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Solving the time-dependent Schrodinger equation numerically
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We introduce an explicit scheme to solve the time-dependent Schrodinger equation. The scheme
is a straightforward extension of the second order differencing scheme to the fourth, sixth, and
higher order accuracy. The accuracy is remarkably improved with minor changes in the second
order differencing program. This method is conditionally stable. There is a trade-off between the
higher order accuracy and the condition of stability. The performance is evaluated and compared to
the standard methods, such as the Crank-Nicholson scheme (CN) and the Chebyshev scheme (CH).
The new scheme is much more accurate than CN, almost equal to CH.

PACS number(s): 02.70.—c

I. INTRODUCTION

With the increasing availability of high performance
computers, the development of efficient integration meth-
ods of the time-dependent Schrodinger equation [1]

i —(@,t) = H)g, t)

HiE )=E iE ), (m = 1, 2, . . . , X) (2)

while the range of energy spectrum is defined as

&Egv id = Ema, z Emin &

where E = max[{E )] and E,„=min[{E )] are
the largest and the smallest eigenvalues of the Hamilto-
nian.

The formal solution of (1) is expressed by the time
evolution operator, which is represented by a matrix ex-
ponential function [1]

~P, t + At) = exp (
—iHAt) ~P, t).

Various schemes have been proposed to approximate this
exponential function [8—10]. The simplest Euler scheme
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has become an important task in various fields of physics
such as scattering theory [2], quantum chaos [3],quantum
wire [4], tunneling time problem [5], laser-atom or laser-
molecule interactions [6,7], etc. In this paper, we assume
that H is a time-independent Hamiltonian represented by
an X x N Hermitian matrix and ~g, t) is a wave function
represented by an N-dimensional complex vector. The
atomic unit h = m, = e = 1 is used throughout this
article. The eigenstates of the Hamiltonian are denoted
as

(EU) expands the exponential function to the first order
of HAt

~P;t+At) = (1 —iHAt)~P;t)+O((HAt)'), (5)

and uses (5) repeatedly to obtain ~P; t+ nAt). This is an
explicit scheme, that is, it does not need matrix inversion,
but it is unstable due to the lack of the time symmetry
(t ~ t). Moreo—ver it is not unitary.

To avoid this instability, the Crank-Nicholson scheme

(CN) has been widely used in which the exponential func-
tion is approximated by Caley transform

iP, t + at) = . iP, t) + O((HAt)'). (6)

~P, t + At) —iP, t —At)

= [exp (—iHAt) —exp (+iHAt)] ~P, t)
= —2iHAt if, t) + O((HAt) ').

This scheme is symmetric in time and shown to be condi-
tionally stable [10]. Furthermore the scheme is accurate
up to (HAt)2.

The more accurate and stable method is the Chebyshev
scheme (CH) [8]. This method is classified as a global
propagator method. Et uses very long time steps and
sometimes completes the calculation with a single time
step. The CH approximates the exponential function in
(4) by a Chebyshev polynomial expansion

This scheme is unitary, unconditionally stable, and ac-
curate up to (HAt)2. However, this implicit method is
prohibitive in more than two dimensions due to the large
memory and CPU time required by the matrix inversion.
Therefore, the development of explicit, stable integration
methods has been desired.

One of these explicit methods is the product formula

[9]. Another is the symmetrized version of the EU, which
is called the second order differencing scheme (MSD2)
[10],
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~ P, t) = exp[ —i(b Eg»~/2 + E;„)t]
&CH

x ) a„(P)4„(—iH„) ~P, t = 0),
n=O

where the 4 are the Chebyshev polynomials, P
b,Eg„,dt/2, and a (P) = 2J (P) with ap(P) = Jp(P).
Here J„(x) is Bessel function of the first kind. The nor-
malized Hamiltonian is de6ned as

up to the machine limit. The only shortcoming of the
CH is that the intermediate wave functions are not avail-

able, while the stepwise methods, such as the CN and the
MSD2, produce the wave function at each time step. The
purpose of this paper is to develop improved versions of
MSD2 that have both the advantages of the MSD2 and
the accuracy of the CH.

