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Self-avoiding random walks on a family of diamond-type hierarchical lattices
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We have used the exact renormalization-group method proposed by Dhar to study self-avoiding ran-

dom walks (SAW's) on a family of hierarchical lattices. The generator of the lattices is made of I

branches and each branch has m bonds. We expect that since the lattices are infinitely ramified, the crit-
ical exponents of SAW's should be different from that on finitely ramified lattices and belong to a new

universal class. We calculated the critical exponents a, v, and y under the condition l (m, and, with Df
the fractal dimension, obtained the scaling law Dfv=2 —a, which agrees with other authors s con-
clusions. When l ~ m, we cannot work out the problem, and some discussion is given.

PACS number(s): 05.40.+j, 64.60.Ak

The application of fractals in physics was first pro-
posed by Mandelbrot [1]. Since fractal geometry is spe-
cially characterized by self-similarity, while Euclidean
space is characterized by translational invariance, it has
attracted great attention. Almost all statistical physics
problems have been studied again on fractals [2-4], and
one of them is self-avoiding random walks (SAW's).

SAW's were originally proposed as a model of polymer
chains [5], and its connection with other models was
found later [6,7]. SAW's on fractals have been studied by
several authors [4,8-12]. Their research shows that
SAW's on fractals are much difFerent from those on
translationally invariant lattices. It is certain that critical
exponents of SAW's depend on the geometry properties
of their support. On translationally invariant lattices, the
Flory formula [13] describes the relation of the critical
exponent v and geometry parameters, while on fractals
there may not exist a general formula. People have dis-
cussed the influences of fractal dimension, spectral di-
mension, and other geometry parameters on the SAW
critical exponents [4,8—12]. However, we have not yet
seen work on the in6uence of ramification.

In this paper we discussed SAW's on a family of
diamond-type hierarchical lattices [14], as shown in Fig.
1, which are infinitely ramified fractals. Many physical
problems about the lattices [14-17]have been discussed.
The fractal generator is determined by two parameter m

and l, where l denotes the number of branches and rn the
number of bonds in each branch. The fractal dimension
is determined by the formula

Df =ln(ml)/ln(m) .

In order to study SAW's, three functions are defined:

C(x)= lim (1/N) g C„(N)x",
Q~ oo n=1

(2)

P(x)= lim (1/N) g P„(N)x",
Pf~ oo

ll =2
(3)

&( )= li (1/N) g (R„)C„(N) "/C( ),g~ oo n=1
(4)

C(x) =K, (1—xls) r+(less singular terms),

P(x) =K2(1 —xjLt) +(less singular terms),

L(x)=K3(1—xjtt) "+(less singular terms),

(5)

(6)

(7)

where a, v, and y are critical exponents; p is a connective
constant; and E&, Ez, and E3 are constants.

In the case of a hierarchical lattice, Dhar [18]has pro-
posed a method to get the exact solution of SAW prob-
lems. The method depends on the character of the
hierarchical model. Its structure at stage r is constructed
by stage r —1 via an iteration procedure, and we can cal-
culate generating functions stage by stage in terms of the

where x is a weight factor associated with each step of
the walks, C„(N) is the number of distinct n-step SAW's
on a lattice with N sites, P„(N) is the number of distinct
SAW loops of n steps, and (R„) is the mean-square end-

to-end distance for n-step SAW's.
For very large n, we get the asymptotic behavior of the

above functions as x tends to 1/ls from below [7]:

'Mailing address.
FIG. 1. Growth of the diamond-type hierarchical lattice

(m =3, l =2). The first three stages are shown.
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recursion relation.
In the following, we will use Dhar's method to calcu-

late the critical exponents of SAW's on the above
diamond-type lattices. First, we define four restricted
partition functions, as shown in Fig. 2, where A„ is the
weight of all distinct SAW's starting from one vertex
point and terminating at one internal point in the rth
stage diamond-type lattice, B, is the weight of all distinct
SAW's starting from one vertex point and terminating at
the other vertex point, and D„and E, are similarly
defined.

Since the fractal is a hierarchical lattice, we can find a
set of recursion relations of restricted partition functions
between the (r+1)th and rth stage diamond-type lattice
as follows:

8

(rn —1)l +2a=
ml

ml+I —2
ml(ml —1) ' (22b)

FIG. 2. Four restricted partition functions for an rth stage
diamond-type lattice are shown. "X"denotes the vertex point;"o"denotes the ending point.

