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Multiple-valued energy function in neural networks with asymmetric connections
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We apply the graphic transformation method [K. Mogi, J. Theor. Biol. 162, 337 (1993)] to obtain the

steady-state distribution of asymmetric Boltzmann machines as an extension of the symmetric equilibri-

um case. We give the magnitude of deviation from the equilibrium explicitly as a function of asymmetry
in the connections between the neurons. We show that the steady state of asymmetric Boltzmann
machines is characterized by multiple energy values, rather than by a single energy value as in the equi-

librium state of symmetric Boltzmann machines. The equilibrium scalar energy function is generalized

to a multiple-valued energy function in the case of asymmetric Boltzrnann machines.

PACS number(s): 87.10.+e, 02.10.—v, 42.79.Ta

I. INTRODUCTION

In an effort to understand the mechanism of brain
function, the artificial neural networks have been studied
as a model of the function of a population of neurons.
Since the time Hopfield [1,2] formulated the problem of
artificial neural networks within a physical framework,
the study of neural networks has increasingly attracted
the interest of the physicists.

In an artificial neural network, the neurons are as-
sumed to interact with each other through reciprocal
connections, which correspond to the synapses in biologi-
cal neural networks. In biological neural networks, the
connections between the neurons are, in general, asym-
metric. It is therefore interesting to study the properties
of artificial neural networks with asymmetric connections
[3—10].

The graphic method has been applied to various as-
pects of biology [11—13]. In particular, the graphic rep-
resentation of the solution of a linear system of equations
introduced by King and Altman [14—16] has found many
applications in the kinetic analysis of enzyme catalyzed
reactions in biological systems. Recently, a new graphic
technique, the graphic transformation method, has been
developed by the author [17,18]. The graphic transfor-
mation method is based on an interesting property of the
"spanning in-trees, " a class of graphs that is used in the
King and Altman method. With the graphic transforma-
tion method, we can express the steady state as an exten-
sion of the equilibrium. The deviation from the equilibri-
um is given explicitly as a geometrical property of the
graphic representation of the system.

In the scheme of the artificial neural networks, the
equilibrium state corresponds to the case where the con-
nections between the neurons are symmetric. In the case
of general neural networks with asymmetric connections,

an equilibrium state does not exist, and only a steady
state can exist as a solution. Due to the lack of appropri-
ate mathematical techniques, it has been difFicult to ana-
lyze the steady state of the neural networks with asym-
metric connections.

In this paper, we apply the graphic transformation
method to the study of asymmetric neural networks. The
subject of our present study is the Boltzmann machine
[19—22], a general formalism of artificial neural networks
with stochastic dynamics. We obtain the steady-state dis-
tribution of asymmetric Boltzmann machines as an exten-
sion of the equilibrium distribution. We give the magni-
tude of deviation from the equilibrium explicitly as a
function of asymmetry in the connections between the
neurons. We show that the steady state is characterized
by multiple energy values, rather than by a single energy
value as in the equilibrium.

II. THK KINETIC TREATMENT
OF THK BOI.TZMANN MACHINE

In order to apply the graphic method to the study of
the Boltzmann machines, we first need to derive a kinetic
version of the transition rule of the Boltzmann machine.

The Boltzmann machine can be considered as a sto-
chastic version of the Hopfield network [1,2]. The
Boltzmann machine consists of Xneurons. At a given in-

stant, each neuron takes a value of either 0 (nonfiring
state) or 1 (firing state). The states of the N neurons are
therefore expressed as the vertices of the X-dimensional
hypercube:

S=(si, . . . , sv)C[0, 1]'

The neurons are coupled via a real XXN matrix
W= ([w;J [(. We assume that
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weight.

