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We have examined the dynamical behavior of the kink solutions of the one-dimensional sine-
Gordon equation in the presence of a spatially periodic parametric perturbation. Our study clari6es
and extends the currently available knowledge on this and related nonlinear problems in four di-
rections. First, we present the results of a numerical simulation program that are not compatible
with the existence of a radiative threshold predicted by earlier calculations. Second, we carry out a
perturbative calculation that helps interpret those previous predictions, enabling us to understand
in depth our numerical results. Third, we apply the collective coordinate formalism to this system
and demonstrate numerically that it reproduces accurately the observed kink dynamics. Fourth,
we report on the occurrence of length-scale competition in this system and show how it can be
understood by means of linear stability analysis. Finally, we conclude by summarizing the general
physical framework that arises from our study.

PACS number(s): 03.40.Kf, 85.25.Cp, 02.90.+p

I. INTRODUCTION

Technological progress has made possible the fabrica-
tion of highly ordered materials and structures for a very
large number of applications. In parallel to those ad-
vances, it has also been realized that the special prop-
erties required for many purposes necessitate inhomo-
geneous systems. Here inhomogeneity may mean spa-
tial modulations, quasiperiodicity, or disorder of several
kinds. In addition, there are other situations in which
inhomogeneity is undesirable but unavoidable. In either
case, the study of disordered systems acquires fundamen-
tal importance. This is even more so when the physical
system in which disorder or inhomogeneity is to be stud-
ied is described by a nonlinear model. Whereas the role
of disorder in linear problems is at least partially under-
stood, much less is known about nonlinear disordered sys-
tems. In fact, even &om a mathematical viewpoint, the
understanding of these models, often related to stochas-
tic partial differential equations (PDE s), is very limited.
Consequently, a great deal of research has been devoted
to this topic [1—3].

A major part of the work done so far regarding nonlin-
ear disordered systems has been concerned with some
particular examples that are amenable to analytical
treatment while capturing some essential physics. The
sine-Gordon (SG) (actually, the whole family of non-
linear Klein-Gordon equations, including, e.g., the P,
double- and quadratic-sine-Gordon equations) and non-
linear Schrodinger (NLS) equations are often chosen as

very suitable "canonical" examples. This is due to the
fact that the basic mathematical structure underlying
them is well known and therefore provides a good starting
point for theoretical work. This reason would not be suK-
cient if these models were not also related to a large num-
ber of phenomena that occur in quasi-one-dimensional
physical systems, as is in fact the case. In the context of
these two models, disorder is introduced through suitably
chosen perturbation terms (see [2] for an extensive list
of physically relevant perturbations). This is the usual
procedure by which inhomogeneity of any kind is stud-
ied: The equation describing the problem is established,
the terms relevant to the considered physical situation
are identi6ed, and a perturbation to those terms is in-
troduced, representing the desired kind of disorder. Our
viewpoint in this work is more generic: Although the sys-
tem we deal with is indeed related to a number of applica-
tions, our aim is that we will be able to gain insight into
underlying mechanisms of the phenomenology of nonlin-
ear disordered systems. Therefore, we introduce a simple
periodic perturbation which will allow us to study very
interesting and general phenomena, such as length-scale
competition, and will provide information relevant to the
more complicated processes occurring in random media
(the periodic potential can be interpreted as a "color" of
a general noisy one). The knowledge obtained will also
be useful to tackle other problems where detailed studies
including analytical treatment are not possible.

In this paper we study the behavior of one-dimensional
(1D) SG kinks when perturbed purumeirically by a spa-
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tially periodic potential. Initially, this was motivated
by our related research (from the above general point of
view) on the SG [4,5] and NLS [6,7] models. As a prelim-
inary step to the investigation of SG breather dynamics
[4] on these kind of potentials, it is natural to first seek
a good understanding of kink dynamics. Therefore we
undertook that study, both analytically and numerically.
Our point of departure was early theoretical work [8—10]
on this problem, which we summarize for completeness
in Sec. II. In particular, it had been predicted that a cer-
tain critical velocity exists at which the radiative power
emitted by the kink would diverge. Below that critical
velocity, radiation would be zero, and above it, it would
decrease with increasing speed (see Ref. [2] for a sum-
mary). Those results were obtained at a time where the
main aim was to develop a perturbative approach to deal
with soliton problems. That, and the fact that comput-
ers were not the easily available tool they are nowadays,
meant that those results were never analyzed in depth
or numerically checked. Therefore, as a Grst stage of our
study, we devised a number of numerical experiments to
check them, and we found no numerical evidence for the
predicted divergence. In view of this result, we carried
out an improved perturbative calculation, in the sense
that it allowed us to interpret correctly the earlier re-
sults in Refs. [8—10] and to show that, although the ear-
lier analyses were correct, the predicted divergence was
actually unphysical. This theoretical analysis is reported
in detail in Sec. III: A preliminary short report has been
given elsewhere [11]. The work done to that point sug-
gested to us the idea that, opposite to what was believed
to date, SG kink dynamics on a periodic potential could
be essentially that of a (pseudorelativistic) particle. We
thus applied a simple collective coordinate formalism to
the problem, and it turned out to describe soliton be-
havior very accurately, even predicting unexpected new
phenomena. The analytical approach and the numerical
simulations are contained in Sec. IV. Finally, to com-
plete our program studying length-scale competition and
its efI'ects in nonlinear disordered systems, we performed
further numerical experiments to clarify whether robust
objects such as kinks, which according to our collective
coordinate theory behave mostly like particles, can still
exhibit the destabilizing effect of length-scale competi-
tion. We found that this was actually the case. Fur-
thermore, the simplicity of kinks allowed us to carry out
a (numerical) linear stability analysis which provided us
with a clear explanation for the numerically observed fea-
tures. We collect our results on this question in Sec. V. To
conclude, we summarize the facts that we have learned,
which considerably enhance the understanding of sine-
Gordon kink propagation in disordered media and shed
light on the so far unexplained phenomenon of length-
scale competition. Our results are also of relevance to
many nonlinear systems of physical interest, mainly in
three directions: First, all non-numerically validated or
nonphysically interpreted predictions obtained through
perturbative calculations should be treated with a de-
gree of caution. Second, the collective coordinate formal-
ism yields a very simple and accurate way to deal with
perturbed nonlinear problems, especially those in which

the perturbation enters parametrically rather than addi-
tively. And third, length-scale competition is an ubiq-
uitous phenomenon that may be responsible for Inany
instabilities arising in difFerent nonlinear disordered sys-
tems.

