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Temperature efFects in a nonlinear model of monolayer Scheibe aggregates
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A nonlinear dynamical model of molecular monolayers arranged in Scheibe aggregates is derived from
a proper Hamiltonian. Thermal fluctuations of the phonons are included. The resulting equation for the
excitons is the two dimensional nonlinear Schrodinger equation with noise. Two limits of the complicat-
ed spectrum of the noise are considered: time independent, spatially white noise, simply corresponding
to disorder in the arrangement of the molecules, and pure white noise. Parameter values are found by
comparison with experiments by Mobius and Kuhn [Isr. J. Chem. 1$, 375 (1979)] and order of magni-
tude estimates given where experiments are not available. The temperature dependent coherence time is
found from numerical simulations. Experiments show that the excitons stay coherent during their life-
time. This is in correspondence with the model at temperatures lower than 3 K. To increase this limit-

ing temperature it is found that the dipole-dipole coupling and the exciton-phonon coupling must be de-

creased signi6cantly.

PACS number(s): 87.22.Bt, 05.40.+j, 63.20.Kr, 66.90.+r

INTRODUCTION

Exciton motion in molecular systems is an important
field of physics and has been undergoing active theoreti-
cal and experimental investigations. For a general review
on excitons see, e.g., Davydov [1]. The field derives its
importance from it being a part of the general area of en-
ergy transfer and its consequent connection with a
variety of disciplines, even those outside physics, such as
photosynthesis in biology [2].

The possibility of experimental studies of energy
transfer in molecular systems was greatly influenced by
the development of the Langmuir-Blodgett (LB) tech-
nique in the 1930s [3,4]. With this technique molecular
thin films may be produced that consist of only a single
layer of molecules. The molecules may be arranged in a
predetermined structure and several layers may be
stacked on each other. Thus LB films are particularly
suited for studies of energy transfer, since the positions
and orientations of the molecules are fixed and the dis-
tance between donors and acceptors can be varied sys-
tematically. For a general review on LB films and their
many applications see, e.g., Tredgold [5] or Blinov [6].

In a particular kind of LB films, the molecules are ar-
ranged in so-called Scheibe aggregates [7],which is a spe-
cial highly ordered and compact molecular structure,
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reflecting itself in a strong narrow absorption band and
almost coinciding fiuorescence band of the film [8]. This
characteristic Scheibe aggregate band (or ~ band) will not
be present in films where the molecular structure is less
ordered and compact.

Molecular aggregates, such as Scheibe aggregates, are
abundantly found in biological systems where they func-
tion as energy funnels for sunlight to be used in photo-
chemical reactions [9). Aggregates of dyes have also
found technological application as sensitizers in the pho-
tographic industri [10] and recently they have shown
promise for use in the field of photoelectronics [11].

Studying cyanine Scheibe aggregates, Mobius and
Kuhn have observed highly eScient energy transfer over
unusually large distances between donor and accepter
molecules at room temperature [12,13]. The effect is up
to ten times stronger when donors and acceptors are situ-
ated in the same layer than if situated in adjacent layers
[13]. In both cases the efficiency of energy transfer is pro-
portional to the temperature in the range 20-300 K [13].
In LB films with less ordered and compact molecular
structure than in Scheibe aggregates, the energy transfer
is less eScient, and no temperature dependence is ob-
served in the range 20—300 K [12].

One of the main results of Mobius and Kuhn's work on
cyanine Scheibe aggregates is that the excitons stay
coherent during their lifetime and that the lifetime (radia-
tive decay rate) of the exciton increases (decreases) with
increasing temperature. They interpret this as a tempera-
ture dependent domain size of the exciton. This was also
found by De Boer and %'iersma from studies of pseu-
doisocyanine bromide Scheibe aggregates [14]. Similar
conclusions were drawn by Itoh, Ikehara, and Iwabuchi
who studied the fluorescence lifetime of excitons in CuC1
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microcrystals [15],and by Feldman et al. [16],who stud-
ied the same effect in GaAlAs quantum wells. The exper-
imental results reported in Refs. [14—16] were all ob-
tained by spectroscopic xneasurements.