1063-651X/94/49(5)/4616(11)/$06. 00 Qc 1994 The American Physical Society



49 MULTIPLE-VALUED ENERGY FUNCTION IN NEURAL. . . 4617

In the following discussion, we indicate a particular
st te in [0,11 as S", where k=1,2, . . . , 2 . Let us as-

sume that the neurons are randomly chosen and called to
update [23] with rates of activation F(i ), where i denotes
the index of the neuron that is called to update. The rate
of transition from the state S~ to the state S~ can be writ-
ten as

characterized by the equilibrium energy values

N N N
E(S)=——g g w,,s, s, + g s, 8, .

i=1 j=1 i=1
(3)

We assume that only one neuron changes its state at a
particular time of transition (the serial update method).
Namely, we have the relations

K(S~,S~)=F(i, ) —@1—2s,~)v,. (s~) '

1+e C C

s~ =1—s~,i

sf=sf (i%i, ) .
(4)

N

U;(S)= g w;jsj —8;,
j=l

(2)

where 8; represents the threshold.
If we assume that the connections between the neurons

are symmetric, the system has an equilibrium solution

where i, denotes the index of the neuron that is called to
update and changes its state in the transition from the
state S to the state Si'. U, (S) is the input signal on the
ith neuron given as

The evolution of the system is described by the master
equation

dp(st', t )

Bt
=y [K(S~,S~)p(S~) K(S~—,S~)p(S~)],

where p(S}is the probability distribution for the state S.
From Eq. (1},we can derive the relations between the

rate constants

K(s~, sq)
K(S~,S~)

—P(1—2s~ )U,. (S&)

1+e C C

—p1 —2s,~ )v,. (s~)
1+e C C

—P(1—2s, )U,. (S )
=e C C

—p~.,
~ v,. (s~)-.,'v,. (s~)~
C C C C

=exp —P —g w;, sfsJ+g w; jsjsj +(sf —s j )8;
j

(6a)

where we have used the equality

U,. (S&)= U, (S&) .

Equation (6a) can be further transformed by using the re-
lations

(sf —sf )8, =gsf8; gsf8;—,

1
W; JSi Sj = WiJS;SJ WAS;SJ

J 1 J ll J9 J

+g(w; j —
wj;. )s; s.

as

} —e P[E(S~) E(S~)i+d(Si', S'—i)]-
K(S~,S~}

(6b)

where E (S ) and E(st) are the equilibrium energy values
given by Eq. (2), and the "asymmetric energy term"

d(S~, S~)= yy (w,, —w—„}(SPSP)(s—t+s,.~)—1

J

is a measure of the deviation from the equilibrium.
We note that

d(S~, S~)= —d(S~,S } .

It is clear that d(sj', S't) =0 when the connection between
the neurons are symmetric. Note that the asymmetric
energy term can be alternatively written as

d(S~, S~}=——g (w, j —
wj, )(sf —sP }(sf+s'j)1

J

2X ( i (j) (j&i }( ~

(j)
where (j}denotes the subset of the values of the index j
for which $~=$~=1.

Now we are ready to study the steady-state properties
of asymmetric Boltzmann machines. In a steady state,
the state distribution p(S) is given by the balance equa-
tion
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g [K(s~,sq)p(s~) K—(S~,S~}p(si')]=0 .
sq

The normalization condition is

(10)
v~
I I

1 II

gp(S)=1 .
the sink

The steady-state distribution of the Boltzmann machine
can be obtained as the solution for Eqs. (6b), (10), and
(11).

III. THE GRAPHIC ANALYSIS

FIG. 1. Some examples of spanning in-trees in I 0, 1]'. Some
examples of spanning in-trees Gs{m) which have the state 5 (in-
dicated by the filled circle) as the sink are shown. In this figure,
the number of neurons is taken to be 3. The vertices represent
the neural states [0, 1 j'. In the case of N neurons, a hypercube
in Xdimensions should be used.

A. The graphic representation of the state distribution

The steady-state distribution satisfying Eqs. (6b), (10),
and (11) can be represented by the graphic method. As
the graphic method has not been previously applied to
the study of artificial neural networks, we briefly review
some terms that are used in the following discussion.

