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Clustering behavior of time-delayed nearest-neighbor coupled oscillators
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We analyze both numerically and theoretically the dynamical behaviors of systems composed of
limit-cycle oscillators, which are coupled by a time-delayed nearest-neighbor interaction. In this system

we found cluster states which are characterized by a phase difference of neighboring oscillators and their
collective frequency. A time-delay turns out to have an important effect on the stability of various clus-

ter states.

PACS number(s): 05.90.+m, 05.40.+j, 02.60.Cb

I. INTRODUCTION

Quite a few papers have been devoted to the dynamics
of populations of coupled oscillators. Such populations
are known to model many systems in physics [1,2], biolo-

gy [3—6], and chemistry [7]. It has been shown that cou-
pled limit-cycle oscillators with weak coupling can be de-
scribed by a system of phase-coupled oscillators, where
each oscillator is described by a single variable, its phase
[7]. Therefore, if we could show some features for a sys-
tem of phase coupled oscillators, we would be able to ex-
pect that the same is true for more general oscillator sys-
tems.

One of the remarkable phenomenon exhibited by a sys-
tem of coupled oscillators is synchronization or entrain-
ment; when oscillators, not necessarily identical to each
other, are allowed to mutually interact, it sometimes hap-
pens that the dynamics of oscillators are entrained to an
attractor in which every oscillator performs a synchron-
ized (frequency- or phase-locked) oscillation. It is report-
ed that when the natural frequency of each oscillator is
distributed around an average one, there exists a critical
strength of coupling, above which oscillators can be syn-
chronized [8-10].

Furthermore an attractor, which represents a so-called
cluster state, has been found for an oscillator system with
mean-field coupling, i.e., a globally coupled oscillator sys-
tem [11,12]. This state is characterized by the coex-
istence of subgroups each of which consists of fully
phase-synchronized oscillators. This clustering phenom-
enon is interesting from the standpoint of a symmetry
breaking because a collection of dynamical elements is
spontaneously divided into some groups. In a sense the
entrained or phase-locked state, mentioned before, may
be called a one-cluster state. The opposite extremity is
the antiphase state [13,14] in which all the elements of
the system (the number is N ) oscillate with the same fre-
quency and with equal spacing 2n. lN in phase (a N
cluster state) Thus a . system can have various cluster
states.

In this paper we mainly investigate clustering
behaviors in a phase-coupled oscillator system. The mod-
el systems may be variously classified even if we confine
our discussion to phase-coupled systems. First, if we pay

attention to the range of interaction among oscillators,
the models may belong to either the mean-field (MF)
[8,11,12] or short-range (SR) [9,10,15—18,20] interaction
model. Due to the simplification of the analysis in the
case of MF coupling, the MF model has attracted much
attention. However, spatial structures, which are absent
in the MF model, are expected to yield a variety of self-
organized phenomena in a system with SR coupling.
From this point of view we are mainly concerned with
the SR model. Second, we now turn to the time delay of
the interaction [19-21]. In models which are related to
physical and/or chemical phenomena, a time delay in the
interaction among oscillators does not play an important
role. However, in models which describe interaction
among neurons or some biological elements, it is some-
times important to take into account efFects of finite time
r required for information transmission between two ele-
ments. Therefore we consider both cases x=0 and v%0.

Summarizing the above we study the collective
behavior of the time-delayed nearest-neighbor (NN) cou-
pled oscillator systems. Such systems have been studied
by some authors. It is reported that due to the time delay
there exists a multitude of synchronized solutions [19]
and that time delay leads to a frequency depression [20].
However, it has not been reported whether or not cluster-
ing behavior can be observed in the NN coupling systems
and how the stability of cluster states is modified under
the influence of a finite time delay if such states exist.
This is the main topic of this paper.