While in the past much work on Scheibe aggregates
was aimed at understanding the spectroscopy [17], re-
cently the focus has changed to comprehend the dynami-
cal properties of these aggregates. Thus Mukamel and
co-workers [18] have established the existence of a tem-
perature dependent coherence size of the exciton from
nuxnerical calculations in one dimension, provided that
the exciton dephasing time scale is much shorter than the
fluorescence lifetixne and that the exciton-phonon cou-
pling is weak. When the coupling was strong, purely
noncoherent motion is observed, with an effective coher-
ence size of only one molecule, independent of tempera-
ture. The conclusion that the experimental results may
only be reproduced if the exciton-phonon coupling is
weak is also reached by Bartnik and Tuszynski, who
studied a purely quantum mechanical model of Scheibe
aggregates [19].

Huth, Gutmann, and Vitieilo [20] have proposed a
nonlinear model of Scheibe aggregates, where the
coherent domain observed experimentally is supposed to
arise froxn nonlinear dynamical effects in the aggregate.
Thus the xnodel is based on the cubic nonlinear
Schrodinger (NLS) equation [21] with energy transfer
occurring through solitary waves. The model was formu-
lated in one dimension where the NLS equation is inte-
grable and has soliton solutions [21]. However, it was
supposed to hold also in two dimensions with the initial
conditions becoming ring waves [22]. In two dimensions
the NLS equation is no longer integrable, and thus the
ring wave may collapse at the center [22]. Christiansen
et al. [23] used this collapse of the ring waves in the non-
linear model to predict the lifetime of Mobius and
Kuhn's exciton at room temperature. For a general re-
view on collapse phenomena in NLS equations see, e.g. ,
Rasmussen and Rypdal [24].

The nonlinear model of Huth, Gutmann, and Vitiello
requires a strong coupling between excitons and phonons,
which contrasts the result obtained by Mukamel, Bart-
nik, and their collaborators that the coupling must be
weak. It is noted that the definition of weak and strong
coupling is not clear in this connection. Furthermore,
the model does not take thermal effects into account.
Thus a natural question arises: Can solitary waves exist
in Scheibe aggregates at room temperatures

It is the aim of the present work to answer this ques-
tion and thereby clarify whether or not nonlinearity and
strong exciton-phonon coupling may be consistent with
coherent exciton motion in Scheibe aggregates. In partic-
ular the oxacyanine monolayer Scheibe aggregate studied
experimentally by Mobius and Kuhn [13] will be used as
physical example. The model is in terxns of a postulated
Hamiltonian, and therxnal fluctuations of the phonons are
taken into account. The resulting dynaxnical equation for
the excitations becoxnes the two dimensional NLS equa-
tion with noise, where the noise has a rather complex
spectruxn. The initial excitation of the aggregate is
modeled by the ground state solitary wave (GS) solution.

The time evolution of the excitation, deterxnined by nU-

merical solution of the two dimensional (2D) NLS equa-
tion, is coxnpared with the experimentally observed
domain of coherence. Paraxneters in the model are deter-
mined from experimental results or by orders of magni-
tude estimates. In particular the temperature dependence
of the coherence time is investigated.

DERIVATION OF THE MODEL

where n and p count molecules on the aggregate
(n,p = 1,2, . . . ,f ) and f is the total number of molecules
considered. 8 „(8„)are creation (annihilation) opera-
tors, Eo is the molecular site energy, and —J„p is the
dipole-dipole interaction energy. The phonon energy,
which is treated classically, is given by

,'m g [u„'-+~ou„'], (3)

where M is the molecular mass and u„(t) represents the
elastic degree of freedom at site n. The molecules are ap-
proximated by Einstein oscillators, all oscillating at the
same frequency ~o and thus only optical phonons are tak-
en into account [26]. Finally the exciton-phonon interac-
tion energy operator is

H;„,=y g u„k„8„,

where g is the exciton-phonon coupling parameter.
The classical Hamiltonian is given by

H=Tr[p(t)H j,
where p( t) is a nonequilibrium density matrix [27] and Tr
denotes the trace. Introducing the classical function

p„„.(t)=Tr[p(t)B„S„], (6)

Hamilton's equation for H, given by Eq. (5), gives the
equation for u„

Mii „+M clou„=yp„„.

