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Stimulated Raman scattering of an EH waveguide mode near cyclotron resonance

Joseph E. Willett
Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211

Yildirim Aktas
Department of Physics, University of North Carolina at Charlotte, Charlotte, North Carolina 28223

Behrouz Maraghechi
The Center for Theoretical Physics and Mathematics, Atomic Energy Organization of Iran, Tehran, Iran
and Department of Physics, Amir Kabir University, Tehran, Iran

Hassan Mehdian
Department of Physics, Teacher Training University, Tehran, Iran
(Received 4 October 1993)

The stimulated backscattering of a predominantly transverse magnetic waveguide mode off of a
space-charge wave in a plasma-filled waveguide is investigated. A formula is derived for the growth rate
of the backscattered wave and scatterer wave with the pump wave frequency near the electron cyclotron
frequency. A numerical study indicates that the phase-matching conditions permit the approach to cy-
clotron resonance with substantial enhancement of the growth rate. Possible use of the EH waveguide

mode as a pump for a free electron laser is discussed.

PACS number(s): 41.60.Cr, 52.35.Mw, 52.40.Fd, 52.75.Ms

An intense electromagnetic wave propagating in a plas-
ma may undergo stimulated Raman backscattering. This
parametric instability phenomenon may occur, e.g., in a
waveguide containing a plasma or an electron beam. In
this paper we study backscattering of a lower-branch EH
waveguide mode off of a space-charge wave in a plasma-
filled, cylindrical, metallic waveguide containing a uni-
form, static, axial magnetic field. The EH modes are the
TM modes of an empty waveguide modified by the pres-
ence of the gyromagnetic medium [1]. A cylindrical
coordinate system (7,60,z) is introduced with the z axis
taken as the axis of the guide. The pump wave (w;,k,) is
propagating in the negative z direction with a frequency
®; which is near (but not exactly equal to) the electron
cyclotron frequency w,. The space-charge scatterer wave
(w,,k,) is propagating in the negative z direction with a
phase velocity sufficiently small compared to the speed of
light ¢ to permit invoking the electrostatic approxima-
tion. The backscattered wave (w;,0) is a lower-branch
EH waveguide mode which is sufficiently near cutoff to
be purely transverse magnetic with a wave number k,
which is virtually zero.

The axial component E, of the total electric field for
the three axially symmetric waves may be written in the
form

3

E,=3(E, +cc.), (1)

ji=1
where
E,\=E, [faZy(k,r)+f1Zolkyr)lexpli(k,z+w,1)],
(2)

E,;,=E,,0Jo(po,r /R Jexpli(k,z +w,1)] , (3)
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Ez3=E230JO(p0vr/R )exp[—iw:,t] ’ (4)

fa +fb=1 ’ (5)
T (lK,P), K2>0

Z,(k,r)= (u=a,b) . 6
© I,,(Ixylr), Kf,<0

The radial dependence of the axial component of the EH
pump wave is expressed as a linear combination of two
Bessel functions. In the presence of a uniform, static, axi-
al magnetic field of finite magnitude, transverse electron
motions exist and this mode possesses a longitudinal
magnetic as well as a longitudinal electric wave field.
Consequently, two Bessel functions are required to satisfy
the boundary conditions (see Ref. [1] and references con-
tained therein). The radial dependence for the scatterer
and the scattered waves is expressed by a single Bessel
function. All of these Bessel functions are of the first
kind and of order zero, I, is a modified Bessel function,
Doy is the vth zero of J;, and R is the waveguide inner ra-
dius. Wave numbers k; and k,, frequency w,, and the
real parts of frequencies w, and w; are positive. The ap-
propriate phase-matching conditions are

0, =0,to;, 7))

This stimulated Raman scattering process may be in-
terpreted as the decay of a pump photon (w;,k,) into a
plasmon (w,,k,) and a scattered photon (w;,0). Equa-
tions (7) and (8) express the conservation of energy and
momentum, respectively.

A nonlinear wave equation may be derived from the elec-
tron continuity, electron momentum transfer, and
Maxwell equations in the form
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K 82 1 v o} 2 kiR? _ 03, (0} + o} —03,) 10)
912 | ar? PEFYER c? P, (02—l N0i—0})
+o? | L o> 193 3 The real part of the frequency w;, of the lower branch of
¢ 2 at a YRR c? 3t 3z the EH waveguide mode at cutoff, obtained by introduc-
ing Eq. (4) into the linearized equation (9), is given by
L Sy B PO
a2 V| (BN O 0}, =w?+p3,R c?. (1
where w, is the plasma frequency. The derivation and In order to derive the temporal growth rate y for ex-

nonlinear terms N are presented in Ref. [2]. The linear  ponentially growing waves 2 and 3, the linearized solu-
dispersion relation for the real part of the frequency w,, tion for each of the three interacting waves is introduced
and wave number k, of the space-charge wave may be into the nonlinear terms of Eq. (9). For simplicity, only
obtained from this wave equation. Introducing Eq. (3), the terms in N which become large near cyclotron reso-

neglecting nonlinear terms N, and invoking the electro-  nance will be retained. The transverse electron velocity
static approximation (i.e., neglecting terms containing components for the pump wave may be expressed in the
1/¢?) yields form