A connected graph 6 is a graph such that there is at
least one path between any given pair of vertices belong-
ing to it. A subgraph of a graph G is a graph the vertices
and edges of which is a subset of the vertices and edges of
graph G. A tree is a connected graph which contains no
cycles. Let us assume that G is a connected directed
graph (digraph). A spanning in-tree in G is defined as a
subgraph of G which satisfies the following conditions: (i)
It contains every vertex of G; (ii) it is a tree; (iii) its direct-
ed edges all point toward a certain vertex (the sink) An.
underlying graph of a directed graph G is the graph ob-
tained by removing the direction from every edge of G.

In 1956, King and Altman introduced the graphic
method to the analysis of enzyme kinetics [14]. In the

graphic method, we first consider the set of all possible
spanning in-trees with the states of the neurons represent-
ed as the vertices (Fig. 1).

%e express the spanning in-tree which have a particu-
lar state S as the sink as G&(m} (rn =1,2, 3, . . . , ns),
where ns is the number of spanning in-trees [24] of the
hypercube [0, 1] and is the same for all S. From the
matrix tree theorem [25], n can be calculated as [26]

(N)~{2 —N —1) ~ ~ i )
(12)

It is known that the solution for Eq. (10) is given for-
mally by Cramer's rule as

W(S)

g W(S)

where

column for S

g K(S',S)
s

—K(S',S )

—K(S',S'}

g K(S,S)

~ ~ ~

~ ~ ~

(S2 S 1 )

(S2 S2)

K(S' S )——K(S S ) QK
s

1

(S',S)
I

~ row for S.

W(S)=g
(S~,sq) E as(m)

K(S~,S~), (13)

(SJ',s&)e as
K(s~,s i) (14}

King and Altman showed that the weight W(S} for the
state S in the above formula can be alternatively written
in a graohic form as

represents the product of the rate constants correspond-
ing to the directed edges of the spanning in-tree Gs(m).
The term (Si',S't) represents the ordered pair of states
corresponding to the directed edges of the spanning in-
tree Gs(m). We define the indexing of the spanning in-
trees in such a way that the spanning in-trees with the
same index share the same underlying graph.

Since the introduction by King and Altman, the graph-
ic method has been used in the analysis of kinetic path-
ways in biological and other systems. A review of the
graphic method can be found in Ref. [16].
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S. The grayhie transformation method

We now introduce the graphic transformation method.
The graphic transformation method is a graphic pro-
cedure introduced by the author with which we can ob-
tain the steady-state distribution as a generalization of
the equilibrium Boltzmann distribution. With the graph-
ic transformation, we can express the deviation from the
equilibrium distribution explicitly as a function of the
asymmetry in the system. The graphic transformation
method has been initially applied to the question of en-
zyme coupled reactions [18], and is applied to the prob-
lem of neural networks for the first time here [17].

In the procedure of the graphic transformation, we
first normalize the graphic expression (13) by the span-
ning in-trees contributing to the graphic expressions of a
state S, where S is the standard state for normalization
taken as arbitrary. Namely, we transform the spanning
in-trees G$(m) (m =1,2, 3, . . . , ns) into the spanning in-
trees G$0(m) (m =1,2, 3, . . . , ng). This can be accom-

plished by the following procedure. Let us consider
P o(rn), which is defined as the subgraph of G$(m) con-

necting the states S and S (by the definition of a tree,
there is only one subgraph of G$(m) that satisfies this
condition). We then reverse the directed edges of
P 0(m). As a result, we obtain P 0 (m), which is the

Gs(m)
FIG. 2. The graphic transformation method. In order to

derive the steady-state distribution of the asymmetric
Boltzmann machine as a generalization of the symmetric equi-
librium case, me perform the graphic transformation method.
In this figure, the spanning in-tree Gs(m) is transformed into
the spanning in-tree G p(m). In order to do so, it is necessary

and suScient to reverse the direction of the directed edges be-

longing to the path P p(m). The corresponding rate constants

are accordingly transformed.