To describe the interaction of the phonon systexn with a
therxnal reservoir at temperature T, damping A. and noise
7)„(t) are included

MQ& +MAQ& +MCOOQ+ =gp+& +YJ&

Note that the noise is additive, ixnplying that phonons are
being created and destroyed. g„(t) is assumed to be

The derivation follows closely that of the Davydov
model of energy transport in protein [25], except that the
present system is two dimensional and that thermal fluc-
tuations of the molecules are taken into account. Thus
the following energy operator is considered

8=H,„+A',„+8,„, . (1)

The first component of 8 is the exciton energy operator

H,„=y Z,B„'8„yy—J„,S„'k, ,
nAp p
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Gaussian white noise with zero mean and the autocorre-
lation function

(2}„(t)ri„.(t') ) =2M' kT5(t —t')5„„, , (9)

where the strength is chosen according to the classical
fluctuation-dissipation theorem [28], which ensures
thermal equilibrium. The damping coef6cient A, is the
linewidth of the infrared absorption peak and k is
Boltzmann's constant.

Inserting the Hamiltonian, given by Eq. (1), in the
quantum mechanical Liouville equation for the nonequili-
brium density matrix

ci =ci —
2 lp„(0)l

~o

C2=C2
Meso

(18)

y„(t0)= f(co)g(~), (19)

where f(co) is the Lorentzian

The noise s„(t) is not white, but strongly colored. It can
be found from Eqs. (9) and (17), and is most conveniently
expressed in Fourier space

i' = [P,p], (10) f(~)= 1

No co +i A,co
(20)

and equation for p„„.(t) is obtained

Pnn' X pnppn 'X Jpn'Ppn
pAn p+n

+X~nPnn' +~n'I nn' '

Assuming that p„„.(t) may be written as a product

p„„(t)=P„'(t)P„(t), (12)

and the tilde denotes the Fourier transformation.
The first two terms on the right-hand side of Eq. (17)

are the solution of the homogeneous part of Eq. (14).
They are fast oscillating, with the perturbed eigenfre-
quency co, &coo, while the third term, proportional to
l P„(t }l, varies slowly. To remove the fast oscillating
part, we average over a period of the oscillations and ob-
tain the solution

itic„+ g J „P +yu„P„=O,
pn

Mu„+MAu„+Me@Du„=pip„ I +21„,

(13)

(14)

Eqs. (8) and (11) lead to two coupled equations for the ex-
citons and phonons

t+ti
n ~ +~n

t Mcoo
(21)

where l(()„(t)l is the probability for finding the exciton at
site number n. Equations (13) and (14) resembles the one
dimensional Davydov equations solved numerically by
Lomdahl and Kerr [29). Their conclusion was that
Davydov solitons do not exist for suSciently long time at
300 K to be of physical interest. In this case we derive a
single equation describing the dynamics of the exciton
system.

The solution to Eq. (14) is easily written down pAn
(22}

Thus the modulus of the exciton wave function is the
slowly varying mean value of the rapidly fluctuating pho-
nons. The averaged noise is still exact.

Inserting the solution, given by Eq. (21},into the equa-
tion for the exciton wave function, Eq. (13), the discrete
self-trapping equation (DST) [30] is obtained

u„(t)=c,e '~ cos(to, t)+c2e '~ sin(t0&t)

+ y s 2+~ ~ e
—k(t r)/21

Mco&

where the nonlinearity parameter V is given by
2

X (23)

Xstn(co, [t r) )dr, — (15)

where c, and c2 are constants of the initial state, and the
perturbed eigenfrequency co, is given by

co, =coo+1—e, e=A, /(2coo) . (16)

+, lp„(t) l'+s„(t), (17)

where the redefined coe%cients c„and c2 are given by

The parameter e is normally small for solids.
Assuming that lP„(t)l varies slowly compared with

sin(to, t ), the solution to Eq. (15) becomes

u„(t)=c,e ' cos(co, t)+c2e ' sin(co, t)

Without the assumption that e '~ varies slowly com-
pared with cos(co&t), V would become time dependent.
The noise o „(t)is again given in Fourier space

& sin(mo/t0&)
cr„(co)= e 'f(co)rt„(e2) .