A„~)=f((B„)A„+f2(B,)E„,
B,+)=lB„

D„~,=f3(B„)A„+f4(B,)D„,
E +)=fs(B )E +fs(B.)A.

where f;(B,) is a function of B„:

f ) (B„)=l(1+B,+ +B, '),
f)(B„)=l(1+B„+ +B„),
f3(B, )=l(1+2B„+ +2B„)

(8)

(9)

(12)

(13)

b= ml +/ —1

ml —1

Then we have the following relation:

g m/ +l 1

rnl —1

(22c}

(23}

where X is the total number of sites.
We call a closed or open walk L of order r if r is the

minimum order such that L can be completely described
inside an rth stage diamond-type lattice. Then we find
immediately that the sum of the weight of all rth-order
SAW loops inside the rth stage diamond-type lattice is
l (l —1}(B„) /2. We obtain

+l(l —1}(1+B„+ +B„')
f4(B, )=mlB„

1)(Bm+Bm+1+. . . +B2m —2)

f (B„)=l(/ —1)(B, +B„+'+ ' ' +B ')

(14)

(15)

(16)

(17)

In Appendix A we have given an example of the con-
struction of recursion relation (8). The initial values (per-
tinent to the first stage diamond-type lattice) of these
functions are

l (l —1)(B„))
P(x)= g,=2 2a (rn/)"

(24}

Here the contribution of first-order SAW loops and some
small constant terms are neglected because the asymptot-
ic form of P (x) is determined by large r terms.

So, from Eq. (24} we can get the connective constant
p = 1/B '

by using the same argument as that of Dhar
[18], where B' is a nontrivial fixed point of Eq. (9) andB'= '=I-'" -"

By using recursion relation (19), Eq. (24) is rewritten as

A, =l(x +x + +x '),
B,=lx

D) =l(1+x+ +x )x

+/(/ 1)(x +x + ' ' ' +x™—1)2

E —l(/ 1)(xm+1+ m+2+. . . + 2m —1}

(18}

(19)

(20)

(21)

l(l —1)(B() p(B()P(x)= +
2a (m/)

(25)

We now turn to the critical exponent a. In order to
find a, we should consider that x tends to x', i.e.,
x =x' —5' ', where 5'o' is a small positive number. Then
we get B& =B*—

A, &5' ' under linear approximation, and
Eq. (25) becomes

Here we should point out that x is understood to be the
weight factor associated with each step of the walks other
than each site. Then we can calculate the generating
functions stage by stage using the above restricted parti-
tion functions.

First we calculate P(x } and solve the critical exponent
a. We denote N„ the number of sties in the rth stage
diamond-type lattice, and it is easy to obtain:

l(l 1)(x A 5(o)}2 P(x A, 5(o))
P(x' —5' ')= +

2a (ml) ml

(26}

where

BB) =m .
Bx

N„=a (ml)"+ b,
where a and b are independent of r and

(22a)
Considering Eq. (6) and comparing the singular parts

in the two sides of Eq. (26), we obtain



4702 BRIEF REPORTS

a=2 —ln(ml)/ln(m) . (27)

Second, we calculate L (x) and the critical exponent v.
The critical exponent v can be obtained by the scaling ar-
gument [19]. L (x) is transformed by the scaling transfor-
mation as 2 8 A

(1 p—x') "=b (1—px } (28)

where x'=B, is the weight for one-step SAW's after a
one-step scaling transformation and b =m is the scaling
factor.

Then, considering again the linear approximation
around the fixed point, i.e., x' —x'=A, ,(x —x'), one
finds

2 2 B„E

v=ln(m)/ln(A&)=1 . (29)

Combining the expressions of a and v, we acquire the
scaling law Dfv=2 —a. This relation has been proved
for many kinds of fractals [9—11,18] and may hold for all
fractals.

Finally we calculate C(x) and the critical exponent y.
In Appendix B we have argued that C (x ) has the follow-
ing form:

For r & ro, B, is approximated as zero. In this case, E„
is always zero, A, is

A„=G, (A,~) '(I) (37)

FIG. 3. All possible ways of constructing the restricted parti-
tion function A, + &

are shown {m =3, l =2). "o"denotes the
rth stage diamond-type lattice.