corresponding subgraph of G 0(m} (Fig. 2). Note that

the above procedure is always possible, as P,(m } and

P () (m ) share the same underlying graph.
As the result of the graphic transformation, the graph-

ic representation of the weight W(S) is transformed as

w(s) =g g K(s~, sq)
m (S~,S~)»Gs(m)

K(s~, sq)
(S&,S~)» G, (m) —P p(m)ss

K(S)',Sq}
(S&,S~)» G, (m) —P p(m)ss

(SI',S~)» P p(m)ss

(SI',S~)»P p(m)ss

K(s~, sq)

K(Sq Spa p[E($)') E—($q)+d($—)',$q)]
g~e

e P[E($) E($ )]—y— K(s~, sq)
(S&,S&)» Gs(m) —P p(m)ss

(SJ',S~)»P p(m)ss

K(Sq, S~)e

e P[E($) E($ )] y—
— K(s~, sq)

(S&,S&)»G (m) —P p (m)
S S S

(SI',S&)»P
p (m)s s

K(s~, sq)
(SI',S~)» P p(m)ss

e
—PdIS~, S~)

—P[E($)—E($0)]y p
(S~,Sq)»P (m)ssp

d($)', Sq)
(S~,S~)»G (m)sp

K(S&,Sq) .

Note that the exponential terms involving the equilibrium energy cancel except for the states on both ends of the re-
versed path, S and S . This is the most important property of the graphic transformation method. Also note that we
have replaced G$(rn) —P 0(m) with G 0(m) —P 0 (m), as they are equivalent. By use of the graphic transformation

method, we have successfully separated the contributions of the equilibrium energy term and the asymmetric energy
terms in the weight W($).

In Eq. (15},the term due to E($ ) is a common normalization factor. The weight W($) normalized by the state $
can therefore be written as

W(S)= P ')ye p
—P

m (SI',S~)» P (m)sso

d(s~, sq)
(S&,Sq)» G (m)

SO

K(s~, sq} . (16)
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Equation (16) expresses the steady-state distribution of the states of the neurons as an extension of the equilibrium
distribution. From Eq. (16), we de6ne the vectors

(S~,sq)EG (1)so

E(S~,S~), . . . ,
(S&,S&)CG o(~ )so

K(Si', Sq)

D(S)= exp —P
(S&,s&)C P (1)sso

d(Si', S~), . . . , exp —P
(S~s~)eP o(n }sso

d(S~,S~)

where K is the "spanning in-tree product" vector which is common for all the states, and D(S) is the "distortion" vec-
tor which gives the magnitude of deviation from the equilibrium for each state. Note that these vectors are defined with
the state S as the standard state for normalization. Note also that the dimension of the vectors ng is not a measure of
asymmetry of the neural network or the deviation from the equilibrium, as n is a quantity that is determined solely by
the number of neutrons.

We can then normalize the distribution (16) by dividing by a common denominator as

+exp —P d(Si', S~) rC(S~, S~)

W(S) —PE(S)
z(s~, s~)

m (S~,S~)EG (m)so

ps(s) K D(S)
KU

(S~,sq) G P (m)sso

r
m (S~,S~)EG (m)so

(S&,S&)GG (m)so

E(S~,S')

(19a)

The ratio

K D(S)
where U=(1, . . . , 1)

gives the magnitude of deviation from equilibrium distribution.
It is easily seen that the distribution (16}reduces to the equilibrium distribution when the connections between the

neurons are made symmetric (ui; =w,; ). The distortion vector D(S) is then equal to the vector U, and the ratio (19b)
reduces to 1.

Finally, we define the "weight vector" W(S) as

W(S)=e ~ ' 'D(S)

exp —P E(S)+
(S~,S~)~P o(1)ss

d(S&'S~), . . . , exp —P E(S)+
(S~,S~)eP o(n )sso g

d(SP, S~)

(20)

&sing the weight vector, the state distribution p(S) can be written as

K.W(S)
K g W(R)

R

Equation (21) is the -weight vector- representation of the steady-state distribution of the asymmetric Boltzmann
machines.