%CO /CO
~

(24)

Note that averaging over a period 2m/co& in real space
leads to multiplication by sin(

neo�

/co
&
}/(iso�/co

&
) in

Fourier space, with zeros at the harmonics of co&. This is
seen in Fig. 1(a), where the solid curve is the power spec-
trum of the noise before averaging s„(t) and the dashed
curve is the influence of averaging. The power spectrum
of the resulting noise a „(t) is shown in Fig. 1(b).

In Eq. (22) the exciton number N, defined as the total
probability for finding the exciton in the system
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( co ) /s ( (j )
( p i' Jot/A

$, (r, t)=~Aosech ~ e
O

25—

here given with zero initial velocity and center at r =0.
The initial amplitude Ao and the initial width 80 are
given by

—
Cdp

[8 (co)/c (O)f

Cdp

1 Jo 12 ln(2)
I V 41n(2) —1

1/2
2 In(2)+ 1

6 ln(2)

' 1/2

The real parameter K reflects a similarity transformation,
under which the NLS equation without noise is un-
changed [33]. For P, given by Eq. (28) it follows that

(

—2Cd
g

N =f f ~P, ~
dx dy =11.73

Thus in order to fulfill Eq. (27) we must have

(30)

FIG. 1. (a) Power spectrum of the noise before averaging,
~X'„(co)~'/~s„(0)

~
(solid), and 100 [sin(neo/co, ) /(nco jco, )]'

(dashed). (b) Power spectrum of the resulting noise,
~0„(co)~ coo=-10" s ', and A, =10"s

(2&)

is a conserved quantity, reflecting that the noise is multi-
plicative and only disturbs the coherence of the wave
function.

Taking only nearest neighbor coupling Jo into account
i4Jot /R

and making the gauge transformation P„~e
Eq. (22) may be approximated by the 2D NLS equation

(26)

where ~P(x,y, t)) = ~P„(t)~ /I is a probability density

V =11.73 .
Jo

(31)

The exact value of E for the GS solution has been
found numerically to N= N, =11.6—9J&/V [34]. For real
initial conditions with N larger (smaller) than N, the solu-
tion collapses in finite time (disperses) [24]. Since N & N,
for P, the solution will eventually collapse, though the
collapse time will be large. Even if the exact solution
could be found, a small perturbation, such as that intro-
duced by discretization in numerical simulations, would
cause a localization in finite time. This interplay between
discretization and collapse is studied in [35]. However,
for all numerical simulations presented here, the collapse
time of P, is much larger than the considered coherence
time. Thus P, represents a time independent solitary
wave solution.

N= f f )P(x,y, t)~'dx dy=l (27) MODEL PARAMETERS

and cr(x, y, t)=o „(t)/I a noise density. I is the distance
between nearest neighboring molecules in the Scheibe ag-
gregate.

INITIAL CONDITION

The initial excitation of the Scheibe aggregate is
modeled by the GS solution to the 2D NLS equation.
The GS solution is chosen because it represents a local-
ized domain of coherence, as is also found experimental-
ly, and it has the smallest value of N of all solitary wave
solutions. This solution will then propagate over the ag-
gregate, its dynamics being determined by the 2D NLS
equation as long as it stays coherent.

The 2D NLS equation is not integrable and possess un-
stable solutions that may collapse in finite time. Corre-
spondingly the GS solution has not been found analyti-
cally. However, using a variational approach [31], An-
derson, Bonnedal, and Lisak have derived the approxima-
tive form of the GS solution [32]

In this section the values of the parameters appearing
in the 2D NLS equation, Eq. (26), are estimated for the
monolayer oxacyanine Scheibe aggregate studied by
Mobius and Kuhn [13]. The aggregate is represented as a
brickstone work [7], each brick being a molecule, and the
molecules are represented as extended dipoles [36], as
shown in Fig. 2. Experimental data are listed in Table I.

0 0

N+ "=&N

I-
& EIHz~ L &sH&~

0XRI."YRNjNE 50LECULL'

FIG. 2. Left: brickstone work representation of a monolayer
Scheibe aggregate, with each molecule represented as an extend-
ed dipole. Right: oxacyanine molecule.
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TABLE I. Physical parameters for the oxacyanine Scheibe aggregate used in Mobius and Kuhn s ex-
periment [13].

