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Green's function and lattice sums for electromagnetic scattering
by a square array of cylinders
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A method is given to represent in terms of absolutely convergent series the lattice sums involved
in solving problems of electromagnetic diKraction by two-dimensional periodic arrays of obstacles.
The expressions of the lattice sums are used to express the Green's function of the problem as a
Neumann series. These results lead to very efBcient algorithms for numerical calculations of the
Green's function.

PACS number(s): 03.50.De, 41.20.Jb

I. INTRODUCTION

In general, the solution of the problem of electromag-
netic diffraction by periodic arranged obstacles, using
Rayleigh's method [1], involves a set of lattice sums.
These quantities consist of sums over terms with a func-
tion evaluated at each lattice point. Depending on the
kind of periodicity, different lattice sums associated with
different functions may emerge.

The evaluation of lattice sums is the most dificult part
of the whole of Rayleigh's method. The main reason is
that the lattice sums are only conditionally convergent,
i.e., they converge very slowly and a direct evaluation is
impractical if high accuracy is needed.

There are a few systematic techniques in dealing with
certain classes of lattice sums. Most significant is that
due to Ewald [2], which involves splitting the sums into
two parts using a Gaussian truncation function, with one
sum over the direct lattice and the other transformed by
the Poisson relation to a sum over the reciprocal lattice.
Ewald's method is accurate only for low order lattice
sums as the Gaussian truncation function is not suK-
ciently flat at the origin, for high orders, and it is noto-
riously diKcult to find a suitable form for a rapidly con-
verging series [3]. The other commonly used approach is
the planewise summation method which, instead of split-
ting the sums into two parts, separates the fundamental
lattice translation vectors into two subsets, with the Pois-
son formula applied to the sum over the lattice generated
by just one of them. The Anal sum is then taken over a
lattice which in some regions is the direct lattice, and in
others is the reciprocal lattice [4—7]. It was pointed out
that, with some simple guiding rules (usually dictated
by the physical constraints of the problem), almost all
classes of lattice sums involving a long-range potential
can be split into two rapidly converging series (one over
the direct lattice and the other over the reciprocal lattice)
[s]

Another quite different approach required the exploita-
tion of the symmetry of the lattice to obtain a set of
identities between lattice sums, with different carefully
chosen origins of coordinates [3]. In this case, the com-
puter implementation of these identities proved much less

cumbersome than that of Ewald's method, and could be
used for arbitrary high order lattice sums, with good ac-
curacy. However, the absence of square symmetry does
not allow us to use this method in problems involving
ofF-axis incident radiation.

Here, we describe an alternative method to express the
lattice sums as absolutely converging series. The proce-
dure relies on the relationship between the general two-
dimensional Green's function of the direct lattice space
and that of the reciprocal lattice space. The Green's
functions have to satisfy the periodicity or quasiperiod-
icity condition for normal incidence or off-axis incidence,
respectively. Besides its efBciency, this method also al-
lows us to have some physical insight into the analytical
properties of the lattice sums. Moreover, the method also
involves some intriguing mathematics which deserves fur-
ther investigation.

In what follows, we will discuss Green's function and
lattice sums in the context of the Rayleigh identity for
TM modes. Of course, the Green's function and lattice
sums are exactly the same for TE polarization.

We mention that our formulas for the lattice sums lead
to fast computer programs to obtain sets of values of the
Green's function, for a given set of parameters character-
izing the incident radiation.