II. BRIEF SUMMARY
OF PREVIOUS RESULTS

We start by describing the picture of SG kink propa-
gation on parametric periodic potentials which has been
accepted to date. The problem, which has been studied
by Mkrtchyan and Shmidt [8] and Malomed and Tribel-
sky [9,10], is given by a perturbed SG equation of the
form

uqq —u + [1+icos(kx)]sinu = 0

(modeling, for instance, a long Josephson junction with
modulated critical current, to mention just one applica-
tion); the question posed was whether kinks can propa-
gate freely in such a system, and if so, to describe this
propagation. We will only record here a short summary
of previous work. The reader is referred to the original
papers [8—10] for details.

Mkrtchyan and Shmidt [8] used a Green's function per-
turbation technique (GFPT). They derived a linearized
equation for the 6rst order correction to a kink mov-

ing with constant velocity, computed the Green's func-
tion corresponding to its homogeneous version, and then
used it to obtain the desired correction by integrating the
source term with that Green's function. They then no-
ticed that radiation appeared only above a critical kink
velocity vth, ——(1+k~) i~ . At that particular value, the
correction diverges, and the authors explain that their
calculation becomes invalid in that region as, of course,
it assumed the correction was small. On the other hand,
the approach of Malomed and Tribelsky [9,10] was quite
diferent. Its basis was the inverse scattering perturba-
tion theory (ISPT). A meaningful summary of this kind
of calculation would be quite lengthy and hence we will

omit it here, referring the reader to Ref. [2], which is
mostly devoted to describing ISPT in detail. Let us just
mention that the idea is that, if the amount of radia-
tion. emitted by the kink is small, as it should be if the
perturbation is small, then the spectral density of the
emitted energy can be computed following a Taylor ex-

pansion, and the total radiated energy is then derived by
integration over all modes. Again, the result was that
there was a critical velocity @ah,

——(1+k2) ~ such that
kinks traveling with velocities v ~ vtg, did not emit any
radiation at all, whereas in the opposite case the amount
of emitted radiation decreased as v + 1, diverging when
v = vugh, Always within the framework of ISPT, Mal-
omed and Tribelsky [10] were also able to show that dis-

sipation could play a regularizing role, suppressing the
divergence. As the results in Ref. [8] agreed with those
in Refs. [9,10], the existence of this threshold for radia-
tion with its associated divergence was accepted, and the
question of kink propagation on periodic potentials was
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regarded as basically solved. As mentioned above, it has
to be borne in mind that the main issue of those early
researches was to establish the proper foundations for a
perturbative theory for solitons. Hence the question of
the physical meaning and origin of the divergence was
not addressed. Another unexplained point arises already
&om ISPT, which allows computation of the radiation
nature. When this is done in our case, the radiation
wave numbers turn out to be related to the perturbation
one by a complicated equation (see, e.g. , [2]), which, in
particular, implies that radiation is emitted with a non-
intuitive wave number k at the divergence. This pre-
diction is dificult to understand physically. Let us recall
at this point that a particlelike picture of kink propaga-
tion had been developed and had been largely successful
so far [12] when compared to numerical experiments. If
ISPT predictions for the radiation wave numbers were
true, the reason for them must come Rom the wave na-
ture of kinks. Consequently, the particle picture should
be regarded as a major simplification and valid only in
limited cases.
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III. KINK PROPAGATION
ON PERIODIC MEDIA

A. Numerical results

With the above scenario (and the question it poses) in
mind, we carried out a number of numerical simulations
looking in the first place for the proposed threshold. All
the simulations we will be reporting on throughout the
paper have been carried out taking periodic boundary
conditions. The integration was performed with two dif-
ferent procedures, an adaptation of the energy conserving
Strauss-Vazquez finite-difFerence scheme [13] and a fifth
order, adaptive step size, Runge-Kutta integration [14] of
the discretization of the PDE. The results were indepen-
dent of the procedure, which is a satisfactory checking.
We performed a careful search, paying attention to the
fact that the predicted value was a first order calcula-
tion and that it may not be quantitatively accurate. On
the other hand, the finite width of the simulated system
may also be of relevance at this point, as its radiation
spectrum structure is not identical to the continuum, in-
finite system [in particular, the lowest frequency in the
model is restricted to be u2; = I+ (2'/1)2, L being the
length of the system]. Hence we monitored the amount
of radiation exnitted by the kink by making simulations
with many diferent initial conditions, sweeping a range
of initial velocities; if there was a threshold somewhere,
there should be a change in the radiating power of the
kink as it moved through it. The result was negative: No
evidence for a threshold was found, even when the search
was perforxned for a large range of initial velocities with a
resolution of 10 for some choices of k. Examples of the
outcome of the simulations are shown in Fig. 1 for three
values of the potential wavelength: (a) of the order and
(b) and (c) smaller than the kink width ( 6 in our di-
mensionless units) at v = vth, . It has to be stressed that
the predicted divergence does not depend on the strength
of the perturbing potential e, but we also tried to make
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FIG. 1. Absence of radiative divergence for kinks propagat-
ing in the spatially periodic SG modeL Parameters are (a)
k = 2s /5, initial velocity v = v&h, = 0.387726. . .; (b) k = s',
initial velocity v = v&h, = 0.091999.. .; (c) k = 2vr, initial
velocity v = vugh, = 0.024704. . . [corresponding wavelengths
are (a) 5, (b) 2, and (c) 1]. In all three cases, c = 0.4. The
amplitude of the emitted radiation is very small; due to the
periodic boundary conditions, it can be seen reentering the
simulation interval without any appreciable interaction with
the kink. Only half of the simulation interval is shown in plots
(b) and (c) to enlarge details. Time increases upwards with
Snal time t = 100. The potential is indicated by the dashed
line (amplitude not to scale).
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25 u„—u + (1+c cos[kp(z+ ut)]} sinu = 0, (2)
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FIG. 2. Instantaneous center of mass positions as obtained
from the simulations in Fig. 1. Dot-dashed line, k = 2n/5;
dashed line, k = m', solid line, k = 2m. d2——+ (1 —2 sech'z) f(z) = ~' f (z)Ix (4)