This paper is organized as follows. In Sec. II we
present our model and in Sec. III results of our computer
experiments are reported with the main emphasis put on
the clustering behavior for the NN coupling systems. In
Sec. IV some theoretical studies are performed with use
of both an energy principle for the case v=O and the
linear stability analysis for the case with a finite time de-
lay (~%0). Section V contains some remarks on generali-
zation to higher dimensional systems and summary of the
results obtained in this paper.

II. MODEL

In this section we consider a one-dimensional system
composed of Xphase-coupled oscillators whose dynamics
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are described as E " ' . 2mlQ= 1+ g sin
I=O C

(k=1, . . . , N), (1)

where Pt, (t) denotes the phase of the kth oscillator at
time t and cop the common natural frequency, i.e., the fre-
quency in the absence of interaction among oscillators. E
is the coupling strength, I is the number of oscillators
with which one oscillator interacts, and ~ is a time delay.
In Sec. V we will comment on the extension to a higher
dimensional model. Since we are mainly concerned with
the NN coupling, the summation variable j takes the
value k —1 and k+1, and I=2. We also consider, for
the sake of comparison, the case of MF coupling for
which j takes all the values except for k and I=N —1.
We note that Ps + i is identical to Pi due to the periodic
boundary condition. Furthermore, by variable transfor-
mations

6)pt t K cop7 1 Pt (t )=Pi (t )
COp

we get the dimensionless equation

(2)

(k=1, . . . , N) . (3)

In what follows, we consider Eq. (3) with tildes omitted
for simplicity.

Systems with the MF coupling and no time delay
(r=0) have been studied intensively. For r=0 it is natu-
ral to term the coupling with K &0 (K &0) as attractive
(repulsive), because a small deviation e,„=p,—P„tends
to decrease (increase) under the interaction K sine t, . We
use this terminology even in the case of finite v. These
points will be discussed in detail in Sec. IV when we
study the stability of cluster solutions based on an energy
analysis.

In anticipation of the various cluster state which are
found in our computer simulation, and also for conveni-
ence of the later discussion, we give here a systematical
rule to produce cluster states. Before proceeding to the
case of the NN coupling we first explain the (symmetric)
cluster states for the case of the MF coupling which are
discussed in detail by Okuda [12]. A symmetric N, -

cluster state, where N, is one of the divisor of N, is
defined as the state in which each cluster I
(1=0,1, . . . ,¹—1 ), consisting of N /N, oscillators with
the same phase, rotates with the same frequency A.
Thus, when the phase of N, clusters are equally separat-
ed, the phase f, of cluster / is described as

Since there are many ways of distributing N oscillators
into N, groups with equal number of elements ( =N/N, ),
the solution (4) and (5) is highly degenerate. The case of
N, =N has attracted special attention because of the
(N I )!—attractors (a so-called attractor crowding)
[13,14].

We now turn to the cluster state in the NN case. The
model (3) is explicitly written as

dPt, (t) =1+—g sin[/. (t r—) P—i, (t)] .
dt 2 . &+&

4 is expressed, from the condition N4=2m. n, as

0, . . . , N/2 for N even

0, . . . , (N 1)/2 for N odd —. (9)

Thus, the number of the cluster N, is determined, when
4%0, from the condition

4N, =nON, =2@m,

where m denotes the smallest integer that satisfies Eq.
(10). For example, in the case of N=30, N, =10 for
n =3, N, =5 for n =12, and so on. For 4=0, it is evi-
dent that N, =1.

As to the dynamics of the cluster states, the phase of
kth oscillator evolves in time as

P„(t)=Qt+k4 (k=1, . . . , N),
where 0 is the common frequency of the oscillators. In-
serting Eq. (11) into Eq. (6), we get

In this case the phase difference

0k+1(t ) 4k(t )

which turns out to be independent of k and t, plays the
fundamental role as N, does in the case of MF model.
Equation (7) ineans that, in constructing a cluster state
characterized by 4, we first specify the phase P, of the
first oscillator. Then we take Pz=Pi+4 and so on.
Since 4 denotes a phase, it is in the range 0~4&2m.
However, if 4 happens to be larger than m,