Brickstone length
Brickstone width
Dipole length
Transition dipole moment
Dielectric constant of the aggregate

15.5 A
4.0 A
8.9 A

3.13X10 Cm
2.25

From Fig. 2 and Table I, the distance between nearest
neighboring molecules 1 is found to be

1=+a /4+5 =8.72 A (32)

and the mass of an oxacyanine molecule is

M=49[C]+83[H]+2[N]+2[0]=1.21X10 24 kg,

(33)

where [ ] denotes the atomic mass.
Since I is comparable with the size of the molecules, a

point dipole approximation would be inadequate. Instead
the molecules are approximated by extended dipoles [7],
with the equivalent dipole charge p,„/d, where p„ is the
transition dipole moment and d the equivalent dipole
length. This gives interaction energies in good agreement
with the results from quantum mechanical computations,
by which Czikkely, Forsterling, and Kuhn found that
p„=3.13X10 Cm and d =8.9 A for oxacyanine mol-
ecules [36,13]. The dipole-dipole interaction energy Jo
can thus be found from static calculations

(Ptr/d) I 1 1+
ATE'„6'0 P i3

=3.6X10 ' J

24

1 1

~23 ~i4

(34)

The phonon eigenfrequency coo and the linewidth of the
infrared absorption spectrum A, are not known. However,
in solids common values are of the order of 100 and 10
cm ', respectively. Thus co&=10'2 s ' and A, =10" s
will be used as order of magnitude estimates.

The Davydov model of energy transport in protein by
solitons [25] has been studied over two decades and com-
plete agreement has not yet been reached on the value of
the exciton-phonon coupling parameter y. The best
currently available value is in the range 35-62 pN [37].
The application of nonlinear dynamical models in the
study of Scheibe aggregates is fairly new and correspond-

ingly no estimates of g have been published yet. Thus
squinting at the Davydov model, the value 10 ' N will
be used as an order of magnitude estimate of y. The non-
linearity parameter Vis found from Eq. (23).

The parameter values, summarized in Table II, are as-
sumed to be temperature independent. Only the noise
strength o (x,Y, t) will be temperature dependent in our
model

From the values given in Table II it follows that

=23V

0
(35)

which is a factor of 5 smaller than the value given in Eq.
(31). In view of the fact that V ~y, and given by an or-
der of magnitude estimate, a factor of 5 is acceptable.

APPROXIMATIONS OF THE NOISE

4') 8cog A,kT
~cr „(c0)~'= (cr „(0)~'5(co) = 5(co),

3Mcoo
(36)

where ~cr„(0)~
is obtained from Eq. (24}. This simply cor-

respond to disorder in the arrangement of the molecules

Usually, when noise is simulated numerically, it is
defined in Fourier space and then transformed back to
real space [38]. In two dimensions, and for the large
number of molecules we want to consider, this would re-
quire an excessive amount of storage capacity. However,
in the two limiting cases of time independent and pure
white noise, this problem is easily overcome. The time
independent noise is only calculated initially and the
white noise can be generated for each time step by a ran-
dom noise generator. In Fig. 3

~
cr „(co}~

is shown in the
two cases.

We first approximate the power spectrum of the noise
in Eq. (22), o„(t), with a 5 function with the strength
equal to the integral over the interval —

co& & co ~ c0,,

TABLE II. Estimated values of the parameters in the nonlinear model of the monolayer oxacyanine
Scheibe aggregate used in Mobius and Kuhn's experiment [13]. An asterisk indicates that the value is
an order of magnitude estimate.

Molecular mass
Distance between molecules
Phonon eigenfrequency
Linewidth of infrared absorption spectrum*
Exciton-phonon coupling parameter
Dipole-dipole couplihg energy
Nonlinearity parameter

M
I
0

x
Jo
V

1.2X 10 kg
8.72 A
1012 s

—1

1011 s
—1

10 ' N
3.6X10 ' J
S 3X10—» J
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2/3

lcr (u }/cr (o}}2

1.5—
i5 str ength=dul/3

0.5—

white noise for

JO ++Dwhite

The loss parameter I is connected to the variance D„hite
through the simple relation

—2Cd
g 2Cd (

= 1

2A
(45)

FIG. 3. Power spectrum of the noise, lo„(~)l'/Io. (0}l'.
White noise [ I V„(c0}I

=
23 ] and time independent noise

[Io„(co}I'=(4&0,/3}5(co}] approximations are indicated. Pa-
rameters are taken from Table II.