II. PERIODIC GREEN'S FUNCTION AND
LATTICE SUMS FOR NORMAL INCIDENCE

We consider the following diffraction problem: a plane
electromagnetic wave is incident normally on a capacitive
grid consisting of a square array of perfectly conducting
cylinders of radius a and length h. The spatial periodicity
of the array is d = 1 and the cylinders are separated
by free space (see Fig. 1). The incident plane wave is
characterized by its wavelength A and the wave vector:

2'k' = ——(sin p cos 8, sin y sin 8, cos y)
A

(for normal incidence y = 0).
We use an in6nite set of reflected plane waves in the
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P.,q, e) Substituting in this equation the Fourier integrals:

1
G(r) = J g(k)e'"' dk end d(r) = e'"'dk,

(2m.)'

we obtain [9]

~ik r
G(r) = —

2 dk = K()(—ik~r)2' k2 —k2

= —Hs~ l(kyar) .0

Substituting G and V into Green's theorem and apply-
ing the method developed by Lord Rayleigh [1], for the
electrostatic problem, we obtain the algebraic system [3]

transmitted

wave

z direction
i — " B„+i) (—1) B),Si,+„(kg)= 0, (6)

Y„(kga)
J„kga

A:=—oo

where S„arethe lattice sums defined as

FIG. 1. Electromagnetic diffraction by a doubly periodic
array of cylinders. S„(ki)= ) H„(kiR„)e'"' .

u80

space z ) h, and an infinite set of transmitted plane
waves in the space z ( 0. For the TM mode, in the
region 0 & z & h, we express the field as a sum of modes
satisfying the two-dimensional Helmholtz equation

b, 2V(r) + k~V(r) = 0,

the boundary condition at the surface of each cylinder

H„are the Hankel functions and R„=(R„,(p~) are(1)

vectors pointing &om the origin of coordinates to the
center of the pth cylinder. In the derivation of (6) it was
assumed that the field (3) is symmetric about 8 = 0 [i.e. ,B„=(—1) B „]and satisfies the periodicity condition

V(R„+r) = V(r) .

Vlcc, =0 (2)
An algebraic error in [3] causing the omission of a

power of (—1) has been corrected in Eq. (6).

and a periodicity condition at the edge of each period cell
of the array.

In polar coordinates (p, 8, z), around the central cylin-
der, the modes have the form

A. Periodic Green's function

If we consider the inhomogeneous Helmholtz equation

V(p, 8, z) = ) [A„J„(k~p)+ B„Y„(k~p)]e'" e'"((', (b,2+ k~)G(r) = —2x ) b(r —R„), (8)

Y„(kga)
J„(kga)

The Green's function for Eq. (1) is the elementary so-
lution of the inhomogeneous Helmholtz equation

42G(r) + k&G(r) = —2vrb(r),

in which h(r) is the two-dimensional Dirac function.

(4)

where k~ and k~~ are related to the wave vector k by

k = k~ + k()
——(2m/A)

and the J and Y„areBessel functions of the first and
second kind.

In (3), the boundary condition (2) implies

to define, over the direct lattice, the doubly periodic
Green's function

Gg(r; p) = —) Ho~'l(kg
~

r —Rp —p ~),

then the field inside the unit cell, centered at the ori-
gin of coordinates, is obtained from Green's theorem by
integrating only over the surface of the central cylinder:

1 OV
V(p, 8, z) = —— Gq(r; p) dlq .

BCo Or 0

The right side of (8) embodies the periodicity of the total
field.

Equally well, we may define a Green's function over the
reciprocal lattice. With d = 1, the nodes of the direct
lattice are defined by the set of vectors
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R = (R„,p„)= (ni+mj), n, m e Z,

while the structure of the reciprocal lattice is determined
by the set of vectors

Ki, = (Kh, eh) = 2x(ni+ mj), n, m g Z,

where, i and j represent the unit vectors along the x and

y axes, respectively.
By means of the vectors Kh, we may construct the

Bloch functions exp(iKi, r), which form a complete sys-
tem. At the same time, these functions are doubly peri-
odic over the direct lattice [10,11]

eiKg (r+RJ ) iKg r
'J p

Using in (8) the expansions in terms of Bloch functions

)~g( R ) ) iKg.r
(2vr) 2

p h

and replacing r by r —p we obtain the reciprocal lattice
representation (G„)of the Green's function

iKh (r—p}

2K h

which, like (9), is doubly periodic in both arguments:

G„(r+ mR; p+ nR„)= G„(r;p), Vm, n c Z .