4=/& —Pz+i can be taken in the range 0~4 m' and we
follow the prescription Pjv =Pi+4, Ptt, =/~+4, and
so on. Thus hereafter we will restrict 4 in the range
0&4 ~. With use of phase unit

g
217

Q= 1 Ksin(Q&) cos@ . — (12)

Pt=Qt+ (1=0, . . . , N, —1) .
2+i

C

In the case of ~=0, Q is determined to be

(4) Even if @ (or n ) is given, depending on the parameter K
and ~, the transcendental equation (12) for Q may have
more than one solution, which we denote as Q„
(b = 1, . . . , 8 ). Thus in order to unambiguously define a
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cluster state we must specify not only 4, Eq. (7},but also

Qs, and we denote the cluster state by (4,Qb ).

III. COMPUTER EXPERIMENTS FOR NN COUPLING

Oscillator number

20—

10

0.00
TIME

500.00

We performed three types of computer experiments to
examine (i) the structure of cluster states, (ii) the linear
stability of the cluster states, and (iii) the relative non-
linear stability among the linearly stable cluster states.
Computer experiments were performed by integrating
Eq. (6) with the use of the Runge-Kutta-Gill algorithm
with the time step ht =0.01. We have checked that de-
creasing the time step does not affect the results. We also
examined systems consisting of different number of oscil-
lators. Since general features of clustering behavior does
not depend on N, we show results for N=30 in the fol-
lowing. The initial conditions of the oscillators were
chosen randomly or some cluster states according to the
purpose of experiments.

A. Examples of cluster states

In this subsection we show some examples of clustering
behavior of the system with N=30, thus phase unit
8=rr/15 [see Eq. (8)]. For the initial condition we set

(13)

where phases ak (k =1, . . . , N ) are randomly distributed
over [0,2n ]. For the attractive coupling (K )0}either a
1-cluster state (4=0) or a 30-cluster state (4=8) is pro-

PHASE
2 JC

FIG. 2. Time evolution of oscillators in the case of a finite
time delay for (K,r) =(1,1) with Q=0. 510973 from Eq. (12).
The 1-cluster state (4=0) is produced. The vertical axis
denotes the number of oscillators. The dark region indicates
that the phase takes a value between 0 and ~/4.

duced depending on the initial condition and for the
repulsive coupling (K &0) cluster states with large 4, ei-
ther a 15-cluster state (4=148) or a 2-cluster state
(4=158) is produced. Some examples of clustering
behaviors are given in Fig. 1, which depicts trajectories of
time evolution of oscillators Pk(t ) (k =1, . . . , N). These
cluster states are also produced in the case of finite time
delay, as shown in Fig. 2, (K,r) =(1,1). As mentioned in
Sec. III B, other linear stable cluster solutions can exist in
the case studied above. However, we could not get such
cluster states in our simulations. This suggests that the
1- or 30-cluster states in the case of attractive coupling
and 2- or 15-cluster states in the case of repulsive cou-
pling have the largest basin of attraction. When there is
no time delay these results are physically explainable
from an energy principle (Sec. IV}. We also examine the
time evolution of the average frequency
((())=(IlN)gkgk(t) for various time delays r when a
1-cluster state is produced under the initial condition
(13). It can be seen from Fig. 3 that the averaged fre-
quency of clusters become small as the time delay ~ be-
comes large. In the case of parameters studied in Fig. 3,
Eq. (12) has only one solution, which is indicated by syrn-
bols in Fig. 3.

0 —
j

0.00

PHASE
2n — }

(b) m—

100.00 200.00 300.00 400.00
TIME

500.00

1

Uz
A)0.9

~0.8

~0.7

~O.G

)0~
C

0.4
20 40 G()

TIME
80 10()

0—
0.00 100.00

I

300.00 400.00
TIME

500.00

FIG. 1. Time evolution of oscillators Pk (t ) —Qt
(k =1, . . . , 30) in the case of no time delay. (a) 1-cluster state
(@=0) for (K,r)=(1,0) with Q=1.0 from Eq. (12). (b) 2-
cluster state (4=m ) for (k, r) =( —1,0) with Q= 1.0 from Eq.
(12).