IV. MULTIPLE KNKRGY UALUKS
CHARAimKRIZING THK STEADY STATE

It is interesting to consider the significance of the "weight vector" representation we obtained above. From represen-
tation (21), we see that in order to describe the steady state of asyminetric Boltzmann machines, we need ng energy
values
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E(S}= E(S)+
(S~,S~)~P (1)ssp

d(S~, S~), . . . , E(S)+
(SI',S~)~P p(n )

SSO g

d(Ss,Ss)

E(S) —— g g g (wj —
w~; )(st' s;—)(sf+st}, . . . , E(S)1

(S~,S~)CP
ssp

g g (w;J —wJ;)(s, —s; )(sJ+sj }
1

(SI',S&)E'P (n )ssp g

(22)

E(S)+

is given by

(S~,S~)~P (m)ssp

d(ss, ss)

(S~,S~)EG (m)sp

E(sl', Ss) .

We can now define a generalized entropy for a steady
state. It is known that the equilibrium Boltzmann distri-
bution is given by maximizing the "entropy"

Namely, we see that the steady state of asymmetric
Boltzmann machines is characterized by the multiple-
valued energy function E(S). The energy values are ex-
pressed as the sum of the equilibrium energy term and an
extra term due to the asymmetric energy term. The
asymmetric energy term is summed over the transition
pathways connecting the state S and the standard state
S . Note that when the connections between the neurons
are symmetric, the ng energy values reduce to a single
value, E (S). Therefore, the multiple-valued energy func-
tion E(S) defined above can be considered as a generali-
zation of the single-valued scalar energy function for a
symmetric Boltzmann machine.

From the representation (21), we also see that the rela-
tive importance of the multiple energy values in deter-
mining the state density p(S) is given by the components
of the "spanning in-tree product vector" K. Specifically,
the relative importance of the energy value corresponding
to the mth spanning in-tree.

—g p(S)lnp(S) (23)

under the conditions

gp(S) =1,
S

QE(S)p(S)=E (const) .
S

(24a)

(24b)

We see that the distribution (21) for asymmetric
Boltzmann machines is obtained by maximizing the gen-
eralized entropy

—g p(S)lnp'(S),
S

where

p(s)
K D(s)/K U

(25a)

(25b)

under the conditions of (24a) and (24b).
We can therefore conclude that, formally, the steady

state can be characterized as the state for which the gen-
eralized entropy (25a) is maximum under the conditions
of (24a} and (24b}. Note that the generalized entropy
(25a) reduces to the equilibrium entropy (23} when the
connections between the neurons are symmetric, as the
denominator in Eq. (25b} reduces to 1.

We note that the generalized entropy (25a} for the
steady state can be alternatively expressed as the sum of
the equilibrium entropy term and an extra term as

—g p(S)ln p'(S) = —g p(S) ln
p(S)

S S K D S /K U

where

= —g p(S)lnp(S) —g p(S)ln
S S

(26a)

—g p(S)ln = —g p(S)lnKDS y „p—p

z'(s&, s~)

d (S~,S~}

x n
(S~,S~)~G (m)sp

x'(s~, s~)
(26b)

(S~,S~)C P (m)ssp (S&,S~)EG (m)sp

is the extra entropy term characterizing the deviation of the steady state from the equilibrium.
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V. STEADY FLOYD IN THK SYSTEM
AND THE ASYMMETRY IN NEURAL CONNECTIONS

A. Expression of the steady Sow

In previous sections, we have applied the graphic
transformation method to the analysis of asymmetric
Boltzmann machines. The weight vector representation
(21) is novel and interesting from a mathematical point of
view. However, the question naturally arises as to wheth-
er the mathematical method we introduced here is useful
as well. In order to establish the validity of the graphic
transformation method, we investigate the relation be-
tween the steady flow and the asymmetric energy term

(7), using the weight vector representation (21).
The steady flow from the state S~ to state S

„

F(S",S~), is defined as

F(S",S ) =E(s",S~)p(s~) E—(S~,S")p(s") . (27)

We note that

F( S~,S")= —F(S",S~) .