with p = (1 —u )
~'2 the Lorentz factor. Here we con-

sider r && 1, so the perturbative term may he treated by
assuming a solution of the form

u(x, t) = u (x) +

oui�')

(x, t),

where u„(z)= 4 tan (e*) is the unperturbed SG kink.
For completeness, we now recall how the most appro-
priate basis in which to expand oui )(z, t) is obtained.
Introducing the Ansatz (3) in Eq. (2) without the pertur-
bation term, linearizing in the small quantity uli)(z, t),
and separating time and space by introducing uli) (z, t) =
f(z)e ' ', we are left with the following eigenvalue prob-
lem for f(x):

the effect more visible by increasing this parameter. In-
deed, in Fig. 1, e = 0.4, a value that is not very small,
and the kinks seem unaffected except for a small amount
of radiation and an oscillatory motion superimposed on
its trajectory, which is shown in Fig. 2. It is interesting
to note that the kink traveling on the short wavelength
potential (c) appears not to be affected at all. This will
be understood by means of the collective coordinate ap-
proach in Sec. IV. On increasing e further, trapping be-
havior takes place, i.e., kinks are trapped by the potential
and cannot propagate, but there is no strong emission of
radiation [for an example, see Fig. 4(b), which will be
discussed later]. Actually, this trapping can be of two
very different kinds, as we will discuss in Secs. IV and V.
Another interesting remark is that we also observed that
kinks always emit radiation, even when moving at a very
low velocity, far below the predicted threshold. A sim-
ilar result arises from the work of Peyrard and Kruskal
on highly discrete SG systems [15], where kinks propa-
gate on the periodic potential coming &om the Peierls-
Nabarro barrier, although this comparison should not be
taken too literally as there are some differences between
both problems, such as the existence of a maximum al-
lowed frequency in the discrete one, for instance. It thus
becomes evident that the features of kink propagation
on periodic potentials are qualitatively different from the
above perturbative analytical results. Interestingly, nu-
merical simulations on a similar perturbation of the (j(j

problem [16] seem to confirm the absence of this diver-
gence. We will elaborate more on this when presenting
our conclusions in Sec. VI.

This is a well known eigenvalue problem [17]; there exists
exactly one bound state, with ug ——0, and a continuum
of scattering states with ~„=1 + K; the corresponding
normalized eigenfunctions are

fb(z) = 2 sech z,

f (r, z) = — e'"* (r + i tanh z) .
ld/ 2'

(5a)

(Gb)

where

(ttalls) (z t) 1 P (t)f (z)

u~"@(z, tj = f d/p(/„tjf(~zj. ,

(7a)

(7b)

To find the amplitudes Pb(t) and P(r, t), one again intro-
duces the Ansatz (3) in Eq. (2), linearizes, and Fourier
transforms in time; subsequent projection yields

sinh x
pb(t) = 4 dz cos[kp(z+ ut)]

cosh x
(8a)

These eigenfunctions have a very clear physical meaning.
The bound state fb(z) is associated with the Goldstone
translation mode of the soliton, whereas the continuum
eigenfunctions f(r, z) are the radiation modes (see [12]
for a detailed discussion). Besides, these functions form
an orthogonal basis since the corresponding operator is
self-adjoint. %'e will make use of this fact to deal with our
problem. In terms of this basis, the first order correction
can be split into two parts, namely,

B. Theory P(r. , t) + (1+ r. )P(r, t)

In order to gain insight into the numerical observa-
tions, we developed a perturbative approach for this
problem, following a similar approach to that given by
Fogel et al. [12]. To this end, we perform a Lorentz trans-
formation and rewrite (1) in the rest frame of the soliton
(i.e. , the reference frame moving with the speed of the
unperturbed soliton v)

dx cos[kp(x + ijt))

e '" (r —i tanh x) sinh x

/27'(1 + ~2) cosh x

It now remains to solve Eqs. (8) and invert the various
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transforms needed to arrive at them. In the following, we
discuss translation and radiative parts in (6) separately.
Let us start with the simplest one, i.e., the translation
mode contribution. Note that (8a) is, after performing
the integration, nothing but the Newton's law for a time-
dependent force. Its solution may be readily found, and
finally one obtains

u( ' 'l(z, t) = sin(kpvt) sech z. (9)2v2smh kyar 2

Recalling that we are working in the unperturbed soli-
ton reference frame, this is a localized oscillatory motion
superimposed on its otherwise constant trajectory. Now,
let us remark that the prefactor implies that short wave-

I

length (k + oo) perturbations will have no efFect on the
motion of the center of the soliton, which is also in good
agreement with our simulations in Fig. 2. This behav-
ior can be understood in terms of a "smoothing" of the
potential: The kink, having a width much larger than
the perturbation wavelength, experiences only an efFec-

tive averaged force, whose amplitude vanishes exponen-
tially for large k (see Sec. IV; see also related comments
in [4,6]).