J

7. = lelw,E,10Z (K r)exp[i(k,z +to)]  fu Kz_ (co%—wf,) 2(k%+xft—w%c_2)+m‘2,c*2 12)
! mok (@ —w?) |K | c? k%+xf‘~—(o%c_2
S ilelo E,10Z(k r)exp[i(xlz+w1t)] fu Kz_ (@ %——wlz,) (1+w%w;2)(k%+xl2‘-w%c ’2)+w%a)c_2a)12,c‘2

o mok (02 —o?) LA c? k}+kl—wic '

(13)

where |e| is the magnitude of the electron charge and m is the electron (rest) mass. Note that these transverse velocity
components become larger when o, approaches .. With Egs. (1)-(4) inserted into the left-hand side of Eq. (9) and the
phase-matching conditions employed in the N terms, the sums of terms of like phase on the two sides may be equated.
That is, the sum of terms containing exp[i(k,z +w,t)] on the left may be equated to the sum of terms containing
expli(k,z+w )] times exp[ —iw;t] on the right; the sum containing exp[ —iw;t] on the left may be equated to the sum
containing exp[ —i(k,z +w,?)] times exp[i (k,z +w,t)] on the right. The radial dependence of the pump wave may be
treated by the method of Ref. [3].

The foregoing procedure yields the following two linear, homogeneous equations for the wave amplitudes E,,, and
Ez30:

ilelk 0,0, E; 10,305,

(PR k) {030~ 02 pAR ~2+k3)+ Rk (0} — 0}~ alp,R ]} Ennp= a10” (14
mows, (0: — o)

—3(pd,R "2 +okc *—wic D) (wf —0})pd,R T taopc TP ol +alpsR T —wle H)]E
_ i‘e|wl(012)w§rEz*10E220S3

mowz,kl(a)g —cu%)c2

Here, E,, is the complex conjugate of E, o, and S, and S are given by
(@}—w2) 2(k3+K2—wlc ™ H+wic?
S,= 00, |K2— £ = £
2 %f“[ 102 T T 0 K2 +i2—alc 2
X[(k1+3p3,R 2+, —2p5,R li,| ey,
—2po, R~ a3y —PoR _IIK | 7'kt +po,R _2+3K2)a4p+4P0vR_3\",4‘_1(15#1
,  (0}—0}) (1+aelo; ) k] +k,—olc *)+olo; *opc *
K2 —
# c2 k}+il—awjc ?

X[(k?+3p3,R _2+K}2‘)a1u—2p(2)VR _3|Ku| “lay, —2po, R ~*ay, —po.R "M, TNk +pGR 24 3i)ay,

2
+w;

+4po,R e, las,] | (16)
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5=z febo [ (0i=0)) [2Ak+G ol +aje ] ]

< Ik R |7H c? k}+K—ofc?
X {¢ [0}0}, —(0}, — 0} Play, + (0} —0f, + o) )[2po, Ik, R ~'a1,—2po,R ~%ay,

—2|k,|R a3, —(p R T2 +il)ay, +4R 2ag, )}, (1)
@1, =2R "2[J,(po,)] 2 foRr[Jo(pOVr/R)]ZZO(Kﬂr dr (18)
3, =2R ~'[J1(pp,)] 2 fOR[JO(pOVr/R)]zzl(xur)dr , (19)
a3,=2R ~'[J,(po,)] 2 fORJO(povr/R W1(poyr /R)Zo(K,r)dr (20)
@4, =2R ~4J,(po,)] 2 fORrJo(po.,r/R W 1(poyr /R)Z,(k,r)dr @1)
s, =2[J,(po,)] ? foxr_lJo(pOVr/R)J,(pOVr/R )Z,(k,r)dr . (22)

The summation over p contains two terms, y=a and
p=>b. Simplification of the left-hand side of Eqs. (14) and
(15) may be achieved by expressing the complex frequen-
cies w, and w, in the form

(23)
(24)

W=y, —iY
03=w;,+iy ,
introducing Egs. (10) and (11), and retaining only terms
of first order in ¥. The necessary and sufficient condition

for a nontrivial solution of these two linear, homogeneous
equations then yields the growth rate

_ |e”Ezlo|Cl)Pc
2mow;,0,(p3,R “2+k3?)|w? —o?
©,5,5, 172

(25)
w,,(w? +co12, —203,)

In order to illustrate that phase matching is possible
near cyclotron resonance, calculations were made with
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FIG. 1. Dimensionless frequency @, vs dimensionless wave
number k, (dashed curve) and dimensionless beat frequency
@, —®; vs dimensionless wave number k, (solid curve). The di-
mensionless cyclotron frequency @, =10.

