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Cancellation exponents and fractal scaling
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We discuss a relationship between cancellation exponents [E. Ott et aL, Phys. Rev. Lett. 69,
2654 (1992); Y. Du and E. Ott, Physica D 67, 387 (1993)] and the classical Holder exponents [J.
Feder, Fractals (Plenum, New York, 1988)] for fractal scaling. We discuss cancellation exponents in
deterministic and stochastic settings and present two examples, that of Brownian motion and that
of velocity data from fully developed turbulence [K. R. Sreenivasan (experimental data)].

PACS number(s): 47.52.+j, 47.53.+n

INTRODUCTION

Recently Ott, Du, and others [1—4] introduced a cancel-
lation exponent to quantitatively characterize properties
of fields that vary in sign on small scales. The exponent
has proved to be relevant in problems in magnetohydro-
dynamics (MHD) and turbulence.

In this paper we show that in one dimension the Holder
exponent of a given signal is related to the cancellation
exponent of its derivative by a simple formula. We dis-
cuss the mathematical validity of the cancellation expo-
nents in several examples. We introduce a stochastic set-
ting not considered in previous discussions of cancellation
exponents and present two examples, Brownian motion
and turbulence.

I. HOLDER EXPONENTS

Holder exponents (or Lipschitz-Holder exponents)
arise in many contexts ranging &om classical analysis [5]
to scaling properties of observable phenomena in nature
[6 7].

The classical analysis definition is one of a bound, used
to define a modulus of continuity. A function f(t) is
Holder continuous with exponent a if there exists a con-
stant C such that for all t and r,

If(t) —f(t+r)l «lrl .

A modification of (1), in the context of self-similar scal-
ing, defines a quantity that has relevance to many observ-
able phenomena in nature [6,7]. Also called by the name
Holder exponent (or singularity strength), the exponent
n associated with the process X(t) satisfies the scaling
law

IX(t+ r) —X(t)l - Irl . (2)

To see if a given signal scales with a particular expo-
nent o., all one has to do is to take many samples of
IX(t+ r )

—X(t)l over many orders of magnitude of lrl
and see if one can fit a straight line to the data

ln]X(t+ r) —X(t)l vs lnlrl .

The slope of the line determines n. This Holder expo-
nent, as opposed to de6nition (1), is particularly relevant
to cancellation exponents.

It may be that a particular signal scales with many
diferent exponents o, on corresponding different sets of
fractal dimension f(cr). In this case the signal is called
multifractal [7].

A similar scaling de6nition [8] is relevant for stochas-
tic processes. The random variable X has probabilistic
Holder exponent ti if the variance of increments V(t —r)
[6] scales like lr I

". That is, Ii satisfies

E(IX(t) —X(t+ r)l') - (r)

Any function f satisfying this rule will automatically be
continuous, with modulus of continuity determined by
the right hand side of (1).

Such a definition determines the most singular behav-
ior of a given signal but does not determine more general
scaling properties. For example, the function f (x) = ]xi~
with 0 & P & 1 is smooth everywhere except at the ori-
gin. Because of the singularity there it is forced to have
a Holder exponent no larger than P.

Here E denotes expected value. In particular, the most
basic stochastic process, Brownian motion, has a proba-
bilistic Holder exponent h of 1/2. Also, fractional Brow-
nian motion, BH(t) has exponent II, by definition [9].
We define a more general Holder exponent h~ [10,11] by

(4)

The fractal Brownian motions all have trivial hq, in that
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hq
——H for all q. If a given signal shows hq to vary as a

function of q then it possesses nontrivial multi&actality.

II. CANCELLATION EXPONENTS

We now show a simple direct link between the Holder
exponent of a signal and the cancellation exponent of its
derivative. We consider the one-dimensional (1D) cas~.
Let X(t) be a signal with Holder exponent a and let
X'(t) denote it's derivative dX/dt Then ri satisfies

While Holder exponents are associated with continu-
ous processes, the cancellation exponents introduced by
Ott, Du, and others are associated with violently discon-
tinuous processes [12]. A typical example is the magnetic
field induced by a turbulent velocity field in an electri-
cally conducting medium.

They introduced the cancellation exponent in order to
measure the small scale cancellations of the magnetic
field lines. The definition, introduced by Du, Tel, and
Ott recently in [3], is the following. Given a "signal"
Y(t),

ln y(e)
,~o ln(l/e)

'

Hence

e "' = y(e)

) X'(t)dt

) iX(t, +e) —X(t, )i

a a—1

where In a stochastic setting, define

~(e) = ) Y(t)dt
I~

(
y(e) = E ) Y(t)dt dt = ) E Y(t)dt

r, r, ) * &
' )

and (Iz) represents a partition of the domain into boxes
of length e. The first notion of a cancellation exponent
introduced in [4] has q = l.

We point out that in order for (5) to have a nontriv-
ial limit the sum in (6) must become infinite as e -+ 0.
For q = 1, this implies that J' ]Y(t)]dt is infinite. If
one views Y as a "signed singular measure" Y does not
have bounded total variation, a necessary condition for
a signed measure to be o' additive [5]. In particular, the
integral jY(t)dt may not be well defined. A simple ex-
ample comes from the paper of Du, Tel, and Ott [3].
Define p(z) = P„ i f„b(z —z„) where f„= (—1)"/n,
z„= 1/n. One then obtains

2h = 1 —]&2. (8)

Using the definition of Holder exponent h~ from (4) we
obtain

Qhq = 1 —Kq.

