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Fast, accurate algorithm for numerical simulation of Levy stable stochastic processes

Rosario Nunzio Mantegna

(Received 28 October 1993)

We propose a fast and accurate algorithm generating Levy stable stochastic processes of arbitrary in-

dex a ranging between 0.3 and 1.99. The scale parameter is also controllable. The algorithm is very fast

when a lies between 0.75 and 1.95.

PACS number(s): 02.70.—c, 02.50.—r, 05.40.+j

I. INTRODUCTION

It is well known that there are stochastic processes
which are stable [1], i.e., stochastic processes that satisfy
the following property: A stochastic variable z, which is
a linear combination of several independent stochastic
variables x identically distributed, has a probability den-
sity of the same form of the x variables. Therefore, stable
processes are stable attractors in a functional space of
stochastic variables. For example, the sum of n indepen-
dent stochastic variables of finite variance converges to a
well-known stochastic process: the normal (or Gaussian)
process. The above statement is a different version of the
celebrated central limit theorem.

On the other hand, it has been shown by Levy [1] that
the sum of n independent stochastic variable showing a
probability distribution characterized by power-law
wings I'(z&u)~~z~ converges to a stable process
characterized by a probability density, which is now
called a Levy distribution [1,2]. The index a of the Levy
distribution is ranging between zero (excluded) and two
(included).

Since the new paradigm of fractal dimension [3] has
emerged, an increasing amount of attention has been de-
voted to stochastic processes with power-law distribu-
tions. Theoretical, numerical, and experimental investi-
gations of Levy stochastic processes have been carried
out in different fields as fully developed turbulence [4,5],
biological [6—8], polymeric [9], and economic [10] sys-
tems.

Levy stable processes are difBcult to manage either
theoretically or numerically. In fact, they are character-
ized by probability density with diverging moments and
the analytical form of the symmetrical Levy stable distri-
bution is not known except for a few special values of the
index a. Moreover, an accurate algorithm generating
Levy stable processes of selectable index a and scale pa-
rarneter y all over the definition range is known only for
a =2 (normal process) and a = 1 (Cauchy process).

In this paper, we propose an algorithm for numerical
simulation of a Levy stable symmetrical stochastic pro-
cess of any index a, with a ranging continuously from 0.3
to 1.99. The algorithm is very fast for 0.75 + a ~ 1.95,
where the required Levy stable stochastic process is gen-
erated in a single step.

The paper is organized as follow: in Sec. II we recall

the main properties of symmetrical Levy stable processes,
in Sec. III we illustrate the proposed algorithm, and in
Sec. IV we draw our conclusions.

II. SYMMETRICAL LEVY STABLE PROCESSES

where a and y are two parameters characterizing the dis-
tribution. In particular, a defines the index of the distri-
bution and controls the scale properties of the stochastic
process [z j, whereas y selects the scale unit of the pro-
cess. Only in a few cases is the analytical form of Eq. (1}
known (a=2 Gaussian distribution, a = 1 Cauchy distri-
bution, a= —'„anda= —,'}. Levy stable processes can have

diverging moments. In fact, it can be shown that ( ~z ~")
is diverging for g a when a & 2. It is worth noting that
even if some moments of the distribution are in some case
diverging, the stochastic process [z j is fully defined from
a mathematical point of view if 0(a (2 and y & 0 [1].

In the following, for the sake of simplicity, we set y = 1

unless differently stated; this does not affect the picture of
the process because it is always possible to rescale the
used units. For our study it is important to consider the
series expansion [11]for large arguments (z »0)

1
"

( —1)" I(ak+1) . kna +Ra, l z k+1 S1Q z
k=1 ~ z 2

(2)

where I (z) is the Euler I' function and

R(z) =O(z '"+' ') (3)

By using the series expansion [Eq. (2)], we can con-
clude that the asymptotic approximation of a Levy stable
distribution of index a is for large values of z given by

I (1+a)sin(ma/2) Crs(~)
L i(z) =

m-z"+ ' (]+a) (4)

From the above equation it is evident that Levy stable
distributions are characterized by a power-law behavior
on the far wings of the distributions. However, the index