[
dimensionless waveguide inner radius R =R w,/c
=0.6671 and pg, =py =2.405. The dispersion curves
for the first mode (v=1) of the EH pump wave and
space-charge wave were computed by a method
equivalent to that of Ivanov and Alexov [1]. Figures 1, 2,
and 3 show the dimensionless (real) frequency
©,=w,,/w, as a function of the dimensionless wave
number k,=k,c/w, for the space-charge wave. These
figures also show the dimensionless (real) beat frequency

51 _53=(Dl/wp _(03,/(0p

for the EH,, pump wave and scattered wave as a func-
tion of the dimensionless wave number k, =kic/w,. In
Fig. 1, the dimensionless cyclotron frequency is
O, =w./0,=10. The point of intersection gives the
phase-matched values with o,/w,=0.233. In Fig. 2, &,
has been lowered to 4.47. This pushes the EH, mode
frequency @, down, thereby moving the intersection
point of the @, and @,—@; curves toward higher values
of k, and k, where w,/w,=0.947. In Fig. 3, @, =4.46
and the @; —®; curve has been pushed down so far that it
will not intersect the @, curve. For the value of R chosen
here, phase matching can occur with the pump frequency
within approximately 5% of the cyclotron frequency
when &, =4.47 but not when &, <4.46. In Fig. 4, the di-
mensionless growth rate
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FIG. 2. Dimensionless frequency @, vs dimensionless wave
number k, (dashed curve) and dimensionless beat frequency
®,— @, vs dimensionless wave number k, (solid curve). The di-
mensionless cyclotron frequency @, =4.47.
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FIG. 3. Dimensionless frequency @, vs dimensionless wave
number k, (dashed curve) and dimensionless frequency &, — @,
vs dimensionless wave number k, (solid curve). The dimension-
less cyclotron frequency @, =4.46.

y=ymgyc/(2le||E,ol)

is shown as a function of @,. For @,=17.6, 8, 5, 4.6, and
447, ©,=4.098, 4.099, 4.12, 4.16, and 4.23; and
@,=0.356, 0.357, 0.380, 0.416, and 0.491, respectively.
Note that significant enhancement of the growth rate
occurs when the pump is near cyclotron resonance, i.e.,
when the pump wave frequency w, is approximately
equal to the cyclotron frequency w.. The electrons then
become synchronized with the pump wave and the trans-
verse velocity components which contain the factor
(w?*—w?)”! become very large. Since this factor also ap-
pears in the growth rate equation, y is enhanced near cy-
clotron resonance.

The plasma waveguide is an essential component in
many plasma electronic devices. Its use requires
knowledge of the properties of the eigenmodes. The
present paper illustrates one characteristic of the EH,
mode, namely, its propensity to undergo parametric de-
cay. This may impose a limitation on the intensity of the
mode which may be employed and also a limitation on
the system parameter range. The use of EH modes (i.e.,
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FIG. 4. Dimensionless growth rate ¥ vs dimensionless cyclo-
tron frequency @..

TM modes modified by a finite axial magnetic field) in
free electron lasers has been suggested. They may be gen-
erated in a relativistic electron beam by either a longitu-
dinal electrostatic wiggler [4,5] or a conventional magnet-
ic wiggler [6]. The present study shows that an intensity
or parameter range limitation may also arise in this appli-
cation.

A free electron laser may employ an electromagnetic
pump wave as an alternative to the conventional wiggler
consisting of a static, spatially periodic, transverse mag-
netic field. The analysis of Sprangle and Granatstein [7]
has shown that the growth rate for the stimulated back-
scattering of an electromagnetic wave by a relativistic
electron beam is enhanced when the wave is near cyclo-
tron resonance. The present analysis indicates that the
lower-branch EH, waveguide mode can backscatter
when it is near cyclotron resonance with considerable
enhancement of the growth rate. This suggests that this
waveguide mode would be suitable as a pump wave for a
free electron laser. Fliflet and Manheimer [8] have re-
cently designed an experiment which would employ a TE
waveguide mode as a wiggler. The present study suggests
that the use of an EH mode might provide an alternative
type of wiggler with unique (cyclotron resonance) advan-
tages.
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