minimum value for g (g,P;) also implies that

g;P; in each basin should be the minimum. This is ex-
actly the case in the model of Rinaldo et al. With a
known boundary, the structure of the river network is
determined by minimizing the energy dissipation g;P;
inside the basin defined by the given boundary.

In other words, in the model of Rinaldo et al. , n =1
and B

&

= A, while in the model presented here, the parti-
tion into n basins is also a result of the optimized
(minimum) energy dissipation for the whole system. The
boundary of each basin 8. is obtained by requiring that
the structure of all the river basins draining the area A

and the structure of each channel network inside each
basin must be organized in such a way that Q~B = A and

gt(g;P; ) has the smallest possible value.

II. COMPUTER MODELS

In the computer simulation a triangular lattice (grid) is
superimposed on the area A. The size of the grid is
256X256. An open boundary condition has been used.
Each site on the boundary of the lattice has a possibility
of being a channel network outlet. The lattice can be re-
garded as a large island or continent surrounded by the
sea and the river networks on the island transport the
precipitation from the island to the sea. It is assumed
that for any site i on the lattice, the mean annual Sow on
that site Q; can be expressed as Q; =g; Q; + 1. Here i ' is
a nearest neighbor site of i from which there is a flow Q;
into site i The addi. tion of a unit fiow to g;.Q;
represents the precipitation on the ith site. The precipi-

tation is assumed to be uniform over the entire area A.
We assume no evaporation and no subsurface transport.

The optimization method used in this study is simulat-
ed annealing [24]. It was first introduced by Kirkpatrick,
Gelatt, and Vecchi in 1983. Iff (x) is the energy dissipa-
tion function of the system and x is a vector in the
configuration space X of that system, it can be optimized
by assigning a probability [25] p for changing from one
configuration x to a randomly selected "neighbor"
configuration x'. The probability is 1 when f(x') &f(x)
and P =exp[ —[f(x')—f(x)]/T] when f(x') & f(x). T
is a parameter that is controlled during the optimization
procedure. In some applications T can be thought of as
the temperature during the process of simulated anneal-
ing. For the river network model f(x)=g (g, P, ) where
the energy dissipation P,. is summed over all the sites that
belong to the basin B~, the index j sums from 1 to n

where n is the total number of river basins draining the
area A. A neighbor configuration x' of x is defined as a
configuration that differs from x in the direction of flow
in only a single link on the lattice, with the constraint
that loops are not allowed in the channel network.

The algorithm can be summarized as follows:
(i) An initial configuration is generated by performing a

branched Eden growth [26] simulation from the whole
boundary of the lattice until the lattice is filled. This gen-
erates a loopless initial configuration that covers the en-
tire lattice and in which all the "rivers" drain to the bor-
der of the lattice.

(ii) The fiow on each site is calculated according to the
formula Q;=g,'Q,'+1, where i' is a neighbor site of i
from which there is a fiow Q,' into site i. Thus the total
energy dissipation P of A is obtained by calculating g; P;,
where the index i sums over all the sites on the lattice.

(iii) One site in the lattice is randomly selected and a
change in the direction of the 6ow from that site is also
randomly selected.

(iv) The new configuration is checked to see if it con-
tains any loops in the channel network. If it does, the
new configuration is rejected and step (iii) is repeated.

(v) The fiow on each site is recalculated for the new
"proposed" configuration, and the total energy dissipa-
tion P' of that configuration is evaluated.

(vi) If P' & P, then the new configuration is accepted. If
P' &P, the probability P =exp[ (P' P)—/T] is calculat-—
ed. A random number uniformly distributed over the
range 0-1 is generated and compared with p. If this ran-
dom number is less than p, the new configuration is ac-
cepted. Otherwise, the system is returned to the "old"
configuration.

(vii) Steps (iii) —(vi) are repeated many times and the
temperature T is lowered gradually, according a "cooling
schedule. "

The cooling schedule used here is similar to the ex-
ponential temperature reduction schedule suggested by
Kirkpatrick, Gelatt, and Vecchi [24]. The temperature
T(n) during the nth stage is related to the initial temper-
ature T(0) by T(n) =a"T(0}with 0 & a & l. Each stage
contains A steps, during which an attempt is made to
change the network configurations. The temperature
only changes after each stage (A steps) has been complet-
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ed. In the simulations presented here, T(0) is set to
12800, a is chosen as 0.982, and A is set to 65536
(256X 256). In the simulations the annealing process was
stopped when T(n ) became less than 0.0004. Each run of
the simulation takes approximately 50 h computational
time (user time) on a Hewlett Packard 700 computer
workstation. The simulated annealing procedure has
been repeated more than ten times with different initial
configurations. Here we report the result obtained from
the run that gave the smallest energy dissipation. The re-
sults obtained from the other runs were indistinguishable
from those reported for all of the statistical properties
that were measured.