The two Green's functions (9) and (ll) are propor-
tional. To prove this we make use of the relation

) g(r K ) ) —iR& r'

h p

and

G(r) = ) g(Kp, )e'
which follows from the Poisson summation formula. In
(9) we substitute the Fourier representation of Hankel
functions [9]

+OO +OO

Gs(r; p) = ) —f dz' f
'r' (r—p—R„), e

CLQ

+~ +~ ir' (r p)
dX CLQ2' r'2 —k~2

—'Rp r'
e

= 2' dx'

eiKh (x' —P)
K2 —k2

h

ir' (r —p)Ie ) b(r' —Kg)
h

Gg(r; p) = (27r) G„(r;p) . (13)

Consequently, the Green's functions (9) and (ll) are re-
lated by the formula

I
r —p I( Rp, Vp g 0,

so that

) H' '(k~ lr —p —R I)
p+0

B. Absolutely convergent series for lattice suxns
). Se(k~) Je(ki

I
r —p I)e *, (15)

The two forms of Green's function related by (13) pro-
vide us an analytic formula for the lattice sums (7).

In the left hand side of (13), using the expression (9),
we separate the term for p = 0:

—Hol'~(kg
I
r —p I) + —) Ho (kg

I

r —p —R„I)'
p~o

'Kh (r —P)
= 2~), , (14)

and apply the addition theorem for the Hankel functions
[12]. Inside the unit cell centered at the origin we have

where the Sr are defined in (7) and P = arg(r —p) (see
Fig. 2).

We assume also
I

r I(I p I. Then, applying a sec-
ond time the addition theorem for the Hankel and Bessel
functions, the left hand side of (14) becomes (see Ap-
pendix):

OO

) H~~ ~(k~p) Ji, (k~r)e '"~e'"

) S,(k~)J, ,(k~ p) J „(k~r)e '" e' "
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FIG. 2. The geometry for the application of the addition
theorem within the unit cell.

In the right hand side of (14) we expand the exponen-
tial in terms of Bessel functions [12]:

eiKi, (r P) — ) - i~J (Ki, ] r —p ~)e' s"e

and apply the addition theorem for the Bessel functions

(~ r ~(~ p ~). Finally, we obtain

~.J„(Khp)J (K«)
2

n, m= —oo

i~8& —im@ i(m —m)s

By equating the coefficients of equal powers of exp(iQ)
and exp(i8), changing k into —k, we obtain from (16)
and (17) the set of equations

Sr(k L)Jg+s(k L p) Js(kyar)

Hs('l (kg p)—Js(k~r)br p

.&+» - r+~( hp) s(+") '&s~—4x 6
Kq —kz

(18)

S4s(k~) = S4~(k~) + ~S~~(k~),

Here, bg0 denotes the Kronecker symbol and, for Gxed
(k~, E), the equations are independent of (k, p, r), pro-
vided

/

r —p f( R and
/

r /(/ p /.

This is a remarkable identity relating sums of Bessel
functions. It contains free parameters p and r (distances
within the unit cell) and k (an arbitrary integer).

The fourfold symmetry of the square array implies
Sg ——0 if / is not a multiple of four, and considering the
parts of S4r in (7) associated with the Bessel functions J
and Y separately:

we obtain from (18)

S4~(k~) = —br 0 .

