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Stochastic substitute for coupled rate equations in the modeling of highly ionized transient plasmas
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Plasmas produced by intense laser pulses incident on solid targets often do not satisfy the conditions
for local thermodynamic equilibrium, and so cannot be modeled by transport equations relying on equa-

tions of state. A proper description involves an excessively large number of coupled rate equations con-
necting many quantum states of numerous species having different degrees of ionization. Here we pur-
sue a recent suggestion to model the plasma by a few dominant states perturbed by a stochastic driving
force. The driving force is taken to be a Poisson impulse process, giving a Langevin equation which is
equivalent to a Fokker-Planck equation for the probability density governing the distribution of electron
density. An approximate solution to the Langevin equation permits calculation of the characteristic re-
laxation rate. An exact stationary solution to the Fokker-Planck equation is given as a function of the
strength of the stochastic driving force. This stationary solution is used, along with a Laplace transform,
to convert the Fokker-Planck equation to one of Schrodinger type. We consider using the classical
Hamiltonian formalism and the WKB method to obtain the time-dependent solution.

PACS number(s): 52.40.Nk, 05.70.Ln, 82.20.Mj

The interaction of a high-irradiance laser with a solid
target creates several spatial regions characterized by
low-density plasma in the outer parts (called corona) and
high-density plasma in the inner domain close to the solid
target. In most cases, local thermodynamic equilibrium
(LTE) is not reached in the corona.

In LTE the distribution of state densities, both in
ground or excited states, is given by the Saha and
Boltzmann equations. More generally, all laws of ther-
modynamic equilibrium are valid for electrons and ions.
However, LTE is satisfied mainly for high-density plas-
mas where the collisions between electrons themselves
produce an equilibrium. For LTE to happen it is neces-
sary that collisional interactions be much more frequent
than the corresponding dissipative radiative processes.
For example [1],such a condition for an aluminum plas-
ma with an electron temperature of about 1 keV requires
electron densities larger than 10 cm in order to
achieve LTE for the He-like ground state and H-like first
excited state. Taking into account that a corona is
defined for electron densities n, (n, = 10 'll, [cm ],
where n, is the critical density [1]and A, is the laser wave-
length in micrometers, it is evident that LTE is not
achieved in a "hot" dilute plasma.

With the advent of short laser pulses [2], a non-steady-
state plasma is created. Moreover, for these short pulses
(-psec) even the electrons might be far from LTE so
that an electron temperature is not properly defined.

In an LTE regime the equations of state (EOS) are well
defined [3]. The EOS relations are necessary in order to
solve the plasma fiuid equations. It is evident that in a
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plasma where LTE is not satisfied, such as a laser-
produced corona or a picosecond laser-produced plasma,
one cannot define a temperature and therefore EOS rela-
tions do not exist. In this case one has to solve a set of
rate equations describing the changes of the densities of
the difFerent possible quantum states.

The general kinetic rate equations for each type of ion
with a density N; are with A;. being the total rate for the
transition from level j to i and 8; the transition rate from
i to any j state:

N;
=g(AJ, NJ

—B; N;), i =1,...,v.
dt

Both AJ; and 8;J. contain collisional and radiative terms.
The numerical solutions of these kinetic equations are
treated by a large number of computer codes that have
been developed to simulate non-LTE experiments [4].

In this paper we follow the recently suggested idea [5]
of describing a non-LTE plasma by a few ion states in in-
teraction with electrons sustained in a medium of
"noise." The noise describes the extremely large number
of states not considered explicitly as well as all the col-
lision terms not taken into account.

%e will follow a scheme with three species of ion cou-
pled through ionization (I) and recombination rates (R),
neglecting both excitation and deexcitation. N. ;, N. ,
and N. +& are the number densities for these three ion
species. It is also assumed that rates are due only to col-
lisions with free electrons, avoiding the three-body
recombination that works near the LTE region. Also, ra-
diation terms are neglected. Then, the kinetic equations
for the relative population nj =N,-/N„with N, being the
total number density, are the following:
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dnJ
neRJ "j neIJ )nJ.

dt

dn
=n, I~,n~ &+n, RJ+,nj+, n—,(I, +R~)n~,dt

with the closure equation

(3)

time given by 1/B, one gets the steady-state solution
given by (11).