FIG. 3. Time evolution of averaged frequencies
(1/N )g„Pk( t ) for various time delays (from the top
v=0.0,0.2,0.4,0.6,0.8, 1.0) (K=1). Increasing a time delay in-
duces frequency depression. The symbols indicate the solutions
of Eq. (12) [0, 1.0 (r=0);*,0.833977 (r=0.2); X, 0.717084
(r=0.4); o, 0.630602 (r=0.6); 6, 0.563973 (r=0.8); 0,
0.510973 (r= l.0)I, which precisely agree with the experiments.
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TABLE I. Summary of computer experiments for linear sta-
bility with E=1. Here the phase unit 8=m/15 and N, denotes
the number of cluster. S means the cluster is stable and U un-
stable.

8
28
38
48
58
68
78
88
98
108
118
128
138
148
158

1

30
15
10
15
6
5

30
15
10
3

30
5

30
15
2

S
S
S
S
S
S
S
S
U
U
U
U
U
U
U
U

S
S
S
S
S
S

U
U
U
U
U
U
S
S
S

S
S
S
S
U
U
U
U
U
U
U
S
S
S
S
S

B.Linear stability of the cluster state

Next we study linear stability of various cluster states.
For this purpose the initial condition is set as

(14)

where e„(k = 1, . . . , N ) are random numbers in the
range [ —m/100, n /100]. This initial state is the one that

is slightly perturbed from a cluster state (4). If this clus-
ter state is restored in spite of a perturbation, then it is
stable; otherwise this cluster state is unstable. Our simu-
lation results are summarized in Table I. In this table 5
denotes that the cluster state is stable and U unstable. %e
show two examples of computer experiments in Fig. 4. It
can be seen from these examples that the cluster state
(4=58) is stable [Fig. 4(a)] and the cluster state (4=68)
is unstable [Fig. 4(b)] in the case of (E,r) = (1,1). Table I
sho~s that the stability of cluster states is modi6ed by a
time delay ~. These numerical results are verified
theoretically in Sec. IV. In passing we note that in the
cases (K,r)=(1,0),(1,1),(1,2), Eq. (12) has only one
solution 0 for any 4. In the case of negative E, qualita-
tively similar results are obtained as to the linear stability
of cluster states.

C. Relative stability among cluster states

In this section we study the relative stability among
linearly stable cluster states. In the case rAO, we have no
theory at the moment to investigate this important non-
linear phenomenon and we rely on computer simulations
with random noise.

We consider the case in which Eq. (12) has more than
one solution. To be concrete we study the 1-cluster state
(4=0), which is very stable for the attractive coupling
(see Sec. III A) for, say, (E,r) =(4,2). With
this parameter Eq. (12) has five solutions Q,
(=—2.58576), Q2 (= —1.99362), Q3 (=0.111940),Q~
( =1.65276), and Q5 (=2.89484) for 4=0. In order to
investigate the stability of these solutions, we employ the
following initial conditions:

PHASE
2~ I

0—

PHASE

20.00 40,00 60.00 80.00 100,00
TIME

P„(t)=Qo(t+r)+a ( r&t &0)—

for all k, where a is an arbitrary constant in the range
[0,2~] and Qo is a parameter of our experiments. In Fig.
5 we show one typical trajectory of an experiment with
Qo= —j.0. In this case it is seen that the system is at-
tracted to the 1-cluster state (Q3). It is to be noted that
all the oscillators have the same phase through the transi-
tion. In the experiment with 00=2.3 the Gnal state was a

PHASE

2 7l'

20.00 40.00 60.00 80.00
TIME

100,00

FIG. 4. Time evolution of stable and unstable cluster states.
(a) (K, r) ={1,1) and 4=58 with 0=0.684037 from Eq. (12).
The 6-cluster state (4=58) is stable. (b) (E,~)=(1,1) and
4=68 with 0=0.782194 from Eq. (12). The 5-cluster state
(4=68) is unstable and finally attracted to the antiphase (30-
cluster) state.