For S4& we obtain the formula

(20)

S4&(k~) J4i+s(k~ p) Ji, (k~r)

Ys(—k~p) Js(k~r)br p

- J4r+. (K.p) J.(K«)—4
K„'—kg

We multiply both sides of (21) by exp[ik(8 —g)] and
sum over k. The addition theorem for Bessel functions
leads us to the formula:

S4r(kg) J4r(kg/) = —Yo(kg()bi o

4) - J4e(KI()
(4~8 )K2 —ka

(22)

S4r(kg) J4ryl(kg) = — Yj (kg) + br 0
Y 2

eked

-4k, ) "+' " .o.(4ee, ) .
Kg(K~2 —k~ )

(23)

In the series &om the right hand side, the term for Kh ——

0 gives a nonzero contribution only if 8 = 0. We separate
this term and add it to the 6rst part of the right hand
side in (23). Finally, we obtain for S4& the expression

S4i(k~) J4~+~(k~) = — Y~(k~) +
I

——2
I(x ) k~

Kh(K~~ —kg )

(24)

which depends on k~ only.
For 8 & —1, the lattice sums are given by relation

S4~(k~) = S-4~(k~)

which results from (22).
The equation (18) is valid for any E, i.e., with no re-

striction imposed by the symmetry of the lattice. The

where ( =] p —r ]. Again, for fixed (k~, E), this equation
is independent of ( and provide us an identity relating
sums of Bessel functions.

Within the unit cell, ( E (0, 1), we multiply both sides
of (22) by (4r+~ and integrate over (. For E & 0, all the
integrals may be evaluated in closed form [12]

f
1

(4r+~J (k ()d( 4~+~( ~)
0 kg

f
1 24~+~ 4g t

(4r+~Y (k ()d( r+'(
0 kz eke +

and we obtain
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same method leads us to the general expressions

Se(kx) Je(kate) = —H~~ l(kz()~e, o

e+i)- Je(Ke&),ee„
K2 —k

(25) 10-

Z

+e(4I = —(&+ Yi(&z)+
I

——2 I& &eoJi kg (ir ) k~

,e+i L ) - e+i ( e );es„(26)4k

Je+i(4) „Ks(Kq~—k~ )
-10-

valid, with the corresponding changes in the definitions
of R„and Kh, for any regular two-dimensional lattice.
Here, we have employed the relation

FIG. 3. Normal incidence. The variations of the 6rst three
nonzero lattice sums with k~ are shown, with the solid curve
for So, coarse-dashed curve for S4, and Gne-dashed curve forY Y

SY

for n & 0. Again, the lattice sums of negative order are
obtained &om the corresponding lattice sums of positive
order by means of (25).

4 2 (kg l 1 —2p J, (Ke, )

C. Comments on the lattice sums expressions
and relation to the previous work

The series involved in the equation (24) converge as
Kh for large Kh, whereas the corresponding series

(21,22) converge as K& and K& ', respectively. In fact,
all these series become more slowly convergent in the
neighborhood of a root of those Bessel functions depend-
ing on k~. We discuss later a technique which enables us
to avoid problems in the neighborhood of such roots.

Numerical values of the lattice sums S4e(k~), obtained
from (24), generate curves which coincide exactly with
the curves determined numerically by Ewald's method
or the lattice sum identity in Ref. [3] (see Fig. 3). More
precisely, some of these numerical results are presented
in Tables I and II. It can be seen in Table I that the
maximum relative error between the results from [3] and
Eq. (24) occurs at the points close to a root of J4e+i (k~).
In all these cases the relative error becomes significantly
smaller by applying l'Hopital's rule, or the technique de-
scribed in Sec. III B.

A main characteristic of the formulas (21,22,24) is that
the involved series are absolutely convergent, in contrast
to the definition (7) where the series are conditionally
convergent.