The total energy dissipation is monitored during the
simulated annealing procedure. In Fig. 1(a) the total en-
ergy dissipation in the whole area is plotted as a function
of the number of "annealing" stages. Figure 1(b) shows
the dependence of the total energy dissipation on the
temperature T. The small window in Fig. 1(b) shows, in
more detail, the dependence of the total energy dissipa-
tion on T at the lower temperatures. It can be seen from
the figure that the total energy dissipation P drops sharp-
ly when the temperature changes from about 10' to about
1O-'.

III. RESULTS

The networks generated by this algorithm are
displayed in Figs. 2(a) and 2(b). Figure 2(a) shows the
structures of the minimum energy dissipation river net-
works that cover the area A. Since the total energy dissi-
pation of all the rivers is a minimum, each river network
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FIG. 1. (a) Total energy dissipation P as a function of the
number of "annealing" stages n. In each stage, there are 65 536
steps, during which an attempt is made to change the network
configurations. The "temperature" was kept unchanged during
each stage but was changed between successive stages. (b)
Changes of P with the "temperature" T. The units of T are the
same as the units of the total energy dissipation. The "tempera-
ture" was decreased using an exponential temperature reduction
schedule. The "temperature" T(n) during the nth stage is equal
to a"T(0), where T(0) is the initial "temperature. " Here
T(0)= 12 800 and a=0.982.

FIG. 2. (a) Structures of the minimum energy dissipation
drainage networks that cover the area A. The thickness of each
segment in the figure is proportional to the square root of the
amount of flow it carries. The arrows in the figure (not readily
visible on the scale of this figure) indicate the direction of the
flow on the sites. (b) Boundaries of all the drainage basins that
cover the drainage area A.
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displayed here also has an optimal structure within its
own boundary. The boundary of each river basin is
shown in Fig. 2(b). It can be seen from this figure that
the optimal drainage structure of an area tends to have a
few large river networks together with a distribution of
smaller networks covering the whole area. Figure 3
shows the dependence of ln[N ( A & /I ' )] on ln( A '), the
cumulative size distribution of the basins covering the
whole drainage area. This figure indicates that the river
basin areas follow a power law distribution N( A)- /I

with i= 1+0.51=1.51. Meakin, Feder, and Je(ssang [8]
have shown that one version of Leopold and Langbein's
simple statistic river network model [3] in which the river
network is represented as a tree of coalescing self-
avoiding random walks has a similar power law distribu-
tion of river basin areas with v=1.39. Recent studies by
Inaoka and Takayasu [10] using an erosion model give a
cumulative distribution of the drainage-basin area with
the form I'( & A )- A ', which means that the distri-
bution of the drainage-basin areas can be represented by
the power law P —A ' . However, we are not aware of
field measurements of drainage-basin area distributions
that can be compared with the simulations.

The length of a basin can be defined as the longest dis-
tance from any point on the boundary of that basin to its
outlet. If the basins' shapes are similar to each other, it
can be anticipated that the basin length I and the area of
the basin are related by A (i)—I, since the networks fill

the whole drainage area. Figure 4 shows the dependence
of the logarithm of the drainage-basin area on the loga-
rithm of its length. A straight line with a slope of 2 has
been drawn in the figure to compare with the data. Ex-
cept for the basins with a very small drainage area, most
of the data are represented quite well by the straight line.
The deviation for small basins may be caused by finite
size effects.

The dependence of the drainage-basin area on the
drainage length indicates that the drainage basins are not
fractal. However, recent field observations by Breyer and
Snow [27] on 12 river basins whose areas range from 150
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FIG. 4. Dependence of the area A of a drainage basin on its
length 1. A straight line of slope 2 was used to fit the data.
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to 50000 km, in the United States, indicate that the
boundaries of river basins are fractal with dimensions be-
tween 1.06 and 1.12. In Fig. 5 the dependence of
drainage-basin perimeters on their lengths is shown. It
indicates that the perimeters of minimum energy dissipa-
tion drainage basins have an effective fractal dimension of
about 1.10. A least squares fit to the data gave a value of
1.093+0.008 for D. The true uncertainty, due to finite
size and other effects, is almost certainly larger than the
95% confidence range given here. This value for D
agrees well with Geld observations. The occurrence of
fractal boundaries for the optimal drainage basins, as a
result of the area filling requirement and optimization of
their energy dissipations, suggests that fractal structures
may be a natural consequence of the requirement of least
energy dissipation in natural systems.
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FIG. S. Relationship between the perimeter length (p) and
the basin length (I). The data were fitted by a straight line with
slope of 1.10.
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The dependence of the main stream length L on A, is
shown in Fig. 7. It can be seen from the figure that L de-
pends almost linearly on A, {the effective fractal dimension
of the main stream is about 1.03). Field data collected by
Marani, Rigon, and Rinaldo [28] indicate that the fractal
dimension of the main stream for real rivers ranges from
1.1 to 1.3. This indicates that the main stream in optimal
river networks is much straighter than main streams in
the real world.