In Eq. (43) N decays exponentially N=Noe ', indicat-
ing that the coherence of the exciton is being destroyed
by collisions with the fluctuating phonons. This allows us
to estimate the coherence time as

in the aggregate. Transforming back and making the
continuum approximation leads to Eq. (26), in which the
noise density o(x,y, t) has the autocorrelation function

1
coh 2~2'

$2
4 1

—]5 300 K
t'D„„,„ T

(46}

(o(x,y, t)cr(x', y', t')) =Dds«d„5(x —x')5(y —y') .

Here the temperature dependent variance Dd;„,der is
given by

4Nip AkT
D disorder

3 I 4I 2
7T COp

(38)

At T=300 K the strength of the noise is

Ql Dz;,«4„=1.2X10 ' I, which is of the same order
of magnitude as Jp and V. With this approximation of
the noise an analytical estimate of the coherence time
cannot be obtained.

In the pure white noise approximation the power spec-
trum of the noise in Eq. (22), tr„(t), is constant and given

by the mean value in the interval —
co&

~ co ~ co&,

)l2 2
I

— (0)l2 x4y AkT

3M~o
(39)

4y AkT
white 3M 4I P

(41)

Introducing a deterministic function g(x,y, t) des-
cribing the coherence of the stochastic wave function
P(x,y, t) through

(P'(x,y, t)P(x', y', t)) =f'(x,y, t)g(x', y', t),
we obtain [39—41]

t ~g, +I'J.~'y+ I'I'I yl'y= fI'ery, —(43)

when the noise o (x,y, t) in Eq. (26) is approximated with

In this case the autocorrelation function for the noise
density in Eq. (26) becomes

(o(x,y, t)a(x', y', t') )

=D„„;„5(x—x')5(y y')5(t t') . —(4—0)

Here the temperature dependent variance D„h;„ is given
by

Clearly the white noise approximation is poorer than the
disorder approximation since it has infinite energy, in
contrast to the finite energy of the real noise. Thus it is
expected that the white noise will lead to an extremely
short coherence time of the exciton, which is also predict-
ed by Eq. (45) (2.4 fs at T=300 K). However, it
represents a limiting case (shortest coherence time).

NUMERICAL RESULTS

The 2D NLS equation, Eq. (26), is solved numerically
with a second order split-step Fourier scheme [42,41] and
using the time independent and white noise approxima-
tions. The approximation of the GS solution, Eqs. (28)
and (29), is used as initial condition.

Figure 4 depicts the time evolution of the distribution
of the probability amplitude lg( ,xyt)I for the time in-

dependent noise (right) and white noise (left) at room
temperature. The difFerence between the energy content
of the noise in the two approximations is clearly seen.
For white noise the exciton is scattered very rapidly and
coherence is completely lost after approximately 10 ' s.
However, the solution stays coherent considerably longer
than predicted analytically (2.4X10 's s), as also found
in [40,41]. For the time independent noise the solution
remains coherent for approximately 10 ' s, which is 10
times longer than for the white noise. Furthermore, the
pulse keeps its form during the scattering process.

The correlation between P(r =0, t) and P(r, t) is shown
in Fig. 5, where the mean value is taken over all direc-
tions. Only one seed of the noise is used, which accounts
for the observed fluctuations. The destruction of coher-
ence is clearly seen. De6ning the coherence time t„h as
the time where IP(r =O, t)l has decreased by a factor of
e, the two approximations for white noise and time in-

dependent noise, respectively, result in

t„h(T=300 K)=4X10 ' s,

t„h(T =300 K)=4X 10 ' s,
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found from the numerical simulations.
The experiments by Mobius and Kuhn have shown

that the exciton stays coherent during its lifetime t&;&,

[13]. Thus in order for the nonlinear model to be
relevant the predicted coherence time must be larger than
the lifetime found experimentally [13]

lower than T0 the coherence time is larger than the ex-
perimentally found lifetime. Thus the nonlinear model is
relevant in this temperature regime, where it may de-
scribe the dynamics of the coherent exciton. %'ith the
parameters given in Table II T0=3 K is found from the
numerical simulations.

lP
—10

hfe 3PP K
(47) APPLICABILITY AND MODEL PARAMETERS

Scoh =4X 10 ' s (48)