From (24) we deduce the behavior of the lattice sums
for small k~. If E g 0 we have

24e+s(4/+ 1)! ) .J4e+i(Kg)
kJ hgo h

1
4E

J

while for E = 0

(28)

where p 0.577216 denotes Euler's constant. The nu-
merical value of the last term is

8 ) s
—1.600128 x 10

hgO

All the lattice sums exhibit a simple pole if k~ equals
the magnitude K of a reciprocal lattice vector. The be-
havior close to such a point (K g 0) is given by the
formula

S4e(ki) 2 ) cos(480;),
kg —K2

K,
(29)

where the sum is over all reciprocal lattice vectors K; =
(K, e;). The fourfold symmetry of the reciprocal lattice
introduces a degeneracy of poles. For every pair of inte-
gers, (n, m), excepting (0, 0), we have four vectors K, of
the same magnitude and the sum in (29) contains four
terms. This formula also applies to So .

The results (27)—(29) were also obtained in Ref. [3]
by a different technique. We mention that the method
presented here allows us to obtain a more complete ex-
pression for the behavior of So (k~) for small k&.

The sign of icos(488;), in (29), determines the way
S4+e(k&) tends to infinity at the right and left hand side
of a pole. All the poles are simple and consequently,
Eq. (29) controls the shape of the curves between two
successive poles (see Fig. 3). If at the ends of the interval
between two succesive poles S4+e(k~) has different signs,
then the shape of the corresponding curve, in this inter-
val, is cotangentlike (one infiexion point and one zero).
If at both the ends of the interval S4+e(k~) has the same
sign, the shape is parabolalike (one point of extremum
and two, one, or no zeros).
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Among the set of lattice sorus Sz&(ki) only So (ki) is
monotonically decreasing in all the intervals between two
successive poles. Excepting the origin (ki ——0), which
is an essential singularity generated by the logarithmic
term in (28), So (kz) has only simple, alternating poles
and zeros. For E ) 1, the lattice sums S4+&(k~) exibit a
pole of order 4/ at the origin and simple poles in the range
ki C (0, oo). For lattice sums of all order, k~ = oo is an
accumulation point of poles, i.e., an essential singularity.
We may conclude that the Eqs. (20) and (24) provide a
good analytic representation of the lattice sums S4r(ki)
for a square lattice.

Generally, we may assert the following:
(a) All the poles of S4+& are the same as the poles of the

right hand side of (24) and vice versa, being located at
the points ki ——Kg.

(b) The zeros of S4+& are the same as the zeros of
the right hand side of (24) unless ki equals a zero of

J4~+i,when a detailed analysis is required.
(c) If J4r+i(zo) = 0 then, at the point zo, the right

hand side of (24) vanishes, provided zo does not equal the
magnitude of one reciprocal lattice vector. Consequently,
for ki = zo g Ks, we may apply 1'Hopital's rule, or the
technique discussed in Sec. III B. L'Hopital's rule gives

i 4
S4r(zo) J4r+2(zo) +2(zo) +

l

——1
l
—, ~r.o

(m p zo

(30)

where the series converge as K&
' . The zeros of

J4r+i(z) and J4r+2(z) separate each other [13]. There-
fore, J4r+z(zo) g 0 and (30) determines the value of
S4~(zo).

TABLE I. Numerical values of So (ki) as given in Ref. [3] and by Eq. (23), summed over a
square array of 201 by 201 cylinders. The last column represents the right hand side (rhs) of (23)
at the points where Ji(k~) = 0.

Ref. [3] Eq (23) Relative error
Roots of

Jg(ki) = 0 rhs (23)