Power law distributions of energy dissipation are not
rare in nature [29]. It has been shown by Mandelbrot
[30] that uniform energy input to a dissipative system
often results in a power law distribution of energy dissi-
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FIG. 6. Result of a box counting analysis of the boundaries
of a minimum energy dissipation drainage network. N(b) is the
number of the boxes with sides of length b that cover the whole
pattern. The line used to fit the data has a slope of —1.37.
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The pattern consisting of all the boundaries of river
basins that drain the area A is also fractal. The box
counting method was used to measure the fractal dimen-
sions of this pattern. Figure 6 shows a log-log plot of the
dependence of the number of boxes needed to cover the
whole pattern on the size of the box. The result can be
Stted by a straight line with a slope of 1.37. So the pat-
tern has an efFective fractal dimension of 1.37.

The main stream is defined as the longest non-
reentrant path in a drainage basin. Its length L is mea-
sured along the stream. The "Pythagorean" length A, is
the distance between the starting point of a stream and its
outlet measured in the two-dimensional embedding space.
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FIG. 7. Dependence of the main stream length L on the
Pythagorean distance A, between the starting point of the main
stream and its outlet. The straight line used to fit the data has a
slope of 1.03.

FIG. 8. (a) Cumulative probability distributions II(p &p ) of
energy dissipation p per unit channel link length in the biggest
river (indicated by the filled squares in the figure) and in the
whole drainage area (indicated by the empty squares in the
figure) of the minimum energy dissipation drainage networks.
The dashed line has a slope of —0.92. (b) Total energy dissipa-
tion P in drainage basins of area A is shown as a function of A
in the form of a log-log plot. The fitted straight line has a slope
of 1.12.
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pation in the space in which the system extends.
Drainage networks that are embedded in a drainage area
and subject to a uniform energy input from precipitation
may also exhibit a power law distribution of its energy
dissipation. This power law distribution of energy dissi-
pation is shown in Fig. 8. Figure 8(a) displays the cumu-
lative distributions of energy dissipation per unit channel
link length in the largest drainage network and in the
whole drainage area of an optimal drainage network.

Both of the two curves can be fitted by straight lines with
a slope of about —0.92. This indicates that the cumula-
tive distribution II(p )p

'
) has the form

II(p)p*)-p* ', with U being about 0.92. This power
law distribution of energy dissipation is very close to that
observed in natural drainage basins [29]. The exponent U

for energy dissipation in five drainage basins in North
America [29] falls in a narrow range between 0.90 and
0.93. Figure 8(b) shows that the total energy dissipation

(bj

FIG. 9. Structure of an optimal channel network is sho~n with di8erent How thresholds. |',a)—(c) show the river network with reso-

lutions of 4, 16, and 64 pixels, respectively.
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P in a drainage basin of area A is proportional to A" .
As has been shown above, the number of drainage basins
that have a drainage area A is proportional to A ' ', so
the distribution of the total basins' energy dissipations in
an entire drainage area is also a power law [N(P)-P ~]
with an exponent P of —l.51/l. 12=—l.35.

The structure of the optimal channel networks in the
drainage areas is self-similar. The definition of self-
similarity of the channel network used here is that the
internal link length distributions p (1) of the channel net-
work with different Bow thresholds t are invariant under
the transform 1„,=1;„,/t and p'=pt , w'here 1;„, is
the internal link length, t is the threshold, and p is the
distribution of the lengths of the internal links with a
threshold t (only those links with Q &t are included).
The internal link length is the distance between two
branch junctions in one channel. Figures 9(a), 9(b), and
9(c) display the structures of the channel networks with a
threshold t of 4, 16, and 64, respectively {only links with
flows Q & t are shown). Figure 10(a) shows the internal
link length distribution for the drainage networks with
thresholds t of 2, 4, 8, 16, 32, 64, and 128. The internal
link length distribution after the transformation is
displayed in Fig. 10{b). Figure 10(b) shows that the prob-
ability p (I, t)51 that a randomly selected link will have a
length in the range 1 to 1+51when the threshold is t can
be represented by the scaling form
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IV. DISCUSSION
o.4o I-

The distribution of basin areas N(A) obtained from
simple statistical models [8] can be represented by the
scaling form

N(A)=A 'f(A/Xr}, (2)

where X is the lattice size (length scale in lattice units)
and the scaling function f (x) is constant for x « I and

decays faster than any power of x for x »1. The re-
quirement that this distribution of river basins must fill

an area X leads to the exponent scaling relationship [8]

(2—r}y= 1 . (3)

(4b)

(see Fig. 4), then the exponent y in Eq. (2) will have a
value of 2 so that the size distribution's exponent will
have a value of —,

' [from Eq. (3)]. This is very close to the
value of about 1.51 obtained from the computer simula-
tions, and it appears that the size distribution exponent ~
has a value of exactly —,'.