In the equilibrium state, the steady flow is zero. In the
case of the steady state, the steady flow is, in general, not
zero. The steady flow is therefore an important property
characterizing the steady state. The steady flow can be
transformed using the weight vector representation as

F(S",S )=&(S",S )p(S ) &(S~,—s")p(S")

y K W(s~)
y „KW(S")

K gW(R) ' K gw(R)
R R

K[1(' (S",S~)w(s ) IC (S~,S—")W(s') ]
K g W(R)

R

rC(S",S~)K [W(S~) eS[E—('"' ""-)+d($""))W(S")]
K gW(R)

R

K F(s",S~)
K gW(R)

R

where

(29)

F(s" s') =I(.'(s",s')[w(s") —e~' ' ' ' '+ ' ' "w(s")] (30)

is the "steady-flow vector" which represents the net flow from the state 5 to the state S .
We now note that

eP[E($") E($+)+d($",$~)—)w(S")
p[E($") E($~)+d($",$~)) —

p E(Sx)+
(S~,S~)~ P O(1)s sO

d(SP, SQ)

exp —P E(S)')+

exp —P E(S")+
(SJ',Sq)EP (n )sxsO

d(s~, s~)+d(s~, s")
(S~,Sq) EP (n

SxSO g

d(s~, s~)

exp —P E(s~)+
(SI',Sq)eP (n )s"sO

d(s', s~)+d(s~, s")

The mth element of the steady-flow vector can therefore be expressed as
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K(S",S») exp —P E(S»)+
(S&,S I)~P p(m)s&sp

d(S», ss) —exp —P E(S»)+
(S~,S~)~P z o(m)SxSO

d(S», S~)+d(S»,S")

=K(S,S»)e ~ ' ' 1 —exp —P
(S~,S~)FP (m)SxSO

d(S», S~)+d(S»,S")

(SI',S~)~P, o(m)s&sp

d(S», s~) exp —P
{SI', S~)eP, ,(m)s&sp

d(S», S~)

At this point, X»,~{s",S», m) is define as the loop obtained by adding the directed edge (S",S") to the path P „,{m)s"s~
in the spanning in-tree Gz(m) [Fig. 3(a)].

We then note that

(S~,S~)eP x,(m)
SZSO

d(S», Ss)+d(S», S")
(SI',S&)CP „O(m)s&sp

d(S», S')

(S~,S~)eP x,(m)
SZSO

d(S», Ss)+ d (S»,S~)+d(S",S")
{S,S )GP p {m)

sps&

(S~,S~)~P x (m)Szsg

d(S», ss)+d(S», S")

d(S», Ss) . (31)
(S&,S&)EX) (SZS,m)

The steady-flow vector is finally expressed as

F(S",S»)=K(S",S")e ~ ' '
1 —exp —P

(S~,S~)EX) p(S S~, i )

d(S», ss}
~'

exp —P
(SI', S&)E- P O(1)s&sp

d(S», S~)

1 —exp —P
(S~,S~)FX&ppp(s S +g )

d(S», S~)

Xexp —P
(S~,S~)~P p(5 )s~sp g

d(s», S~)

(32)

In Eq. (32), we have expressed the largeness of the
steady flow from the state S~ to the state S"as a function
of the asymmetry in the connections between the neu-
rons. Specifically, the largeness of the steady flow is re-
lated to the sum of the asymmetric energy terms over the
loops containing the two states in question. Generally
speaking, the steady state is distinguished from the equi-
librium state in that the detailed balancing [27] does not
hold. The largeness of the steady flow is a measure of the
violation of the detailed balancing. We therefore see that
Eq. (32) relates the measure of the violation of the de-
tailed balancing to a geometrical property (the sum of the
asymmetric energy terms over the loops) of the network.