2
2.994 97
3.809 04

3.899 5
4.984 92
5.979 9
6.974 87

7.065 33
7.969 85
8.964 82
10.140 7

10.231 2
10.954 8
11.949 7
12.944 7
13.306 5

13.397
13.939 7
14.934 7
15.929 7
16.381 9

16.472 4
16.562 8
16.924 6
17.9196
18.9146
19.547 7

19.638 2
20

1.399630
0.486 082
0.010 712

—0.040 071
—0.807 882
—4.293 390

1.417 760

1.166 760
—0.342 809
11.571 000
0.487 108

0.405 418
—0.141872
—1.244 500

0.765 385
—0.6312 32

—0.955 180
—9.980 070

1.259 090
0.260 733

—0.103075

—0.170700
—0.241 093
—0.576 857

2.370 490
6.062 670

—1.799320

—2.883 320
6.461 610

1.399630
0.486 082
0.010711

—0.040 071
—0.807 882
—4.293 390

1.417 760

1.166 760
—0.342 809
11.571 000
0.487 105

0.405 420
—0.141872
—1.244 500

0.765 385
—0.631 264

—0.955 182
—9.980 070

1.259 090
0.260 732

—0.103077

—0.172 018
—0.241 091
—0.576 857

2.370 490
6.062 670

—1.799 320

—2.883 330
6.4616 10

0
0
0.000 062 772

5.67095 x 10
0
0
4.20415 x 10

5.10854 x 10
1.73871 x 10
0
5.87349 x 10

4.11657 x 10
1.15536 x 10
9.57887 x 10
4 67252 x 10
0.000 013314

2.059 25 x 10
0
1.89358 x 10
2.02523 x 10
0.000 0267 69

0.007 726 5
9.58002 x 10
8.26612 x 10
1.005 78 x 10
7.865 66 x 10
2.38508 x 10 '

4.63058 x 10
1.475 91 x 10

3.831 706

7.015 587

10.173468

13.323 692

16.470 630

19.615859

—2.57689 x 10

1.18114 x 10

—7.40197 x 10 8

—9.77829 x 10

—9.30267 x 10

—4.11342 x 10
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TABLE II. Numerical values of S~~(k~) as given in Ref. [3] and by Eq. (23), summed over a square array of 201 by 201
cylinders, together with the nearest-neighbors estimate 4Yq2(k~). The last two columns display S24(k~) together with the
nearest-neighbors estimate.

Ref. [3] Eq. (23) Relative error 4Yj2(k~) S24(k~) 4Yg4(k~)

2

2.994 9?
3.989 95
4.984 92
5.979 9
6.974 87
7.969 85
8.964 82
9.959 8
10.954 8
11.949 7
12.944 7
13.939 7
14.934 7
15.929 7
16.924 6
17.9196
18.914 6
20

—5.47552 x 10
—4.81968 x 10
—1.80901 x 10

—1541.740 000
—269.332 000
—46.704 800
—12.887 900
—16.659 600
—3.428 720
—2.169510
—2.315210

0.352 599
—?.691 110

1.014 000
0.563 684
0.664 173

—3.123 000
6.768 980

—4.537 380

—5.47550 x 10
—4.81966 x 10
—1.80900 x 10

—1541.730 000
—269.331000
—46.704 700
—12.887 900
—16.659 600
—3.428 720
—2.169 500
—2.3152 10

0.352 600
—7.691110

1.014 000
0.563 684
0.664 174

—3.123 010
6.768 980

—4.537 380

2.995 15
2.91773
2.807 13
2.692 02
2.528 36
2.531 98
2.441 92
5.724 46
1.251 64
9.890 58
6.178?6
2.451 13
1.239 97
5.878 17
1.480 38
2.333 31
3.740 80
2 ~ 11333
3.152 73

xlO '
x 10
x 10
x 10
x 10
xlO '
xlO '
x 10
x 10
x 10
x 10
x 10
x 10
x 10
xlO '
x 10
xlO '
x 10
x 10

—5.568 38 x 10
—4.91105 x 10
—1.84909 x 10

—1582.677 862
—233.113429
—51.152 084
—15.462 449
—6.193760
—3.208 700
—2.030 871
—1.382 722
—0.816 185
—0.1970 76