Equation (8b) for the e-mode radiative contribution
can also be solved. After computing the integral in the
right hand side of Eq. (8b), one is left with the Newton's
law for a forced harmonic oscillator. This allows the de-
termination of P(e, t) and substitution of it in Eq. (7b)
to find the total radiative contribution:

I'8 d + ~2 k2~2 ~c'lcpvt
u(' l(z, t) = — tanhz —— dr +

4 cIz (1+~')(1+ ~ —k p'v ) cosh[1r(kp —K)/2]

~
—ikpet

SKAG

cosh[1r(kp + ~)/2]

(10)

It is possible to deal with the integral in (10) in the com-
plex plane: When x & 0 in the upper half plane and
when x ( 0 in the lower half plane. The pole struc-
ture of the integrand will completely determine the total
radiative contribution. In particular, we will see that ra-
diation only appears for some special values of the system
parameters.

We take z ) 0 in what follows (the opposite case is
treated in the same way). Accordingly, the integral has
to be analyzed in the upper half complex plane. The
pole structure of the integrand is depicted in Fig. 3. All
poles are simple and their locations are zo = +i, zq =
ia. —:+i /1 —k2p2v2, and z+—:+kg+ i(2n+ 1), n being
a non-negative integer. For the sake of clarity we treat
each pole separately.

(i) The first pole zo ——+i is constant and does not
change when the system parameters change. Since this
pole is purely imaginary, it is immediately seen that the
contribution of the residue at zo is exponentially localized
around the kink center. This term does not give rise to
any radiation but rather to time-dependent corrections
of the kink shape.

(ii) The family of poles z„+depends on the perturba-
tion wave number k and on the kink velocity through
the Lorentz factor p. However, they always have a posi-
tive imaginary part, thus leading again to exponentially
localized contributions. Therefore, the z„+poles also do
not produce any true radiative correction.

(iii) The remaining pole is the key one. If cr

1 —k p v ) Oy the same reasoning applied to the other
poles holds, and there is no radiation. It is worth rnen-
tioning that localized oscillations around the kink center,
predicted from the contributions of zo, z1 (a real), and
z„,were already evident in our numerical simulations,
as shown in Fig. 1. For fixed k, as v increases, the pole
moves down the imaginary axis, and at the critical value
vth, = (1 + k ) ~ it lies at the origin of the complex
plane. For kink velocities v ) vth, the pole is purely real

and then it does give rise to a radiative contribution,
whose form is given by (with P—:gk2p2v2 —1 a real
number)

(rad)
tCp

( i» ~

1 ——tanhz
I4p2v2 (

i(kgVt+Iga) —i(A;Pet —IBX)

X +
cosh[1r(kp —P)/2] cosh[1r(kp + P)/2]
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FIG. 3. The pole structure of the radiation contribution.
Filled circles mark the location of the poles which give rise to
corrections localized around the soliton. Empty circles denote
the locations of pole zz as the velocity changes. Only when zz

becomes real {v & vth, ) does it originate propagating wavelike

corrections. See text for further explanation.

This expression tells us that radiation occurs whenever p
is real (v ) vtI„),and this radiation is the superposition
of two linear waves of difFerent amplitudes, traveling in
opposite directions but with the same phase velocity.
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C. Discussion

upi —cou + (do[1 + e cos(kz)] sinu = 0, (12)

where co and uo are a velocity and a &equency char-
acteristic of the particular physical context. Redoing
the calculations with dimensions transforms the diver-
gence condition A:puli„= 1 into kpovqi„= uo [ps
(1 —v /co) ~ ]. This immediately clarifies what hap-
pens: The divergence occurs when the velocity of the
kink is such that the time it takes to travel through a
wavelength of the potential, To ——A/(pov~h, ), A = 2~/k,
is exactly the period of the lowest &equency phonon
Ts ——2w/uo. If the velocity is lower than @ah„the kink
will not be able to excite phonons, whereas when its ve-
locity is higher, it can and will subsequently radiate. At
vth„ the excited radiation is that of the lowest phonon

To this point, it appears that our perturbative cal-
culation leads exactly to the same prediction as those
in [8,10], namely, that there is a critical velocity uth, =
(1+k ) ~ below which kinks do not radiate and above
which they do. At that precise velocity, the amplitude
of the emitted radiation diverges; notice that P vanishes
as v approaches vtp, &om above and consequently the
prefactor in Eq. (11) goes to infinity. However, this ap-
parent equivalence is not so. The crucial difference arises
when one looks more carefully at Eq. (11): As ut, h, is
approached, not only the amplitude of the emitted wave
diverges, but also its wavelength 2m/P. Then, we are
faced with something similar to an "in&ared" divergence,
and usually those do not have a real physical meaning.
We will show immediately that this is indeed the case
here, but let us 6rst comment on the reasons why our
calculation provides us with this physically relevant re-
sult that was not transparent in the previous approaches.
As for the GFPT computation [8], they compute the first
order correction to the field much as we do here (actu-
ally the two approaches are basically the same in the
beginning), but they do not use the natural translation
mode-radiation basis, so they cannot separate the difkr-
ent contributions and are therefore led to an expression
they cannot analyze in detail; as we already pointed out,
they merely remark that their calculations are invalid in
the vicinity of the divergence, as they assumed the cor-
rection should be small. On the other hand, ISPT [9,10]
yields a difFerent result than ours in spite of using a suit-
able basis because the integration over K is made in an
incoherent fashion, i.e. , integrating over emitted energy
instead of emitted amp/itude (we notice in passing that
many ISPT results are obtained by this same means).
When the integration over radiation modes is made co-
herently as shown here, the result changes due to the
superposition of difFerent modes. These reasons lead us
to believe that, although admittedly the early perturba-
tive work was mathematically sound, the calculation we

present here is the physically correct first order result.
Now that we have a reliable perturbative calculation,

we need to understand what is the nature of the diver-
gence. To make progress, it is very important to turn to
the form of our starting Eq. (1) toith dimensions, namely,

and it has in6nite wavelength and velocity, as predicted
by our calculation. This natural picture of kinks exciting
radiation according to the &equency of their propaga-
tion through a potential wavelength becomes therefore
the likely candidate to explain the divergence. On the
other hand, now it also becomes clear the divergence of
the energy at each, . It diverges because of the infinite con-
tribution arising from the in6nite wavelength mode when
integrated over the whole x axis. This agrees with GFPT
and ISPT results whose only difBculty was not to specif-
ically identify the mode responsible for the divergence.