The probability density of a symmetrical Levy stable
process is given by [1]

e)
L (z}=—f exp( —

yq }cos(qz )dq,
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III. THE ALGORITHM

During the past years, a huge number of numerical
simulations of power-law distributed stochastic processes
have been carried out [3,13,14]. Obviously it is quite sim-

ple to write down an algorithm for numerical simulation
of stochastic variables characterized by a power-law dis-
tribution, however, the processes obtained with a simple
algorithm are not Levy stable because the probability
density is difFerent from the value expected starting from
Eq. (1) for z =0 when z =0. We already stated in the In-
troduction that a sum of several independent variables
having the same power-law distribution will eventually
converge to the Levy stable process characterized by the
same asymptotic power law. In the following, we will
show that this convergence is usually quite slow, more-
over, it does not allow us to control the scale factor y of
the obtained stochastic process. In several simulations
concerning random processes, it is very important to con-
trol the exact nature of the investigated stochastic pro-
cess and the exact value of the scale factor. Below we
present an algorithm that allows us to generate a stochas-
tic variable whose probability density is arbitrary close to
a Levy stable distribution characterized by arbitrary
chosen control parameters (0.3 & a ~ 1.99, y & 0).

To illustrate the algorithm, we divide it in three succes-
sive steps. The first step is to calculate

/y /

1/a (6)

a of the distribution does not control only the wings of
distribution, it also a8'ects the value of the distribution at
the origin. In fact, starting from Eq. (1), it can be shown
that

I (1/a)
&{X

A number of other properties are reported in the litera-
ture [12,13] for stable distributions (asymptotic approxi-
mations, numerical values, etc.).

o, (a)= I (1+a )sin(tra/2)
I ((1+a)/2)a2'

1/a

(12)

With this choice, the distributions of Eqs. (7) and (1) have
the same asymptotic behavior for large values of the sto-
chastic variable u. In Fig. 1, we compare P(u) obtained
for a=1.5, o„=0.696 575, cr =1 with L, »(v}; the two
curves, obtained by numerical integration of Eqs. (1) and
(7), are different in the region close to the origin but coin-
cide on the wings. The inset of the figure shows the two
curves in a semilogarithmic plot; from this inset, it is evi-

dent that the two distributions almost coincide for

oui
& 10.

By using Eq. (12) we obtain the asymptotic coincidence
of the two distributions for large values of the stochastic
variable U; the second step is to ensure that the probabili-

ty density of the generated stochastic process [u j coin-
cides all over the range with the Levy stable distribution

The analogy between Eqs. (8} and (9}and Eqs. (4) and (5)
is quite remarkable. Unfortunately, it is not possible to
choose a couple of values for o and 0. that satisfy the
following conditions simultaneously for an arbitrary
value of a:

C, s(a)=C, (rr, or, a),
L,(0)=P(u=0) .

These conditions are jointly satisfied for += 1 only by a
couple of values (cr„=cr =1). In this case, the distribu-
tion P(u) coincides with a Cauchy distribution character-
ized by @=1 [L, , (u)]. As the standard deviations cr„
and 0. cannot be chosen independently for an arbitrary
value of a, we set 0. = 1. After this setting, we determine
the value of 0., by requiring that the asymptotic values of
P(u) coincide with the asymptotic values of L 1(u), i.e.,
we determine O.„bysolving the equation

CLs(a)=C, (o„,l, a) .

By using Eqs. (4) and (8), we obtain

where x and y are two normal stochastic variables with
standard deviation O.„and0. . By using the probability
theory, it can be shown that the probability distribution
of the stochastic process [ v ] is given by

P(v)= I y' exp
P'0 ~0y 0 2' y

2cT ~
dy . (7)

This probability density has very interesting properties,
in fact, for large arguments of the stochastic variable
(!v! »0), it is well described by the asymptotic approxi-
mation

0.4—
I

j
l

0.3-I

I

0.2 q

a=1.5

4
-20 10 0 &G 20

v

(8)
a2 o'„I((a+1)/2) C„(o„,cry,a)'