0.416 306
0.845 771
0.907 907
0.551 578

—0.061 269
—0.639 009

—3.438 88
—2.245 14
—2.480 17
—1.307 66
—1.870 52
—5.369 62
—2.584 12
—1.856 80
—1.841 10
—2.382 25
—3.861 70
—7.605 01
—1.780 38
—4.856 18
—1.529 82
—5.551 42
—1.973 35
—3.424 13
—3.651 84

x 10
x 10
x 1O"
x 10'
x lO"
x 10
x 10
x 10
x 10
x 10
x 104

x 10
x 10
x 10
x 10
x 10'
x 10

—3.438 00
—2.244 53
—2.479 45
—1.307 24
—1.869 84
—5.367 35
—2.582 81
—1.855 64
—1.83964
—2.379 75
—3.855 98
—7.590 29
---1.?73 46
—4.832 15
-- 1.515 06
—5.414 34
—2.192 63
-1.0045?
—4.949 85

x 10
x lO"

1015

x 1013

x 1O"
x 10
x 10
x 10
x 10
x 10
x 10
x 10'
x 10'
x lo
x 10
x 10'
x lo'
x lo'

In addition, the high order lattice sums are usefully
approximated for k~ ( 2E, by the formula [3]

in the reciprocal lattice space. The solutions of these two
equations are related by the formula

S4~$(kJ ) - 4Y4g(kJ ) . Gg(r) = (2x) G (r), (36)

A numerical example illustrating this approximation is
given in Table 1I. Note that the approximation (31), for
large /, is accurate presque partout (p.p. ), isolated ex-
ceptional points such as the poles of S4& being excluded.

III QUASIPERIODIC GREEN'S FUNCTION
AND LATTICE SUMS FOR OFF-AXIS

INCIDENCE

A. Quasiperiodic Green's function

For the off-axis incidence we use the complete set of
Bloch functions

the same as (13). Here, to prove this, we use the relations

) y ( )
ik&.r ) K

h h

= e* & (2vr) ) b(r —R~)

= (2vr) ) b(r —Rp) e'

The two Green's functions are quasiperiodic:

Gg „(r+ Rp) = e*k-L'R~ G~ „(r),
~ ( )

'(Kg+k~). r

satisfying the quasiperiodicity condition:

gg(r+ R„)= e' » Qg(r) .

(32)

(33)

and, in the direct lattice space, we have

Gg(r; p) = —) Ho (ki i
r —Rp —p i)e'

ZVt ~ (y) 'k' R

(38)
Here, k& represents the projection of the incident wave
vector k', onto the xy plane.

To account for the quasiperiodicity condition the
Helmholtz equation (8) becomes

(E2+ k~)Gg(r) = —2vr) b(r —R„)e' L ~, (34)

Prom (35) we obtain the Green's function in the recip-
rocal lattice space:

~iq&. (r—p)
G„(r;p) = —)

in the direct lattice space, and

(A2+ k~)G„(r)= ——) Qp, (r),2' (35)

where Qg = Kh, + k~.
VVe apply the same method as in Sec. IIA using so-

lution (3) and integrating only over the surface of the
central cylinder. For a TM mode, the Rayleigh method
leads us to the linear system [B„=(—1)"B„]:
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Y„(kqa)i — " 8„+i) B sSg+„(kg)= 0 .J„kga (40) (k~ Ir —& I)
(y)

Now, the lattice sums 8g are given by the formula

Se(kg) = ) He (kgR ) e' ~~ e' &'+ .
p+0

(41)
+—) Hp (k~ Ir —p —R„I)e*&+'

p~o

'g& (r—p)=2~), „,, (46)
B. Absolutely convergent lattice sum expressions

8e (kg) = ) Je(kgR„)e' e*

p+0
(42)

and

We split the lattice sums (41) into two parts, pointing
out the series involving the Bessel functions J and Y:

where the term with p = 0 is separated out &om the
series. As in the case of normal incidence, we apply the
addition theorem for Hankel functions, assuming that r
and p are restricted to the central unit cell. The series
in the left side of (46) becomes

) H, ' (4 I
r —p —R„I)

e' -L'+

SY(k ) = ) Ye(kgR„)e' ~p e' L'

p/0

so that

Se(k~) = Se (k~) +iSe (k~) . (44)

) e 'r~ = (2z)') b(r —Kh),

In contrast with the case of normal incidence, for off-

axis incidence, in general, both 8&~ and 8&Y are complex,
and Se of all orders are nonzero. This means that (44) is
not a separation into the real and imaginary parts of 8p.