In spite of this clari6cation, the most signi6cant ques-
tion is not answered yet: Why do numerical simulations
disagree with this calculation, which seems to allow for
a simple and physically reasonable interpretations By
looking again at Figs. 1 and 2, it is easy to realize that
the Baw of the perturbative calculation is at its very root:
We are computing 6rst order corrections around a kink
moving at a constant velocity v, and this condition never
holds. Whatever the starting position of the kink is, it
will behave like a particle in the sense that it will be ac-
celerated or decelerated depending on whether it travels
towards a minimum or a maximum of the potential. In
fact, the translation mode correction itself is describing
this: The kink velocity, in its reference &arne, is not zero
but rather it oscillates between positive and negative val-

ues. It is not a surprise, then, that first the resonance
condition we have obtained is never matched, and second
that the kink emits radiation at any velocity, because it
is accelerating or decelerating. Of course, we should note
that this is a perturbative calculation including only first
order terms; the possibility still remains that the diver-

gence is suppressed by higher order nonlinearities.

IV. COLLECTIVE COORDINATE APPROACH

The above numerical results and the subsequent per-
turbative calculation strongly suggest that SG kinks be-
have as pointlike particles in the presence of a peri-
odic parametric potential like the one we deal with here.
Therefore, it is natural to try to describe those results by
means of the collective coordinate formalism. This ap-
proach was first proposed in [12] and it has been applied
recently to SG breathers on periodic potentials [5] as well

as to Ni S [7] equations with the same perturbation. In
both cases the analytical predictions turned out to be in
very good quantitative agreement with numerical simula-
tions: For instance, in Ref. [5] the threshold for breather
breakup into a kink-antikink pair was predicted with an
accuracy better than 0.1%. On the other hand, the cal-
culation in Ref. [7] predicted the appearance of the so
called "soliton chaos, " verified by simulations of the full

PDE. In our present problem, the advantage we have is
that, due to the simpler nature of the kink, we will be
able to compute the eftective potential not only for kinks
at rest but also for moving kinks.

The basic idea of the collective coordinate formalism
is very simple: To reduce a complicated problem with an
in6nite number of degrees of &eedom, posed in terms of
a PDE, to a much less complex problem with a few de-



49 KINK STABILITY, PROPAGATION, AND LENGTH-SCALE. . .

kyar
V,g(zp, t) = 2e

2 . Cos[k(zp + vt)].
p2 smh km 2p

(14)

From Eq. (14) we see that the potential experienced by
the particle equivalent to the kink is basically the same
perturbation potential that appears in the PDE (1), al-
though the prefactor in front of it is quite complicated.
The simplest dependence of this prefactor is on the wave
number. It can be immediately seen that when k ~ 0
(long wavelength limit) the effective potential prefactor
reduces to 4e/p and subsequently V,a becomes closer to
the perturbative one; in the opposite limit, k —+ oo, the
sinh term makes the eff'ective potential vanish exponen-
tially. This is in agreement with what we have learned so
far: Looking at Fig. 1, it can be seen that the short wave-
length potential has no effect on the kink (c), whereas the
motion on long wavelength perturbations resemble that
of a particle on the bare potential. To phrase in the ter-
minology introduced in Ref. [4], the behavior of the kink
in these cases is that of a "bare" (long wavelength) or
a "renormalized" (short wavelength) particle. It is also
important to notice that this result agrees with the per-
turbative calculation we described in Sec. IIIB [see Eq.
(9)], as it was to be expected. There we showed that the
correction to the center of mass motion was basically an
oscillatory term, implying that the velocity of the cen-
ter of mass oscillates around some mean value. This is
precisely the same kind of trajectory followed by a point-
like particle in the potential in Eq. (14) (at least if the
velocity is not too close to 1).

Nevertheless, it is worth pursuing this agreement a bit
further, by studying the threshold for kinks to propagate
in this kind of potential. The easiest way to compute the
threshold is by equating the kinetic energy of the kink
to the maximum of the efFective potential, provided we
restrict ourselves to the nonrelativistic limit (v2 not too
close to 1) to keep the kink mass constant. This will
give us the maximum potential height over which a kink
that starts &om a point at which the perturbation is zero
with a certain velocity is able to overcome the nearest top
point. Using the fact that the mass of a not too fast kink
is 8 in our units, we find that the threshold is given by

v2p2 kyar
&ghr — slnh

kx 2p

grees of freedom [and correspondingly described in terms
of ordinary differential equations (ODE's)]. There are a
number of ways to do this, and diferent quantities can be
chosen to play the role of collective coordinates describ-
ing the motion of the nonlinear excitation as a whole.
For our problem, it is enough to simply consider the kink
center as our collective coordinate for the kink. Its mo-
tion will be then governed by an effective potential that
can be computed by integrating the perturbative contri-
bution to the Hamiltonian over the kink profile, i.e.,