P(u)= (]+a) ( I+ ) -10 10 20

whereas its value at the origin is

2(1—a)/2ao 1/al ((a+ 1 ) /2a )
P(u =0)=

FIG. 1. Comparison of the Levy stable distribution of index
+=1.5 and scale factor y=1 615,(v) with the probability den-

sity of Eq. (7) obtained by setting a = 1.5, o.
~
= 1, and

o.„=0.696575 [Eq. (12}I. The semilogarithmic inset shows that
the two functions are almost coincident for ! v! & 10.
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of the same index a and scale factor y=1. In analogy
with the normal case, one can think that it is sufhcient to
sum up a limited number n of independent variables each
of them distributed in accord with Eq. (7), i.e., it is
suScient to consider the stochastic variable

the nonlinear transformation

w =
[ [K(a)—1]exp( —v/C(a)]+1 j u (15)

1l

zn ty~ X uk
k=i

(13)

+10
e (n)= g [P(z„) L,(z)]—

z,z„=—10
(14)

by using probability density with 100 points ranging be-
tween —10 and +10 usually. In Fig. 2, we show the re-
sult of a numerical simulation performed by setting
a=1.5, 0„=1,and o„=0.696 575. As expected, the er-
ror sum of squares e (n) (upper sets of points in the
figure} is a monotonically decreasing function of the num-
ber n of intermediate independent stochastic variables

[ v j. However, the convergence of [z„jtowards a Levy
stable process of index a is very slow. Even using more
than 100 intermediate stochastic variables [u j, we are
still quite far from a complete matching between the two
processes. To reach a faster convergence to the Levy
stable process of index a, we propose to perform an ap-
propriate nonlinear transformation. We will show that

In Eq. (13) the scaling factor n '~ ensures that the vari-
able [z„jis characterized by the same scale factor y
characterizing the stochastic variable v [2].

The above argument is correct but the convergence of
the stochastic process [z„jis quite slow. To quantify
how slow the convergence is, we simulate an entire family
of stochastic processes [z„jcharacterized by the same
control parameters, but with n varying from 1 to 125.
The calculations are done by using Eqs. (13) and (6). The
closeness between the generated stochastic process and
the Levy stable process of the same index is quantified by
calculating the error sum of squares between the two dis-
tributions,

allows an almost immediate convergence towards the
Levy stable process of index a, if the two parameters
K(a) and C(a) are properly determined. This statement
is fully supported from the numerical results reported in
Fig. 2. In this figure, in addition to the set of points al-
ready illustrated, we report the e, (n) obtained by com-
paring P(z,„)with L t(z} (lower set of points in the
figure), where

7l

zen ]y g wk
k=i

(16)

P(w=0)=L &(0) . (17)

Close to the origin (w =0), Eq. (15) is well approximated
by

w=K(a)u, (18)

is a weighted average of n independent stochastic vari-
ables w generated by using Eq. (15). The points in the
figure are obtained with a = 1.5, 0.„=0.696 575,
K(a) = l. 599 22, and C(a) =2.737. From the figure it is
evident that by performing the additional nonlinear
transformation of Eq. (15), the convergence to the Levy
stable stochastic process is very fast and a high accuracy
is reached even when n = l. In fact, the value of e, (1) is
well below the value of e (125) and the scattering ob-
served in the curve of e, (n) is related to the finiteness of
the number of realizations (2X104 realizations} used to
determine the P(z,„).

We determine the optimal value of K(a) by requiring

and then Eq. (17) will be satisfied if

Cv
4J

Ul0

-2-

-3-

a=1.5
P(v =0)

t(0)

aI ((a+ 1)/2a)
I (1/a)

aI ((a+ 1)/2)
I (1+a }sin(ma/2)

By using Eqs. (5}and (7), we obtain

1/a

(19)

20 40 60 80 100 I20
n

FIG. 2. Error sum of squares between the Levy stable distri-
bution L&, &(z) and the distribution of the stochastic processes
simulated as a function of the number of independent stochastic
variables n obtained by using Eq. (13) (CI) with a=1.5, o„=1,
and o =0.696 575 and Eq. (16) (C') with a = l.5, o„=1,
cr„=0.696575, K(1.5)=1.59922, and C(1.5)=2.737.