00

„[q&(B,-&)~r'-i+q2(Br z)/Ir iEr-
„=2 a(ml)"

and

D„=[A„]

+q3(B„,)E, ) +q4(B, , )D„

+q, (B„,)~„,+q, (B„,)E„,],
(30)

where q;(B„,) is a polynomial in B
Again, we consider x =x' —5' ' and choose a small

positive number c such that

From the expressions (30}, (37), and (38), we can find
easily that C(x} is divergent for any nonzero x when
l~m and finite for x &x' when I &rn Since .C(x) is
divergent when I ~ m, we cannot obtain an asymptotic
form such as expression (5), so we cannot get y by using
this method. When I &m, C(x) can be approximately
expressed by its largest term, which gives

1 » f.» 5' (31)
C(x)-E4 (39)

and

ro =—ln(e/5' ')/ln(A, , ) )) I . (32)

Then we have two regions: For r & ro, 5'"' is less than s
and B„can be approximated as B*.For r & ro, B, rapidly
approaches zero. Here, C(x)-IC~(e/5' '}r „ (40)

Here we have only considered the terms proportional to
(A,2)

' and neglected the terms proportional to (A,z) ',
since ro »1.

Substituting expression (32) into (39), we get

S'"'—=x' —B„=X",S"' . (33) with

For r & ro, A, and B, can be approximately written as y =in(A22/ml )/ln(m) .

A„=G)A,2,

E,=62K,2,

(34)

(35)

By now we have solved the three critical exponents a,
v, and y in the condition I &m, with a=2 —ln(rnl)/

where 6& and 62 are some constants of proportionality
and A,2 is the larger eigenvalue of the matrix

Ifi fz
[f6 fs

TABLE I. Some speci6c results for the critical exponents {a,
v, and y) are shown, together with the fractal dimension Df, the
eigenvalue A,2, and the connective constant p.

Df

D„=6,X,",
where 63 is constant.

(36)

Inserting Eq. (35) into Eq. (10) and considering A,z~to be
numerically larger than f4(x '), we get [9]

1.63
1.50
1.43
1.68
1.86

0.37
0.5
0.57
0.32
0.14

2.77
2.46
2.28
2.92
3.36

1.41
1.26
1.19
1.32
1.41

5.6
7.8
9.9

13.5
16.7
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q (Q ) A q,(8, ,», & ~r-~ q (8„,) E
FIG. 4. The six possible rth-

order SAW paths within an rth
stage diamond-type lattice are
shown. "X"denotes the vertex
point; "o"denotes the (r —1)th
stage diamond-type lattice; and
the larger circle one denotes the
rth stage.

q (, ,) q (e

in(trt), v= 1, and y =in(Az/tttl )lln(ttt), and got the rela-
tion Dfv=2 a, whi—ch agrees with the conclusions of
other authors. In Table I we have shown specific results
for a, v, and y, together with the fractal dimension, the
eigenvalue A,2, and the connective constant (u.

We notice that the critical exponent v is always 1 and
is equal to the results of SAW's on nonloop structures. It
can be understood as follows: On the infinite lattice the
number of going-far-away SAW's is much larger than
that of those going back along the loops, so we obtained
the same critical exponent v as that on a nonloop struc-
ture.

This work was supported by the National Basic
Research project "Nonlinear Science, " the National Nat-
ural Science Foundation of China, and the State Educa-
tion Committee grant for doctoral study.

APPENDIX A: THE DERIVATION
OF EQ. (8) IN SEC. II

In the following we show the construction of the recur-
sion relation (8). As an example, we consider the case
m =3, 1=2. All possible ways of constructing A, +, are
shown in Fig. 3. By summing all contributions, we get

Then for general m and I, we can similarly get

A„+t=f)(8, ) A„+f2(B„)E„,
where

f i =l(1+8„+ +8„'),
f2=i(1+8„+ +8„).

This is just Eq. (8) in Sec. II.
APPENDIX B: THE DERIVATION OF C(x)

(A2)

In the following we express C(x) by the four restricted
partition functions. In Fig. 4, we have shown all possible
rth-order SAW paths within an rth stage diamond-type
lattice, where q;(8„ t) is a polynomial in 8„,. Then,
summing all the contributions shown in Fig. 4 and using
the same approximation as in Eq. (24},we get

00

C(x)= g [q, (8, , )A,', +q, (B„,)A„,E,
„=2 a(ml)'

+q3(B, ,)E„,+q4(B„,)D„

+qs(8, i)A, i+qs(8„ i)E„ i] .
(B 1}

A„+)=2(1+8„+B„)A„+2(1+B„)E,. (Al) This is just Eq. (30).
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