In view of the power law distribution of basin areas
shown in Fig. 3 it is apparent that the scaling form given
in Eq. (2) should describe the distributions of basin areas
in the minimum energy dissipation model as well.

If the "length" lb and "width" wz (measured perpen-
dicular and parallel to the edges of the lattice) of the river
basin's scale in the same way with the basin area,

(4a)

0.20 C-

0.00 $
0.00 1.00 2.00

&'I(
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FIG. 10. Internal link length distributions for the drainage
networks with different Bow thresholds (t). (a) p is the probabili-

ty of finding an internal link of length 1;„,. {b} Internal link

length distribution after the transformation I „,=I;„,It ' and
p'=pt '. The thin lines that connect the points in the figures

are to guide the eye.

In practice it is difllcult to obtain accurate values for
exponents such as ~ from practical scale simulations.
Consequently the very good agreement between the mea-
sured value for ~ and the value of —,

' obtained from our
simple scaling arguments should be regarded as fortui-
tous.

The simulated annealing approach has been successful-
ly applied to a broad range of problems in areas such as
statistical physics, engineering, and image analysis.
However, it is not suitable for all optimization problems.
The performance of this approach depends on the shape
of the surface Z(Q), where Z is the quantity that is to be
optimized (the energy dissipation, in our case) and 0 in-

dicates the coordinates of the configuration space. In
favorable cases the optimum configuration 0 is accessi-
ble from any starting configuration Qo via a path on
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Z(Q) that either descends continuously or requires only
small barriers to be crossed. Very often the system be-
comes "trapped" in a deep local minimum that differs
substantially from the global minimum 0 . In our case
we find that the simulated annealing procedure leads to a
final (T =0) con6guration that depends on Qo, on a de-

tailed level. However, all of the final configurations are
statistically equivalent and appear to be equally good rep-
resentations of the optimization network structure. This
may re6ect a degeneracy in the global minimum. More
probably there are many configurations with energy dissi-
pations close to the minimum value. %e have tried a
variety of initial configurations, Qo. In particular, an ini-

tial configuration consisting of two interpenetrating
"combs" (all sites with odd x coordinates drain to the

y =0 boundary and all sites with even x coordinates
drain to the y =X boundary) has been used in some of
our simulations. The geometry and size distributions in
this initial configuration difFer drastically from those of
the optimized system. However, the statistical properties
that we have measured for the final configuration 0 are
indistinguishable from those found using the Eden model
starting configuration that has statistical properties that
are much more similar to those of 0

In many respects the drainage basins created by this
purely artificial model are similar to real drainage basins
in nature. The power law distributions of the optimal
basin sizes, basin energy dissipations, and the energy dis-
sipation of a link with unit length in each single drainage
channel network and in the whole drainage area are simi-
lar for both real rivers and the rivers generated by this

model. The boundary between each basin in the drainage
area has a fractal dimension. The structure of all these
drainage networks is self-similar. The connection be-
tween power law distributions, fractal structure, and
self-organized criticality has been discussed by Bak,
Chen, and Tang [31]. Takayasu and Inaoka [9] have
shown that the channel networks developed by the ero-
sion model display spatial self-organized criticality. A
connection between optimal channel networks and self-
organized criticality has also been argued recently by
Rinaldo et al. [32]. However, it is not clear if natural
channel networks and drainage basins are really opti-
mized or if they are examples of self-organized criticality.
Even if natural channel networks and drainage basins are
indeed optimized, the question of how natural processes,
which are far from equilibrium, lead to optimal structure
also remains open. One possible answer is that in nature
the Earth's topography may be regarded as the result of a
process that evolves towards a state with statistically sta-
tionary properties. Such stationary states have much in
common with equilibrium states. During the evolution of
natural river networks, tectonic uplift and erosion pro-
cesses may reach a balance. The parts of a river network
that are not near optimal structures will be eroded more
rapidly than those parts that are already near an optimal
structure. The efFects of the changes in the local struc-
ture will be propagated through the drainage network.
The time scale for propagation of a perturbation may be
much shorter than that for evolution of the whole
drainage-basin structure.
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