(20)

In Table I, we report a set of values of K(a) as a func-
tion of a. To illustrate the procedure we used to deter-
mine the optimal value of C(a), we first need to analyze
the first derivative of Eq. (15). The first derivative of Eq.
(15) assumes the value w = 1 for v =C(a), and it is always
higher (lower) than 1 for u &C(a) and lower (higher)
than 1 for u & C(a) when a & 1 (a & 1). So that the point
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0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.95
1.99

9.922 44
3.1382
2.104 11
1.70047
1.479 34
1.333 91
1.226 37
1.13999
1.066 18
1

0.938 291
0.878 829
0.819 837
0.759 679
0.696 575
0.628 231
0.551 126
0.458 638
0.333 819
0.241 176
0.110693

0.000032
0.021 243
0.124 698
0.273 51
0.423 607
0.560 589
0.683 435
0.795 112
0.899 389
1

1.10063
1.205 19
1.318 36
1.446 47
1.599 22
1.793 61
2.064 48
2.501 47
3.461 5

4.806 63
10.498

2.483
2.767 5

2.945
2.941
2.900 5

2.831 5

2.737
2.612 5

2.446 5

2.206
1.791 5

1.392 5

0.608 9

v =C(a), i e., the point w(C)=[[K(a)—I]/e+1]C(a)
does not need correction if

P[w=w(C)]=P(U =c)=L i[w(C)] . {21)

We can write this last equation as an integral equation by
using Eqs. (1) and (7):

TABLE I. Values of the control parameters o„{a),%{a),
and Cz(a) used with the algorithm of Eqs. (6), (15), and (16) to
generate Levy stable stochastic processes of index o. and scale
factor {y= 1). The parameters o (a) and E(a) are obtained by
calculating Eqs. {12)and {20),respectively, whereas C2(a) is ob-
tained by solving numerically the integral equation given in Eq.
(22).

C2(o.)

1 iq q q ~C(a}
pro'» o 2 2g 2 (a)

oo

cos
VT 0

K(a)—1 +1 C(a) exp( —
q )dq .

We solve this integral equation numerically. We fj.nd two
different solutions C, (a) and C2(a) in the interval
0.75~a~1.99. In Fig. 3, we plot the values of C, (a)
and Cz(a) together with the numerical estimation of the
interval of C(a), which speeds up the convergence to-
wards the Levy stable process of the selected index a.
This interval is determined by simulating for several
values of C(a) the stochastic process for a selected value
of a (in this analysis we use to obtain each e [C(a)]
2X10 realizations of the stochastic process}. For each
value of a, the best interval is determined by using the
measure defined in Eq. (14). In the figure, for several
values of a, we show e;„asa small box and a bar which
indicates the interval of the C(a) values providing e

values, which differs by less than 10% from the minimum
value e;„.A direct analysis of Fig. 3 allows us to con-
clude that Cz(a) is the value that speeds up the conver-

gence of the generated stochastic process towards the
Levy stable stochastic process of index a and scale factor
y= 1. The values of C2(a) for several values of a are
summarized in Table I.

The e6'ectiveness of our algorithm is shown in Fig. 4
where we present the probability density of the stochastic
process obtained by using the algorithm of Eqs. (6), (15),
and (16). The control parameters are a=1.5, n=1,
cr, =0.696575, K(a)=1.59922, and C(a)=2.737. In
the figure, boxes are the result of the simulation (10 real-

C2 {a)

c) (a)

t

Ci ti

)E
JL

03—

0.2—
1
t

0.1
I

a=1.5
n=1

0 l

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
-10 -8 -6 -4 -2 0 2 4 6 8 10

FIG. 3. C&(a) (0) and C2(a) (A) are the numerical solutions
of the integral Eq. (22). The bars are the intervals of C(a) that

speed up the convergence towards a Levy stable process. These
intervals are obtained by performing numerical simulations of
the process with several di5'erent values of C(a) and by studying
the error sum of squares [Eq. (14)j for each of them. The E;„is
indicated with a black box.

FIG. 4. Probability density ( ) of the stochastic process ob-
tained with the algorithm of Eqs. (6) and {15) (n =1) together
with the Levy stable distribution L&, &(z) {continuous line).
The control parameters of the stochastic process are a=1.5,
o.