V (sc, o)I=E/ Ck(1 —coso (c —co, l)]cooke, (13)

where u„(z—zp, t) denotes now a kink moving with con-
stant velocity v and centered at zo. This integral can be
easily evaluated and yields

In the same way, we could have computed the thresh-
old velocity for a given strength of the potential, but we

prefer to check our predictions this way because the pres-
ence of p makes the other possibility more complicated.
We compared this prediction to numerical simulations.
We show an example of this comparison in Fig. 4, where
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FIG. 4. An example of the veri6cation of the collective co-
ordinate approach predictions. For a kink starting from a
midpoint of a potential of wavelength 20, with velocity 0.2,
the predicted threshold for propagation is sth, = 0.0424. (a)
c = 0.43 and the kink propagates; (b) s = 0.435 and the kink
is remected by the potential maximum; (c) center of mass mo-
tion for better comparison of both cases; solid line corresponds
to the simulation in (a) and dashed line to that in (b). Final
time is t = 200. Notice the absolute absence of radiation in
this phenomenon.
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we stud the propagation of a kink with in''th initial velocity
0.2 (i.e., in a nenrelativistic situation) on a po e

d t l l wavelength. The predicted threshold for
kink propagation as given by Eq. (15) is e~h, =
from Fig. we see4 that the numerical result is ounded
by 0.043 & e&h, ( Q 0435 meaning that the error in our
prediction is at mos ot f 2%%u which is quite satisfactory.
We have checked several other cases, which we summa-

for very large values of the perturbation potentia .
To conclude s sec io1 d thi t' n on the collective coor inate

treatmen o et of the problem, we discuss another prediction
of it that it is numerically veri6ed, relativis ic e ec s
playing now ethe relevant part. By looking again at Eq.
(14), it can be realized that the presence of p in e po-
tential may give rise to singularities in the nei hborhoodg
of the maximum velocity v = 1. To c. To check whether this is

' t ted numerically the ODE obtained from ap-so, we integra e nume
1

'
d Newton's law to V,g and oun t a i e

initial conditions were those of a particle star ing a e
topofalargepo en ia, et t' 1 the velocity of that particle would
growasi si es't I'd down the potential; of course, if t e po-
t t' 1 is large enough, the velocity can reac v =: n
h es the numerical integration of thet ose cases e

this is an arti-down. The question then arises whether is is an
fact of our collective coordinate approach orach or there is a

~ ~ ~ ~that this ODE prediction is verified, as we sho
' 'g.

6. In this simulation, the initial condition was a kink
at a maximum o e pof th potential with initial velocity O. l
so as to start the motion &om the stable point. s it
moves to the neares weh t ell it accelerates and, eventua y,
'ts velocity becomes very close to 1, implying that t e

intermediate poin o e
' t f th potential instead of continuing

its motion to e o oth b tt m. The existence of this counter-
intuitive phenomenon shows in a very radramatic wa„ t e
value of a simp e approaf '

1 pproach such as the collective coordi-
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nate formaism o e pu1' t h 1 nderstand complicated nonlinear
phenomena.

V. LENGTH-SCALE COMPETITION

A. Numerical experiments

The numerical and theoretical analysis described so far
ll d to achieve a quite good un er g

t of the basicperiodically perturbed SG problem, at leas o e
phenomenology. i a. %"ith that background in mind, we then
turned to t e ini ia mo meLi t 1 tivation for this wor, name y,
study kink propagation in perio i pic otential as a s ep

licated roblem of breathertowards the much more comp 'ca e p
d dd 4. In principle, we ipropagation on perio ic me ia

not expec eng -st 1 th-scale competition to arise in t s pro-
kinks are very robust objects (whic is urlem, as s are

icular b the suc-n6r d b our above results, in partic ar y
oac . On the othercess of the collective coordinate approac

hand, opposi e o e't t the case of the breather, kink widths
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do not vary much when changing the only parameter gov-

erning it, the kink velocity. Of course, when approaching
the maximum velocity, Lorentz contraction of the kinks
will make them vanishingly small, but that is a regime in
which is very dificult and time consuming to carry out
good numerical simulations, so we did not address the
problem in that limit. Therefore, the kinks we are usually
dealing with have a width of about 6 in our dimension-
less units. Our purpose was to perform some simulations
in the high perturbation regime to see whether any light
could be shed on the related breather problem.

The numerical experiments we made were as follows.
We studied several potentials of difFerent wavelengths,
ranging ft.om 0.5 to 20, i.e., &om much smaller than the
kink width to roughly three times its width. The initial
condition was always a kink at one top of the potential;
different velocities were considered. A summary of these
experiments in the most interesting range of potential
wavelengths is shown in Figs. 7 and 8. Figure 7 shows
the motion of the center of mass of the kink on different
potentials. The motion in the small or large wavelength
limits has been already discussed and it is again seen
here. However, a more interesting phenomenon is also
evident, namely, kink trapping [or even reHection in the
case of wavelength 3; see Fig. 8(b)); this trapping was

25

20

c5
E 10
O

5

O
0,

5

-10
0

I

10
I

20
I

30
I

40 50

FIG. 7. Length-scale competition. Center of mass evolu-

tion of a kink on potentials of difFerent wavelengths, always

with e = 0.7 and initial velocity 0.5. Wavelengths are Q, 1;
+, 2; Cl, 3; x, 4; D, 5; and +, 6. See text for explanation.

not to be expected because kinks start from a maximum
of the potential and with a large initial velocity (in Fig.
7 it was 0.5). Regarding this point, we have to stress
here that this trapping is of a different kind than the one
discussed in the preceding section, which was clearly a
nonradiative process. Besides, the trapping depends cru-
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cially on the wavelength of the potential. Thus, for in-
stance, in the case of wavelength 2 [Fig. 8(a)], the kink is
able to propagate over six wells, whereas when the wave-
length was 4 or 5 [Figs. 8(c) and 8(d)], it was trapped
already on the second well. This dependence clearly in-
dicates that length-scale competition is to same extent
present also in the kink problem. This hint is further
supported by our previous work for the breather case
[4], which showed that this competition was most effec-
tive when the wavelength of the perturbation was around
half the breather width or slightly larger. This is also the
case in these simulations. Another common feature be-
tween both problems is that the outcome of a simulation
depends very sensitively on the initial condition. This
can be understood from the reHection case in Fig. 8(b):
For the kink to jump back over one potential wavelength
it is necessary that it meets the radiation it left behind
in the appropriate phase to gain energy from it, and this
evidently depends crucially on the initial velocity, as we
checked in our simulations. Hence we conclude that these
phenomena are a manifestation of length-scale competi-
tion.