III. EXAMPLES

Such a definition is intended for signals Y(t) that are
singular enough to suffer the same ambiguity as discussed
above. A similar derivation for the probabilistic Holder
exponent h then gives

1 OO

p(z)dz = ) (—1)" n,
0 n=1

(7) A. Brownian motion

which if summed in this order produces a bounded result:
—ln 2. On the other hand, it is a well known fact that the
alternating sum (7) can be summed in a difFerent order
to produce a different limit.

In previ. ous computations of cancellation exponents,
the ambiguity discussed above is overcome in two ways.
(a) For the case of a physically observable quantity like
a magnetic field, B(z), there is always a small difFu-
sive length scale present below which B(z) is completely
smooth. Hence one interprets (5) and (6) as a scaling
relationship over a range of ~ much the same as one in-
terprets the Holder exponent in (2) or (3). (b) Another
possibility, employed in [3], is to use the natural order-
ing of the line in one dimension to prescribe an ordering
for an alternating sum of the form (7). However, it is
unclear how to handle such a situation in higher dimen-
sions. For the purpose of the examples discussed below,
we interpret the integral Ji Y(t)dt in the same sense as

(a) above, that is, via a cutofF length scale.

For the first example we choose W(t) to be the stan-
dard Wiener process W(t) (Brownian motion). The ex-
pected value of ]W(t) —W(t + r)]''i scales as r~ for all
values of q due to the simple scaling properties of the
probability density function for W(t) [13]. Hence the
probabilistic Holder exponent hz of the signal is hz ——1/2
for all q. Equation (8) then predicts that the velocity of
a particle undergoing a Brownian motion has a 1D can-
cellation exponent of ~v = 1 —q/2.

The paths of a Brownian motion are nowhere differ-
entiable, hence one cannot compute the derivative of
such a function. However, we can approximate Brow-
nian motion as follows. Consider time intervals of length
At and over each such time interval take a step of size
S(i) = +Qb, t with equal probability of +Qbt. Then
define inductively W, (t; + bt) = W, (t;) + S(i)bt where
t; = (b,t)i, and ht ( b,t. The central limit theorem im-
plies that W, (t) i W(t) in the sense of distributions as
e = At m 0 [13].
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FIG. 1. An approximation to pure Brownian motion.
b,t=1/512. FIG. 3. A sample of velocity data from fully developed

turbulence.

W, (t) is differentiable almost everywhere. Given a re-
alization of W„we can compute the cancellation expo-
nent, eq, associated with dW, /dt. The scaling (5) will be
visible up to the cutoff length scale e. We use a simple
random number generator to create a candidate R', . Fig-
ure 1 shows a candidate W, (t). Figure 2 shows in[a(r)]
vs —lnr where y(r) = P,. I f& (dW(t)/dt)dt!, and (I;)
is a partition into boxes of size r. The straight line has
slope 0.47.

B. Turbulence

The second example is a velocity signal (fixed point in
space with variation in time) e(t) from experimental data
from fully developed turbulence [14]. The data comes
from a "single point" hot wire experiment with a sam-
pling rate sufhcient to resolve Kolmogorov scales in the
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FIG. 2. The cancellation exponent eq for the derivative of
Brownian motion.

FIG. 4. The Holder exponent h~ for fully developed turbu-
lence.
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for the velocity field. Figure 5 shows a plot of in[a(r)] vs
lnr for the velocity field. The slopes yield, respectively,
Ky = 0.65 and hg ——0.375. The discrepancy is due to
variation in the choice of data points used to compute
the slope. This data is well known to possess multi&actal
behavior [8] with difFerent values for h~ as q varies. The
relationship (9) between hv and Icz provides a method of
deriving eq &om hq and vice versa.

CONCLUSION
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FIG. 5. The cancellation exponent )cd for the same data
used to compute hq.

fiow. The details of the experiment are discussed in [4].
A sample of this data is depicted in Fig. 3. This example
was considered in [4]. In particular, they noted that the
cancellation exponent ei (computed from a 1D integral)
for the derivative of the velocity signal was approximately
0.6. This is consistent with a Holder exponent (first or-
der structure function) larger than 1/3 for the velocity
field in fully developed turbulence [15].

To check this relationship directly, we compute both
hi and tet for a sample of the velocity data from [14].
Figure 4 shows the plot of in E(]v(t) —v(t + r)]) vs ln]r]

In conclusion, we show that in one dimension, the
cancellation exponents can be computed &om quantities
(specifically Holder exponents) associated with an inte-
gral of the chosen field. This fact should be useful for
those wishing to calculate scaling properties associated
with cancellation or multi&actality.

Our last remark concerns a fully three-dimensional
quantity Y(x) such as the vorticity field in turbulence or
the magnetic field in MHD. In this case, a 1D cancella-
tion exponent, computed by taking data samples along a
given line is, by the above arguments, related to a Holder
exponent of a quantity whose directional derivative along
that line is the same field Y(z). Such a quantity has no
physical interpretation that we know of. It would be
interesting to understand how cancellation exponents as-
sociated with quantities like vorticity and magnetic field
are related to scaling properties of other physical quan-
tities such as the velocity field.
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