~ =1, o.„=0.696575, X(1.5)=1.59922, and e{1.5)=2.737
and the number of realizations are 10 . In the inset, the two dis-
tributions are plotted by using a logarithmic scale to evidence
the agreement on the wings of the distributions.
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6- a
v=

5- n

2-

I I I I I I I0

0.012-

0.009-

0.006-

0.003-

a=
FIG. 8. Probability densities (black boxes)

of Levy stable processes of index o, =1.5 and
scale factor y=0.01 (a) and y=100 (b). The
stochastic processes are simulated by using

Eqs. (6), (15), and (23) and we use 10 realiza-
tions to obtain each distribution. The control
parameters are reported in Table I for o.= 1.5,
n = 1. The continuous lines are the Levy stable
distributions of index a and corresponding
scale factor y.

-0.5 -0.3 -0.1 0.1 0.3 0.5 -250 -150 -50 50 150 250
Z

Fig. 8, we show two probability distributions obtained for
a=1.5 and n =1, the usual control parameters (Table I,
but for the following values of y: y =0.01 [Fig. (8a)] and
y=100 [Fig. (8b}]. Both simulations (black boxes in the
figure} are in full agreement with the Levy stable distribu-
tions obtained by numerical integration of Eq. (1} for
a = 1.5 and y =0.01, 100 (continuous lines in the figure).

The algorithm of Eqs. (6} and (16} is fast and efficient
within the interval 0.75~a~1.95. The upper limit is
determined by the fact that for a) 1.95 the function of
Eq. (15}is not invertible, and due to this, the probability
density has local minima. On the other hand, the integral
equation [Eq. (22)] has no real solutions for a &0.75 so
that this value fixes the lower limit of maximal efficiency
of our algorithm. It is worthwhile to point out that the
algorithm of Eqs. (6) and (16) is efFective even outside this
limit. The only problem outside the maximal efficiency
interval is that to reach a given degree of accuracy, it
could be necessary to use a relatively high number n of
intermediate independent stochastic variables. The best

value of C(a) in this case must be determined by using a
heuristic approach. The effectiveness of our algorithm
outside the interval 0.75 ~ u ~ 1.95 is illustrated in Figs. 9
and 10. In Fig. 9, we show the probability distribution of
the stochastic process generated by setting a=0.3 and
n =100, whereas in Fig. 10, we show the probability dis-
tribution obtained by setting a =1.99 and n = 10; the oth-
er control parameters are reported in Table I. The agree-
ment between the probability distributions of the simulat-
ed processes and the calculated Levy stable distributions
is excellent over the entire range. We calculate the Levy
stable distributions either by numerical integration of Eq.
(1) (a=1.99) or by using the polynomial expansion pro-
vided in [12] (a=0.3).

IV. CONCLUSIONS

In this paper we present an algorithm generating Levy
stable stochastic processes of arbitrary choosen index o;

a=0.3
n =100
C(o) =

0.3

a=1.99
n=10
c(a) =0.86

0 I

-0.5 -0.3 -0.1 0.3 0.5 0-
-10 -8 -6 -4 -2 0 2 4 6 8 10

FIG. 9. Probability density (Q) of the stochastic process ob-
tained with the algorithm of Eqs. (6), (15), and (16) with a=0.3

and n =100 together with the related Levy stable distribution
Lo 3 1 (z ) (continuous line) ~ The other parameters are as report-
ed in Table I. The heuristic choice of the parameter C{0.3)=20
is not critical.

FIG. 10. Probability density {Cl) of the stochastic process ob-

tained with the algorithm of Eqs. (6), (15), and (16) with a= 1.99
and n=10 together with the related Levy stable distribution

LI 1 99 1 (z ) (continuous line) . The other parameters are as report-
ed in Table I. The heuristic choice of the parameter
C(1.99)=0.86 is critical.
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and scale factor y. The algorithm is efFective for any
value of y and for a lying in the interval 0.3 a (2. The
algorithm is very fast when a is selected between 0.75 and
1.95. In our opinion the availability of a fast and accu-
rate algorithm will be useful to perform simulations of
several systems where Levy stable processes are involved,
especially when one is interested in the details of the dy-
namics of a system where a well-characterized Levy
stable process is present.
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