0.00 20.00 40.00 80.00
TIME

100.00

FIG. 5. Time evolution of phases Pk(t) {k=1,. . . , 30) with
initial condition (15) (00= —1). The system is attracted to the
1-cluster state (0=03).
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IV. THEORETICAL ANALYSIS

A. Energy anal yes for the system withm out a time delay

When there is no ti d gyofth y time clay, the ene

th
luster states. Ino stu y properties of c

e mo i y Eq. (6) with use of
k=1, . . . , N), (16)
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1ar experiments and
'
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3 and 05 are stable
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dPk(t) K=1+— sin[1f)~(t —~)—p (t)J+k lk
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noise
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pk(t)= it+1))k{t } . (18)

(17)

PHASE
2n—
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the phase differenc 4 d
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g 64k=0.

Thus

(26} ,(t)
d

=(ae ''t+pe'~)f (t —r) —(a+p)f (t),q

where

(33)

E=Ecs+ g (5/k ) cos4 .
4N a=——cos(Q~+4), P=——cos(Q~ —4) .

E E
2 2

(34)

This equation tells us that n/2 . (=4, ) is the critical
point. For attractive coupling (I & 0), if 4 &4„the per-
turbation makes the energy larger, which means that the
cluster state (4) is linearly stable. The other case (E (0)
can be understood in the same way. This analysis ex-
plains the results of the case (IC, ~)=(1,0) of Table I.

Next we consider the case in which the initial phases of
oscillators are randomly distributed (see Sec. IIIA).
Equation (23) tells us that in the case of attractive (repul-
sive) coupling, the energy Ecs increases (decreases) as 4
becomes large in the range of 0 4~m. The system
starting from the random initial condition is likely to fall
into the attractor with lower energy. Therefore it easily
happens that the system with attractive (repulsive) cou-
pling is attracted to the cluster state with smallest (larg-
est) 4. This explains the results in Sec. III A.

B. Linear stability analysis for systems with a time delay

In the cluster state the motion of oscillators is ex-
pressed by Eq. (11). We represent the phase of kth oscil-
lator as

pk(t ) =Qt+k4+sak(t ), (28)

where

+p[ak+)(t ~) ak(t )}, — — (29)

a, =a&+„ao=a& (30)

from the periodic boundary condition. We decompose
a„(t)into Fourier modes as

where s is assumed to be very small. Inserting Eq. (28)
into Eq. (6},we compare terms with the same order of s.
The equation we get for the order s is Eq. (12). For the
order s', we obtain an equation of motion for ak(t ) as

da„(t)=—[ j ak, (t ~} ak(t }]—cos(—Qv +4}
dt

+ [a„+,(t r) ak(t ) ] cos—(Qr ——4) ]

a[at, i—(t r) -a„(—t )]—

Denoting the Laplace transform of fq(t ) by fq(s), we ob-
tain from Eq. (33) the following equation:

C&(s)=
s+(a+p) —(ae @+pe'e)e

where C is the constant depending on the initial condi-
tion. Now we can examine the stability of the cluster
state (4,Q) as follows: First we calculate all the poles ofj (s ) [Eq. (35)] for each mode q. If none of real parts of
the poles for each q exceed zero, this cluster state is
stable. If there exists a mode qo, for which a pole has a
positive real part, this cluster state is unstable. It is to be
noted that Eq. (35) has a large number of poles because of
the term e

Examples of calculations are shown in Figs. 7 and 8.
In Fig. 7 poles for q =2m/5(m =6) and @=2m/5 for
(K,r)=(1,1) are plotted. Real part of one of the poles
exceed zero. Thus this cluster state is unstable. On the
other hand, in Fig. 8 poles for all q and 4=m/3 for
(E,i)=(1,1) are plotted. The largest value of real parts
of the poles is zero (Goldstone mode q=0). Thus this
cluster state is stable. These calculations can explain the
results of Table I and are not contradictory to Fig. 4.