B. Linear stability analysis and discussion

The numerical 6ndings we have described in the pre-
ceding subsection are of great importance: The existence
of processes governed by length-scale competition in the
SG kink case opens the possibility of a deeper study of
the mechanisms through which this competition affects
the kink evolution. The relevance of this comes from the
fact that, when studying the SG breather problem [4], we
were not able to carry out this deeper analysis due to the
more complicated nature of the breathers, namely, their
intrinsic internal dynamics which severely complicate lin-
ear stability analysis. But after showing that this com-
petition also affects kinks, we can certainly study their
linear stability analysis and, consequently, obtain an un-
derstanding of the mechanisms underlying length-scale
competition.

We tested the stability of the analytical continuum so-
lutions as well as of the numerical solutions in the fol-
lowing way. Let the solution to discretization of the SG
equation (1) be u; = u,. + v, , where u, is either the
discretized version of the continuum kink or the true min-
imum energy static solution of the perturbed SG equation
(1) obtained numerically and v; is a small discrete-valued
function whose time dependence is given by sin(art); the
index i runs over the N points of the discrete lattice. The
chscrete version of the perturbed problem (1) is given by

u, —a (u, +q —2u, + u; q) + [1+e cos(kai)] u, = 0,

where a is the lattice spacing. Substituting the proposed
form for u, in Eq. (16) and linearizing we get

where v is the vector containing the v, , i = 1, . . . , %, and

0 is an % x N matrix given by

2 + [1 + e cos(kai)] cos(uI ), if i = j—1, ifi = j+1
0, otherwise.

(18)

In this formulation, the modes for the linear excitations
around the shape u~ ~ are obtained simply by solving for
the eigenvalues u2 of the matrix A. We did this for all the
wavelengths we were studying, taking for u~ ~ the exact
continuum SG kink at the top or at the bottom of the
potential as well as the numerically obtained solutions at
similar positions.

The results for our numerical linear stability analysis
are shown in Fig. 9 for some of the relevant wavelengths
[18]. There are a number of interesting features which
deserve comment. First, let us consider the spectra for
the exact continuum shapes. When placed at the top of
the potential, this gives rise to a negative lowest eigen-
value ~, indicating that this continuum kink is not an
exact solution of the discrete problem and has a tendency
to relax to the correct one by emitting a burst of radi-
ation. The shape at the bottom of the potential does
not show this negative eigenvalue but instead a single
bound state with frequency ~ = 0.3. This corresponds
to a shape mode, similar to that present in unperturbed

kinks, and it actually shows up in simulations: Initial
data placed at a potential well (an exact continuum kink)
exhibit a static center of mass but a general oscillating
shape. This is easily understood if one realizes that in
this range of potential wavelengths, different parts of the
kink undergo the action of very different perturbation
values (which can be even positive or negative contri-
butions). In response to these gradients, the continuum
kink oscillates. These isolated states characteristic of the
continuum kinks disappear when we analyze static nu-

rnerical solutions. It is seen &om Fig. 9 that in that
situation spectra are composed of bands. Actually, this
is a common feature to all analyzed shapes, including
the continuum ones, and it could be expected in view of
the following argument: Far &om the kink center, which
only spans a small &action of the lattice sites, the non-
linear contribution to the linearized discrete problem for
e, vanishes, and one is left with what is a standard Flo-
quet (Bloch) problem. The corresponding structure is
very well known, and in fact it is very much like the ones
we show here, with gaps at positions that depend on the
potential wave number and gap amplitudes that depend
on the potential strength (e).

By comparing the spectral structure we have obtained
to the outcome of the numerical simulations (Fig. 9) and
especially to the radiation emission (Fig. 8), the mecha-
nism for kink destabilization can be inferred. In the case
of small wavelength potentials, the spectrum is very sim-
ilar to the unperturbed SG one [see Fig. 9(a)]. Therefore,
the behavior of the kink is very similar to the continuum
one moving in. a discrete lattice, the periodic potential
then being nothing but the Peierls-Nabarro barrier, as
we already mentioned. In that case the kink is known
to radiate [15] and correspondingly decelerate until it is
eventually trapped in a potential well [Fig. 8(b)]. When
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the wavelength is smaller, the height of the effective po-
tential seen by the kink is so small [due to the sinh term
in Eq. (14)] that this effect is hardly noticeable (hence
the perfect constant motion of the kink on the smallest
wavelength potential in Fig. 7). As the wavelength in-
creases, more and more modes move below the phonon
band, inducing shape oscillations of the kink, and as a
consequence of this motion, long wavelength radiation
is emitted [clearly seen in Figs. 8(a) and 8(b)]. This is
possible because in those cases there is still a large num-
ber of available modes just above the phonon band. Note
that the lower limit of the phonon band is given by cu = 1;
lower frequencies are localized, because they cannot prop-
s~ate in the system far &om the kink, where the spec-
trum structure is essentially the unperturbed one. This
combined effect induces a rapid destabilization of the
kink and its trapping. Finally, if the wavelength is fur-
ther increased, all the first band eventually moves below
the phonon band [Fig. 9(d)], and hence long-wavelength
emission is strongiy suppressed [Fig. 8(d)], which sta-
bilizes the kink, making possible its propagation. The
effect of the shape modes coming from the first band
is still revealed by the kink shape oscillations [see Fig.
8(d)]. We believe that this interpretation clearly explains
the mechanisms leading to the appearance of length-scale
competition in SG kinks. To seek further evidence, we
looked for the approximate value of the potential wave-

length at which the last mode in the first band crosses the
phonon band. It is shown in Fig. 10 that this happens
for a potential wavelength between 5.2 and 5.3. Were
our hypothesis true, kinks would not be able to propa-
gate on the former potential and they would be able to
do it in the latter one. The numerical simulations shown