Let us consider a lithiumlike iron plasma (Z =26,
j =23), with an electron energy distribution about 600
eV and p=0.002 gcm (i.e., n; =2. 1X10'9cm 3). For
E23 850 eV and E24 = —1699 eV, obtained with a hy-
drogenic atomic model [9],one gets1=n,+n +n +,

and the constraint equation for charge conservation

nex—= =(j —1)n, , +jn +(j+1)n +, .

(4)

(5)

R23=1.565X10 ' cm s

R24=1.633X10 ' cm s

I22=I23=1.075X10 ' cm s

(13)

The values of RJ (radiative recombination rate) and I,
(collisional ionization rate} are given in the literature in
Refs. [5—8].

Equations (2)-(5) are four equations with four dimen-
sionless unknowns: n j, n, n +&, and x. An algebraic
combination of these equations yields

From Eqs. (7) and (8),

A = —2.29X10 s ', B=5.22X10 s (14)

and using Eq. (11) the average ionization is obtained:
x =22.8. Then the relaxation time for the numerical ex-
ample is t„=B '=2X10 s. The relaxation time
scales with electron plasma density n, as

=Ax +Bx, (6)

where we have assumed (d Idt )(lnx ) =0. A and B are
given by

and

N, (RJ+)RJ+RJ+,IJ (+IJ )IJ )A=-
Rj+)+R +Ij+IJ (7)

N, [(j +1)I,I, , +jR,+,I, , +(j —1)R,R, +, )B=
Rj + ] +Rj +Ij +Ij

(8)

From Eqs. (7) and (8) one gets A &0 and B )0. The po-
tential P describing the nonlinear damped anharmonic
oscillator of equation (6) is given by

P(x}=——x ——xA 3 B
3 2

where the equation of motion in the electron density
space is

dx BP
dt Bx

The potential P has a minimum at

(10)

(j +1)II &+jI &R +&+(.j —1)R R+&.
Rj + ]Rj +Rj + jIj ]+Ij ]Ij

&0.
The equation of "motion" (6} is of the Bernouille type
and has the solution

x(t)= 1 A+—e8 B
(12)

where xo is the initial condition [x(t =0)]. For t +~, —
or more practically t » tz, where tz is the relaxation

2. 1X10' cmttt= 2 ns (15)

g being the size of the random impulse, ej=0 or 1 is a
random variable, and t a random time sequence. The
random fluctuation 8'satis6es

(18)

where ( ) means a statistical average over the direction
of the "impulses" e and the time t . Equation (16) can
be written via the potential P,

dx BQ +~—
W

dt Bx
(19)

where —BPIBx is a deterministic "force" and &g W(t) a
random "force." The stochastic driving force ought to
have two parameters, namely, the pulse intensity (g) and
the rate at which the pulses occur. However, for a large
number of states not taken into account directly, but as-
sumed to contribute to the noise, one gets on single pa-
rameter: the rate at which the pulses occur is absorbed
into a combined strength parameter.

The Langevin equation (19) is equivalent to the
Fokker-Planck equation [10—12]

For example, for a critical plasma density of 9X10 '

cm [i.e., for 3' laser frequency obtained from a
Nd:YAG (neodymium-doped yttrium aluminum garnet)]
one gets a value of 100 ps for the relaxation time.

It is suggested that the collision terms, radiative and all
other interaction sources not taken explicitly into ac-
count in Eq. (6) be described by a "noise term. " In par-
ticular, Eq. (6) is changed into a Langevin equation

= Ax +Bx+&g W, (16)
dt

where the noise &g W is a random "force" in density
space

(17)
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a ay, a'f
dt Bx Bx '

Qx 2
(20) X +——X +— X+ =0.3A 2 1B g

2 B 2 g2 2A
(27)

where f (x, t) is the probability density for the variable x.
This equation is assumed to be equivalent to the full set
of rate equations. The difFusion term, the second term on
the right-hand side of Eq. (20) in density space, describes
the extremely large number of states not taken explicitly
into account. Experimentally we expect to measure an
average density (x ) given by

(x)(g, t)= ff(x, t)x dx, (21)

so that we have a one-parameter theory described by g.
The stationary state, df/dt =0, is given from (21) as

f (x)=foe (22)

f(x, t)=e i" e%i„(x)e

one obtains a Schrodinger equation for %'i„(x),

H% „(x)=A,%,(x),
where the Hamiltonian H is given by

(23)

(24)

fo being a renormalization factor. At equilibrium the
distribution f is maximal for a minimum potential P.