50.00
I

30.00

20.00
!

10.00 '!

0.00!
j

-10.00

-20.00 ~
!

a„(t)=g f,(t)e'"'. (31) (I
-50.00

From Eqs. (30) and (31) we restrict q to

N N——& rn ~ —,m is an integer
2 2' (32)

-70.00

-80.00
~

-5.00 -4.00 -3.00 -1.00

!
!—-—j a.es

0.00

From Eqs. (29) and (31) we obtain the equation for f~(t )

as
FIG. 7. Poles for q =2m. /5(m =6) and 4=2~/5 in the case

of (SC,~~=(l, l ~.
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FIG. 8. Poles for all q and 4=m/3 in the
case of (K,~)=(1,1).
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V. SUMMARY AND REMARKS p» k =Qt+k, 4t+kt4t, (37)

In this paper we mainly studied the oscillator systems
with NN coupling with a time delay. The cluster state is
found to be a rather general pattern of motion in NN
coupling systems and can be classified by the phase
difference 4 between neighboring oscillators. The role of
the time delay consists in a modification of the collective
frequency and of the linear stability of cluster states. In
the case of no time delay, the results of the computer ex-
periments on the linear stability of the cluster state and
on the relative stability among cluster states are verified
with theoretical analysis based on the energy of the sys-
tem. In the case of a finite time delay, the linear stability
can be analyzed with the technique of a Laplace trans-
form, but we do not have a theory to discuss the relative
(nonlinear) stability at present.

In the rest of this paper, we make two remarks (i) on
the extension to a higher dimensional coupled oscillator
system and (ii) on some computer experiments on the sys-
tem with MF coupling.

(i) We can extend our one-dimensional NN coupling
model to a higher dimensional one. For example, in the
case of the two-dimensional oscillator system with NN
coupling the equations of motion becomes

dpk~„~(t)
=1——g'sin jp,j.(t r) pk k (t)I——

(i,j )

(k, =l, . . . , N, ; k2=1, . . . , N2), (36)

where gi; J~ means the summation over the nearest neigh-
bors of the (k„kz)oscillator and N, and N2 are numbers
of oscillators in the one axis and two axis, respectively.
The cluster state can be expressed as

where 4, and 42 are phase differences between neighbor-
ing oscillators in the one axis and two axis, respectively.
The collective frequency is calculated as

Q = 1 ——sin(Qr)(cos@, +cos@2) .E
(38)

=I— g' sinIP, ; (t r) $(—t) I—E
(l

1 P ~ ~ ~ y l )

(ki=1, . . . , NI , . .,'k„=l,. '. .. ,N„), (39)

PHASE

2lr

0—
0.00 10.00 15.00 20.00

TIME
25.00

FIG. 9. Time evolution of oscillators /kit) in the case of MF
coupling for (K,~)=(—1,2).

Similarly in the case of n-dimensiona1 systems, the equa-
tions of motion, the phase of the oscillators, and the col-
lective frequency can be expressed as

dP„„(t)
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„=Ql+k,4, + . +k„@„, (40)

E
Q = I ——sin(Qr)(cos@, + . +cos4„). (41)

(ii) In Sec. III B it was shown that the linear stability of
the cluster state in the NN coupling system is modified
by a time delay (see Table I). We also made the experi-
ments on the system with MF coupling for the compar-
ison. Sin(x ) coupling was chosen as in Eq. (3) and a simi-
lar tendency as to the stability of the cluster state is ac-
quired. %'e show a result of the ease for the 1-cluster

state. According to the result of Okuda [12], the 1-
cluster state was not produced in the case of MF repul-
sive coupling with ~=0. This means that the 1-cluster
state is unstable. However, in the case (K,r)=( —1,2)
the 1-cluster state was produced as shown in Fig. 9, indi-
cating that the time delay has modified the stability of the
1-cluster state.
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