3.5

3.0

2.5-
ee

ee
++
0

eeeee

~ee+

e
1.0 V'g %a

U & WWA aA. ~A. Y T Y T T T

e
0.5

0.0

-0.5
0

I

10
I

20
mode

I

30
I

4Q 50
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the whole Grst band of the spectrum occurs below the phonon
band.



4614 SANCHEZ, BISHOP, AND DOMINGUEZ-ADAME

in Fig. 11 confirm that this is indeed the case. Interest-
ingly, the radiation is quite difFerent in both cases and,
furthermore, for the trapped kink trapping occurs at the
second potential well, indicating that the small number
of modes available to radiate prevents a very rapid decay
of the kink. We thus conclude that our interpretation is
indeed correct. As a matter of fact, as this feature of the
spectrum will also be present when considering breather
propagation (recall that the reason for the appearance of

the gaps is the perturbating potential acting on the wings
of the excitation, and the nature of the center becomes
less relevant), our explanation of length-scale competi-
tion should also apply to breathers. The results in Ref.
[4] are in perfect agreement with what we have described
in this section.

VI. CONCLUSIONS
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In this paper, we have studied kink propagation in
1D SG systems with a spatially periodic modulation of
its characteristic frequency. We have shown numeri-
cally that kinks can propagate steadily and mostly undis-
turbed, even for large amplitudes of the perturbation.
Disagreement with analytical predictions previous to this
work is resolved through a new perturbative calculation.
By this means, the radiative divergence is shown to be
similar to an "inftared" divergence. Our calculation pro-
vides us with a good physical understanding of the prob-
lem of &ee kink propagation in the periodically mod-
ulated SG system, which had not been obtained kom
the previous ones, of a more formal character. A com-
ment is in order here, regarding the fact that now the
mathematical foundations of perturbation theory for soli-
tons are already established (mostly by pioneering works
such as Refs. [8,9]), the emphasis of that perturbation
theory should be focused on their physical implications.
Therefore, perturbative calculations in nonlinear equa-
tions should be regarded as speculative if they are not
verified through numerical simulations and, most impor-
tantly, if their physical meaning is not fully established.
That is one of the most important points of this work:
After an appropriate perturbative calculation, and by
carefully considering the dimensions of the problem, we
have been able to identify the underlying physical rea-
son for that divergence as a resonance with the lowest,
infinite wavelength phonon mode. Moreover, motivated
by our perturbative results, we have developed a collec-
tive coordinate approach to this problem that describes
in a quantitatively correct way the main features of kink
propagation, showing that the already known [4] "bare"
and "renormalized" particle limits apply also in this case.
The collective coordinate equations turn out to predict
counterintuitive phenomena whose existence is confirmed
by numerical simulations, namely, kink trapping at in-
termediate points in the potential. This is an impor-
tant success of the technique. Finally, we have shown
that length-scale competition arises unexpectedly in this
problem, which afForded us the opportunity to increase
our understanding of this ubiquitous phenomenon [4,6].
By a detailed linear stability analysis, we have identified
the mechanism by which length-scale competition arises
as coming from the band structure induced by the per-
turbation potential. Again, the predictions of our theory
have been fully confIrmed (quantitatively) by the corre-
sponding numerical simulations.

The global picture that emerges from this work is that,
once again, SG kinks behave basically like particles and a
collective coordinate approach can be more faithful than
complic~. ted perturbative results. Length-scale competi-
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tion phenomena are only relevant in a large amplitude
perturbation regime and therefore do not interfere with
this picture in most situations. In this respect, it has
to be noted that a perturbative calculation describes ev-
erything beyond the center of mass dynamics: extended
(background) contributions (see, e.g. , the third reference
in [12]); shape changes localized around the (moving)
kink; and the radiation, i.e., emission &om the kink. It
is crucial to separate and identify these physically difer-
ent effects if one is to properly understand the dynamics
of the considered system. Our results are likely to be
general for kink-bearing models in view of the related
results of [16] on the spatially periodically perturbed P4
model. Some remarks are in order regarding this related
problem. The same kind of divergence is predicted by a
perturbation theory similar to the one used here (see [19]
for details on this approach), and again numerical simu-
lations show evidence of the unphysical character of the
divergence: It can be seen Rom Fig. 4 of [16] that as the
velocity of a decelerating kink goes through the threshold
nothing special occurs. As a matter of fact, most of the
reasoning we have used in the present study applies also
to that work (with an additional feature coming from the
shape mode of the unperturbed P4 kink), thus reinforc-
ing the generality of our results. On the other hand, the
discovery of length-scale competition for SG kinks has al-
lowed us to understand the underlying physical reasons

and helped us to gain insight on related results for the
SG breather [4]. We believe that the mechanism we have
identified in this work is of a very general character and it
will be important to have more work on related systems
to check our predictions. As a final remark, we want to
stress that we have provided a quite thorough description
of the features of &ee kink propagation in a periodically
modulated sine-Gordon system and that we have been
able to provide a consistent physical &amework to un-

derstand this "canonical" problem, which will be of help
in dealing with more complex situations.
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