The Langevin equation (19) leads to the Fokker-Planck
equation (20) for the probability density f (x). By substi-
tuting into (20}

In analyzing the roots of Eq. (27) one defines

1 B g
1728 g

(28}

=38.45 ps,
1

go
(30)

which defines a time scale for the "noise." For a "large"
noise g &go the potential has one minimum, while for a
"small" noise g &go the potential [Eq. (26}] 4 has two
minima and one maximum (see Fig. 1).

For g =0 the potential 4 has a minimum at
x = —B/A, the same as that of P [Eq. (9)]. For a "small"
noise, i.e., g «go, one can find a minimum near —B/A.
Using perturbation theory one gets for the minimum of 4
the value

so that for D )0 one has one real and two complex roots,
for D =0 one has three real roots where one of these is a
double root, while for D & 0 one gets three real distinctive
roots. For the D =0 case one gets from Eq. (28}

1 B B
g =go=

+108 A2
=0.096 s (29)

Substituting the values of A and B [Eq. (14)] for the
Li-like ion plasma, one obtains

2

K———g +4
2 ax 2 (25)

B Ax= ——1 — g (31)

2
=—(A x +2ABx +B x )+gAx+LB .1

2
(26)

and the new potential 4 is related to the old potential by where x has the physical meaning of equilibrium ioniza-
tion. Since B & 0 and A & 0 the "shift" due to "noise" in
the equilibrium ionization is positive. So noise increases
the equilibrium average ionization.

The use of the WKB approximation in order to find the
solution of the Schrodinger equation (24) yields

The constant —,'gB can be discarded since 4 is defined up
to a constant. This potential has an extremum for
84/Bx =0, implying

S.
%,=pc,

dx

' —1/2

exp —s (x, A, )
l

j (32)
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FIG. 1. Potential 4 (arbitrary units) versus
average ionization (x) for several noise param-
eters (g). g is given in units of B /A .
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where s are the solutions of the Hamilton-Jacobi equa-
tion

2
dsj

+@=A, ,
2 dx

(33)

which satisfies

s.( xA)= J pjdx . (34)

The integration in (34) is done on the trajectories of
Hamilton's equation

dp dH dx dH

dt Bx dt t}p

H= —,'p +4(x),

(35)

(36}

where 4 is given in Eq. (26).
In this paper the non-LTE plasmas are discussed. In

these plasmas the temperature is not defined and there-
fore the thermodynamic equilibrium is not achieved. In
particular, the equations of state are not well defined and
therefore the "hydrodynamic" approach to these plasmas
is not useful. For non-LTE plasmas one has to use trans-
port equations (such as Boltzmann or Fokker-Planck)
with source terms. The source terms are described by
rate equations for the different species of the plasma. An
ion species is defined by its ionization and quantum state.
The plasma rate equations can be presented as a damped
anharmonic oscillator in the density space. For this

equation a potential P is defined [see Eq. (9)] which de-
scribes the time development of the ionization in the plas-
IIla.

In a "complex" plasma, e.g., a laser-induced corona
from a high-Z target, the number of ions species is ex-
tremely large so that a very large (~ ac ) number of rate
equations must be considered. This approach is very
difficult to follow and may be prohibitive on present
available computers. Therefore, we suggest describing a
non-LTE plasma by a few ion states in interaction with
electrons sustained in a medium of "noise." The noise
simulates the states not considered explicitly as well as
the collision terms not taken into account. This noise is
assumed to modify the damped anharmonic oscillator
equation into a Langevin equation for the electron densi-

ty. This Langevin equation is equivalent to the Fokker-
Planck equation. A transformation is made to obtain a
Schrodinger equation so that the set of the original rate
equations is described by a Schrodinger equation with a
potential 4 [Eqs. (24} and (25)]. This potential includes
the "noise" so that we have a one-parameter (g) Hamil-
tonian which should describe the time development of the
densities through Eq. (23).
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