2 (bEg„,H„= H —I
~

'"' +E;„
EEg»g & 2

where I is the N x N identity matrix. The number of
terms is taken as Ng~ ) P to converge the sum, because
the coefFicient J„(P) decreases exponentially for n ) P.
The CH is very accurate and the error can be reduced

I

II. MULTISTEP DIFFERENCING SCHEME

The extension of MSD2 (7) to the higher order ac-
curacy forms, which we call the multistep differencing
scheme (MSD), is straightforward. For example, the
fourth and sixth order MSD (MSD4 and MSD6) are, re-
spectively,

[y, t+ 2bt) = [y, t —2bt) —4iH&t ——[y, t) + —([y, t + &t) + [y, t —&t)) + O((H&t) ),
1 2

(10)

13 7
~y, t+ S~t) = ~y, t - S~t) —6iH~t —~4, t) ——„(~y,t+ ~t)+ ~y, t - &t))

+—(~P, t+ 2b, t) + ~P, t —26t)) + O((HAt)').

Equation (10) for the MSD4 is derived as follows.
First, we expand the exponential functions

—2iHBt +2iHBt

= —4iH~t —-(iHAt)'+ O((Hb, t)')
3

I

and Hamiltonian matrices. Therefore the wave function
remains in the same eigenstate during the time evolution
if the initial wave functions are prepared in an eigenstate.
Thus the growth factor g can be de6ned as

~E, t+St) =g~E, t),

= —4iHb. t
~

1 + —(iHAt)
~
+ O((HAt) s),2

e '~~'+ e+'~a' = 2+ (iHbt)'+ O((HAt)').

Then, comparing (12) and (1S), we obtain

(12)

(is)

g = exp (—iE b,t) . (16)

where g is a complex number. Here we ignored the pos-
sible t dependence of g as in Ref. [10]. If the scheme
calculates the exact time evolution, the growth factor
becomes

+2iH&t

4jH/t
~

—+ —(e 'H+ + e+' +
) ~

1 2

S S

+O((Hb, t) ). (14)

Finally, Eq. (10) is derived by multiplying (14) to ~P, t)
The sixth and the higher order MSD's are derived also in
a similar way. Note that these schemes have symmetry
in time as the MSD2.

However, an approximate scheme gives the growth factor
of general form

g = ~g~exp( —iE bt+xe i, ).

If ~g~ g 1, then the error in norm grows exponentially as

~g~
"'~ —1, where N, i,„is the number of time step. Thus

the scheme becomes unstable. On the other hand, if ~g~
=

1, then the norm is conserved, and the accumulating error
appears mainly in the phase error ~ph „.Note that phase
error accumulates, after N, t p time evolution, as

III. STABILITY, ERROR, AND COST ANALYSIS &.tep
&ph~~e —&phaee step & (18)

Let us study the time evolution of the eigenstates ~E )
in various schemes, i.e., the EU, CN, and MSD's. Note
that (5)—(7), (10),and (ll) contain only identity matrices

which grows not exponentially but linearly in time.
Introducing (15) into (5), we obtain the growth factor

equation of the EU,
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g+in —1 = 0,

where o. is the dimensionless time step

n =E At. (2O)

gI2 ———to+Ql —n .