The temperature where the curves for t„h and thf, in-
tersect is denoted T0. At higher temperatures than T0
the predicted coherence time is smaller than the lifetime
found experimentally. Thus the nonlinear model is not
relevant in this temperature regime. At temperatures

In Fig. 6 the numerically found coherence time for
time independent noise and the lifetime, given by Eq.
(46), are plotted versus temperature. The average has
been taken over three seeds of the noise. The tempera-
ture dependence is seen to follow a power law

0.24

Due to the very low critical temperature T0, the appli-
cability of the model seems limited. However, T0 de-

pends on the model parameters. %'e note that t„h, as
function of Dd;„,s„,is given by

'PJ2
t„h=a

0
2I Ddisorder

(4&)

where a and P are found numerically to be

a=8.07, P=0.24 . (50)

Inserting the parameter values given in Table II yields
Eq. (48). The average value of the power spectrum of the
noise is not a constant, and Eq. (38) must be replaced by

Initial condition

2 1

(t) (x, y, t)
,
2e (o, o, o)

0

x/L

White noise Disorder

t =I.oxlo "s

5 a ~ .

I

t =2.0x10 s

.&I

I

FIG. 4. Snapshots of the
probability amplitude

~ iti(x, y, t) ~'

for the numerical solution to Eq.
(26). Initial condition is the GS
solution, Eqs. (28) and (29). Pa-
rameters are taken from Table
II. T=300K.

t =3.2x10 s t =40x10 s

1
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The equation governing the dynamics of the excitons is
the DST equation with noise, which is approximated by
the two dimensional NLS equation with noise. Thus the
domain of coherence observed in several experiments is
modeled as the GS solution to this equation. The parame-
ters in the model have been estimated for the oxacyanine
Scheibe aggregate studied experimentally by Mobius and
Kuhn [13]. However, only order of magnitude estimates
could be given for essential parameters such as the pho-
non eigenfrequency, the linewidth of the infrared absorp-
tion spectrum, and the exciton-phonon coupling parame-
ter, due to lack of experimenta1 data.

The spectrum of the resulting noise is complicated and
it is not practically possible to simulate numerically with
the large number of molecules, which is desirable. In-
stead two approximations have been considered: pure
white noise and time independent, spatially white noise.
These are expected to give the limiting values of the
coherence time.

The white noise is a poor approximation, since the en-

ergy content is infinite, which contrasts the finite energy
of the real noise. Correspondingly a very short coherence
time is found at room temperature, t„h =4X 10 ' s.

The time independent noise, which simply corresponds
to disorder in the arrangement of the molecules, has ap-
proximately the same energy content as the real noise. At
room temperature this approximation gives the coher-
ence time t„h=4X10 ' s, the temperature dependence
again being given by a power law tgph ~ T

Experiments show that the exciton stay coherent dur-
ing its lifetime, which is proportional to the temperature,
and 10 ' s at room temperature [13]. From this fact it
is found that the proposed nonlinear model is relevant
only at temperatures below 3 K. In this temperature
range the predicted coherence time is larger than the ex-
perimentally found lifetime.

The dependence of the limiting temperature on the
model parameters has been found, showing that the
dispersive dipole-dipole coupling and the exciton-phonon
coupling must be decreased significantly in order for the
model to be relevant at room temperature.

Using the white noise approximation instead of the dis-
order approximation, the power P in Eq. (49) increases
[Eq. (46) and (40)]. As a result the critical temperature
will decrease. The correct colored noise will give a criti-
cal temperature between these two limits.

In the 2D continuum approximation the ground state
solution is the only stable excitation [24], implying the
normalization condition, Eq. (31). In the discrete version
of the model, Eq. (22), this unphysical bond between the
dipole-dipole coupling and the nonlinearity parameter is
not present. Thus the exciton-phonon coupling can be
reduced without changing the dipole-dipole coupling, in

agreement with the results obtained in Refs. [18] and
[19].

The conclusion that nonlinearity and solitary waves are
only relevant below a certain temperature is well known
from the Davydov model of energy transport in protein
[25]. Here solitons are found to exist at T =0 K, but
agreement has not yet been reached on whether they exist
for suSciently long times at physiological temperatures
[37,43].
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