B. Contribution of tangled pairs
of flip-flop tra~~itions to the steady flo

We now show that in considering the sum of the asym-
metric energy terms in Eq. (32), it is important to distin-

guish two classes of transition sequences of neural states.
The sequence of transitions in X, (S",S», m } is made of
flip-flop transitions. Let us assume that the
X», (S',S",m }consists of 2K(m) transitions, where

1~K(m) ~
2

[x] is deflned as the largest integer not exceeding x.
We write the neural state after the kth transition as

S(p) [p =0, 1,2, . . . , 2K (m)]. We have S(0)=S»,
S(2K(m) —1)=S", and S(2K(m))=$ . These transi-
tions are composed of K(m) flip-flop transitions. Let us
write the index of the neuron involved in the kth flip-flop
transition as i (k) [k =1,2, . . . , K(m)]. Note that it is
possible that a neuron is involved in more than one flip-
flop transitions, so that in some cases
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i (k) =i (k') even though krak' .

We write the indices of pair of transitions that consti-
tute the kth flip-flop transition as k, and k2. We de6ne
the ordering of the flip-flop transitions by the first (i.e.,
"flip") transition. Namely,

k &k' when k, &k', .

We write the index of neuron that changes its state in
the kth flip-flop transition as i(k} T. he loop term (31)
can now be written as the sum over flip-flop transitions as

(S~,S&)FX& (S",S&,m )

d(S~,S i)

g g (w,j wj; )(—SI' Sp)(—Sf+Sf)
1

(S~,sq) EX, (S",S~,m) ' j
K{m)

g (m;~k~j.
—

mj, (k))[[$(ki);(&)—$(ki —1),(k~)[$(k, )1+$(ki —1) ]
k=1 j

+ [$(kz);~k~ —$(kz —1);~k~][$(k2)J+$(k2 —1)~]]
K(m)

(W((k)J M ((k))[$(ki )nk) $(k2)nk)][$(k] ) $(k2)) ]
k=1 j

(33)

where we have used the relations

$(k&), ~k~
—$(kz —1),~k~= —[$(k, );~~~

—$(k, —1);~k~],

$(k, —1);~k~=$(kz);~k~,

$(k2 —1);~k~=$(k, ), ~k

$(k, ) =$(k, —1), [jAi(k}],
$(k2) =$(kz —1)~ [jAi(k)] .

Let us now consider a pair of flip-flop transitions in-
volving the neurons with indices i (k) and i (k'), where
k (k' and i(k)Ai(k'). A "tangled" pair of flip-flop tran-
sitions is defined as a pair of flip-flop transitions that
satisfies

k, &k', &k2&k2 .

When a pair of flip-flop transitions satis6es

k) &kq &k) &k2

neural state neural state

Or

k, &k', &k,'&k, ,

ianQ Iud
l.oop

UntaIlg}ed
l.oop

FIG. 3. (a) The formation of the X& ~(S",S~,m) from the
path I' „„(I).In the calculation of the steady-flow vector, wes"s~
obtain a loop by adding the directed edge (S~,S") to the path
P „~(m)in the spanning in-tree Gs(m). The steady-flopv vector

is then expressed as a function of the sum of the asymmetric en-
ergy terms over these loops. (b) "Tangled" and "untangled"
pair of flip-flop transitions in the sum of the asymmetric energy
terms over the loops. In the calculation of the sum of the asym-
metric energy terms over a loop, the nonvanishing terms arise
from the "tangled" pairs of flip-flop transitions. The terms from
the "untangled" pairs of flip-flop transitions cancel out.

we call it an "untangled" pair of flip-flop transitions [Fig.
3(b)].

Let us now consider two "tangled" flip-flop transitions
that involve the kth flip-flop transition, (k, k') and (k, k" ),
where k & k' and k & k". It is easy to see that
i(k")Ai(k') when k "Ak'.