If the stability condition o. & 1 is satis6ed, the absolute
value of the growth factor becomes unity,

~g~
= f1+a') 1. (21)

For the CN of (6), the growth factor equation becomes

Then, the scheme is found to be unconditionally unstable,
(26)

which shows that the MSD2 is conditionally stable.
In the same way, the growth factor equations are ob-

tained for the MSD4 and MSD6, respectively,

1 —in 2

1+ia/2' (22)

8. 3 4. 2 8.
g + —zo;g ——

zing + —zo.g —1 = 0,
3 3 3

(27)

g2+ 2iag —1 = 0 (24)

and its solutions

&om which the unconditional stability of CN is shown as

i1 —i~/2I
[1+in/2/

For the MSD2 of (7), we obtain the growth factor equa-
tion

33. 5 21. 4 39.
g + —zing ——zng + —zing10 5 5

21. 2 33.——io.g + —ing —1 = O. (28)
5 10

The absolute value of the numerical solutions of (27) and
(28) are plotted in Fig. 1 as a function of n. The graphs
show that MSD4 is stable if n ( 0.4 and MSD6 is stable
if a ( 0.1. There is a trade-off between the higher order
accuracy and the condition of the stability.
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FIG. 1. The absolute value of the growth

factors g, as a function of the dimensionless
time step a = E b,t. (a) MSD4 and (b)
MSD6.
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CN
~phase

MSD2
phase

MSD4
~phaee

1= —a N, ~.p,12
13= ——a N, pep)6

7 5= —O. N, pep)90

(29)

(30)

,MSD6 41 7
~phaee O' Nstep840

(32)

The above criteria about the stability and the errors can
also be applied to a general wave function, which is a
superimposition of many eigenstates, by rede6ning the
parameter a as

The phase error under the stability condition can be
estimated by the Taylor expansion of the time evolution
operators in (6), (7), (10), and (ll),

the number of matrix multiplying operations. For MSD,
it is equal to the number of time steps,

TcpxJ = t/b, t = (E,t)/a

TcpU = E,t/2. (36)

Thus the MSD costs 2/o, times more than the CH. How-

ever, the MSD produces (E,t)/a intermediate wave func-
tions, while the CH usually produces only one 6nal wave
function. Thus the CPU time per wave function becomes
1 for the MSD and E,t/2 for the CH. Therefore the cost
of MSD per wave function is less than that of the CH by
the factor 2/E, t.

and, for the CH, it is equal to the number of Chebyshev
polynomials KcH in (8), which is estixnated as

where

n=E, At,

E, = xn ax[/E i, (E;„ij.

(33)

(34)

IV. NUMERICAL EXAMPLES

In this section, we study the Hamiltonian of an electron
in one dimension,

Now let us study the computational cost of the MSD
and the CH. The CPU time TcI U can be estimated by

II = —+ V(z),
2
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FIG. 2. Phase error in the time evolution
of iEx). The dimensionless time step is (a)
n = 0.1 and (b) a. = 0.01. The lines show
the theoretical predictions.
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TABLE I. Grid, potential, p en ia, and wave function parameters
(atomic units)

Grid
Ax =1
N = 100

Potential
Vo ——0.2
xL, ——45
xR ——55

Wave function
x=25
k = 0.63
0 =10

where V(x) is the static potential. After discretizin
in space, the Hamiltonian is approximated by the ti ht
binding form

e y etig t

N+i %+1
0= ca . t~+i + chic +i + ) e~c c~, (38)

i=O i=O

where ~t) is the electron state at the ith site. Note that
the energy is shifted by —1/b, z so that E bec

e Hamiltonian (38) is represented by a sym-
metric tridiagonal matrix of N dimension.

In the following, we take (38) as the startin
our stud and do

as e s arting point of
u y an o not discuss the errors caused by the

space discretization from (37 to 38
this a e

o ~ ', since the aim of
t is paper is to evaluate the accuracy of the to e ime evolu-
ion sc erne but not of the space discretization scheme.

A. Eigenstaies

In the case of V z = 0, the exact eigenstates and
eigenvalues of the Hamiltonian (38) with the boundary
conditions (39) are well known,

c,. and c, are the creation and
annihilation operators of an electron at the site x.

z(i =, , . . . , N + 1). The boundary condition is

(i = o~p) = (i = x + 1~p) = o,

N+a

/E )=A) sin( m//i),gN+1
—1 ( mE = cos

i x+

(40)
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FIG. 3. Phase error in the scattering of a

wave packet. The dimensionless time step is

(a) a = 0.1 and (b) cL = 0.01.
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where A is a normalizing constant and m is an integer
m = 1,2, . . . , N. Therefore, the exact time evolution of
~E ) is calculated from (40) and (41) as

does not depend on the value of a, as each plot of the CH
is calculated &om the initial state by a single global time
step. Since the error of the MSD6 is proportional to a,
it approaches to the accuracy of the CH when a = 0.01.

~E, t), ,t ——exp (—iE t) ]E ). (42)

All numerical results in this article are calculated in the
complex double precision of FORTRAN.

Figure 2 shows the phase error of ]Eq, t)«t, calculated
by the five schemes (CN, MSD2, MSD4, MSD6, and CH)
as a function of the dimensionless tixne E t. The phase
error is defined as

&phase —]arg [cate(E8888 t[E8888 t)ez88ct] ]
. (43)

The auxiliary initial wave functions at t = At, 24t, . . .,
required by the MSD's are calculated directly from (42).
The state m = 1 is chosen as an example since it has the
largest ]E ], forcing the severest condition of accuracy.
Errors of other eigenstates are much smaller. The param-
eter n is 0.1 in Fig. 2(a) and 0.01 in Fig. 2(b). The error
becomes smaller for higher order schemes and for smaller
time step a. See Table I for other paraxneters. The theo-
retical predictions of the error (29)—(32), are also shown
in the figures by lines, which agree with the calculated
values. Note that the error of the CH is the sxnallest and

B. Scattering of a wave packet

Figure 3 shows the phase error in the scattering of a
wave packet as a function of the dimensionless time E,t.
Figure 3(a) is for n = 0.1 and Fig. 3(b) is for n = 0.01.
Since we have no exact solution of this problem, we use
the solution of the CH in place of the exact one. Thus the
phase error is not available for the CH. See Table I for
other parameters. Note that the time is taken sufEciently
long so that the wave packet is scattered by the potential.
The initial wave function is a Gaussian wave packet

(i~/) = exp
~

i'(x; —x)—
('. (x; —*-)')

~~/4 0 q
' 2o2 )

(44)

and the auxiliary initial wave functions at
At, 24t, . . ., which are necessary to start the MSD, are
prepared by using the Taylor expansion of the time evo-
lution operator
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1$; t) = exp (—iHt) [P; t = 0)), lg;t =0),
-':"

(—iHt)"
(45)

where N g „ is the order of the MSD. The scattering
potential is a rectangular potential

y( )
+o (+I ( +' ( +R)
0 (otherwise). (46)

Qualitatively, Fig. 3 shows the same features as Fig. 2,
while the error is smaller than that of Fig. 2. The reason
is because a wave packet is a superimposition of many
eigenstates whose error is smaller than that of [Eq).

Figure 4 shows the norm error in the scattering of a
wave packet as a function of the dimensionless time E,t.
The norm error

extension of the conventional second order differencing
scheme. We compared the performance of the higher
order MSD and that of the MSD2. If the stable condition
is satis6ed, the MSD2 can be replaced by the higher order
MSD with a slight increase of CPU time and memory
storage, but also with orders of improvement in accuracy.
Therefore higher order MSD is superior to the MSD2
when the accuracy is important.

Comparing the higher order MSD with the CH, the
MSD requires 2/a times CPU time for the accuracy com-
parable to the CH, o. = 0.01 for the MSD6, but it pro-
duces E,t/cr times more intermediate wave functions, so
that the cost per wave function becomes 2/E, t of that
of the CH. Therefore the higher order MSD is recom-
mended rather than the CH when the intermediate wave
functions are important.

e-- =
I -i.(4 tlat t)-~. —11 (4?) ACKNO%'LEDGMENTS

is smaller than the phase error and does not increase
monotonically as a function of time.

V. SUMMARY

In summary, we proposed an integration scheme of the
time-dependent Schrodinger equation, which is a natural
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