From Eq. (33), we can then show that the only nonzero
contributions come from a "tangled" pair of flip-flop
transitions. Let us indicate a "tangled" pair of flip-flop
transitions in Xi,~(S",S,m ) by their indices as (k, k'),
where we assume that k & k'. Let us write the set of such
a "tangled" pair of flip-flop transitions as X(S",S",m ).
We can then transform Eq. (33) further as
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d (Si',Sq)
(S~,S~)EX)pp (S S m )

K(m)

g(w;(k)J w;(k))[$(kl );(k) $(k2);(k)][S(kl ). $(k2)J]
k=1 j

1
[(w;(k);(k. )

—w;(k. );(k) )[s(k 1 };(k)
—s(k2 );(k) ]

(k, k') E.X{S",S~,m )

X[$(k2);(ki) $(kl);(k )]+(w;(k );(k) w;(k);(k~))[$(kl )i(k') s(k2}i(k')]

X [$(kl )i(k) $(k2)i(k)]]

( k, k') GX(S",S&,m )

(W((k)i(k ) W;(k );(k))[s(k, );(k)
—s(k2);(k)][$(k 1 );(k ) $(k2 };(k )] (34)

where we have used the relations

S(kl )i(k ) $(k2 )i(k') q

$(k2)i(k') $(kl )((k') ~

In conclusion, the sum of asymmetric energy terms
over X„,(S",S",m } that appear in expression (32) can be
expressed as the sum of contributions from the "tangled"
flip-flop transition in X„,(S",S)', m ).

In this section, we have expressed the largeness of the
steady flow explicitly as a function of the asymmetric en-
ergy terms. We have shown that the steady flow can be
related to the sum of the asymmetric energy terms over a
loop, which can be considered as a measure of the "dis-
tortion" in the space {0,1I due to the existence of multi-
ple energy values (22). We expect such a geometrical
property of the network [28] to play an essential role in
the future studies of the nature of the steady state of
asymmetric Boltzmann machines.

VI. CONCLUSION

In this paper, we have applied the graphic method to
study of artificial neural networks. Specifically, we have
applied the graphic transformation method to the study
of asymmetric Boltzmann machines, and successfully ex-
pressed the state distribution of asymmetric Boltzmann
machines as an extension of the equilibrium distribution.

We have shown that the steady state of asymmetric
Boltzmann machines is characterized by multiple energy
values, rather than by a single scalar energy function as
in the case of symmetric equilibrium case. The single-
valued scalar energy function for the equilibrium state of
symmetric Boltzmann machines is generalized to a
multiple-valued energy function in the case of the steady
state of asymmetric Boltzmann machines.

We have defined a generalized entropy for the steady
state of asymmetric Boltzmann machines. The general-
ized entropy is obtained by dividing each state density
appearing in logarithm by a state-dependent denomina-
tor, which represents the largeness of deviation from the
equilibrium state. The generalized entropy can alterna-

tively be expressed as the sum of the equilibrium entropy

and an extra entropy term, where the latter term is a

measure of the largeness of deviation from the equilibri-

um.
We have expressed the steady flow between two neural

states as a function of the asymmetry between the neu-
rons. The existence of a nonzero steady flow can be con-
sidered as a result of the difFerence between the multiple
energy values characterizing the steady state. We have
shown that the steady flow is related to the sum of asym-
metric energy terms over a loop including the two adja-
cent neural states in question. In the context of the study
on artificial neural networks, our present study can be re-
garded as an attempt to understand the properties of an
asymmetric neural network as geometrical features of the
network. The graphic approach we introduced in this

paper is expected to be valuable in such a line of research.
It is expected that the graphic transformation method

has a wide applicability in questions relating to the na-

ture of a steady state as compared to the equilibrium
state. The graphic transformation method can be ap-
plied, for example, to an Ising spin system [29] with

asymmetric exchange interactions, or to the question of
coupling in biological systems [18]. However, it should
be pointed out that at present there is a diSculty when

we try to apply the graphic method to practical purposes,
since the number of spanning in-trees given in formula
(12) increases rapidly as the number of neurons increases.
We should therefore devise some technique to overcome
this problem, e.g., by calculating the exact number of in-
dependent energy values in the multiple-valued energy
function given in (22). We note that this is one of the
most important open problems in the graphic approach
to artificial networks that we proposed in this paper.
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