First, we consider the lattice sums Se~, defined in (42).
The Poisson summation formula relates the vectors from
the direct and reciprocal lattices:

) Se(k~)Je(k~()e '~ . (47)

Se(ki) Je(ki() = Hp (ki()—be, p

4 e+z x Je(Qh&) ee„'
Q„—kg

(48)

where Q~ = (Qg, eg). By substituting (45) into (48) we

have

Then, we expand the exponential, in the right hand
side of (46), in terms of Bessel functions with the ar-
gument Qg(, and equate the coefficients of equal powers
of exp (—iP). This, leads us to the set of equations

for all vectors r in the lattice plane. By defining v' =
k~ —k&, we obtain

Se (ki) Je(ki() = —Yp(ki()be p

4 e ~ - Je(Q~&) es.4g ~ ~& h

Q„—kg
(49)

—i(kg —k~) R~ 0
~

~

unless k~ —k& equals any of the reciprocal lattice vector
Kg. In this formula, we substitute the expansion [12]

—ekg R —«kgR„cos(Hg —(p„)

) (—i)"J„(kgR„)e'"e '"

Further, following the same method as in Sec. IIB, i.e.,
multiplying both sides of (49) by (e+~ and integrating
over ( from 0 to 1, we obtain, for E ) —1

Se (k L)Je+i(kz) = — Yx(k L) + be, p
Y 2

eke

) - Je+(Q~) ee.

„Qh(Qg—4.')

Se (k~) = —be, p, (45)

i.e., the same result as (20). This means that the lat-
tice sums 8& take the same values independent of the
direction of the incident radiation.

To obtain the expression of Se+, we substitute (38) and
(39) in (36):

multiply both sides by exp (i/8~) and integrate with re-
spect to 8~ &om 0 to 2x. Finally, with the definition
(42) and the relation Je(0) = be p, we get

We may improve the convergence rate of the series in

(50), if we introduce a parameter g & 1 and integrate
(49), multiplied by (e+, from 0 to g. In this case, the
integrals take the forms [12]

f (k ()d( e+ + ( n)

0 kg

f (e+iY(k ()d(= e+i e+i("z'9) +
( )'

0
+

~ ~+2
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and we obtain

Se (k~) Je+i(k~t)) = — Yi(k~g) + be o
Y 2

erick~

4i —
2

e'- /'ki l Je+i(Qhrj);ee.
EQ~) Qg —ki'

which remains real in all cases. These equations have to
be used for negative values of 8, as (50) and (52) are valid
for 8 & —1 only.

From (50) we deduce the behavior of the lattice sums
for small k~. If I g 0 the origin is a pole of order E:

2'+'(~+1)' e ~ - Je+i(Q~),ee.

Now we change g into ( and repeat the same procedure.
After m steps we have

Se (kg) Je+ (kgb)) = while, for 8 = 0 the origin is an essential singularity:

Y (k~g) + —). (m —k)! ( 2 ') '"+'

&Qh J Qi, —k~'

and, by substituting g = 1, we obtain a new formula
with a series converging as Q&

' . The parameter m is
arbitrary. If we increase m, we improve the convergence,
but too large values of m lead to problems of numerical
stability. This is, particularly, the case for k~ small, when
indeed (49), with ( = 1, may be preferable to (52).

For (22), the same method gives

84e(k~) J4e+ (k~t)) =

1 (m —k)! ( 2
&-(k n) + —) . (k ),

'
l kI=1

4 (kii))
2~m!J

Here, in contrast to (27) and (28), Q)t depends on Ic&.
Note that, as ~kz~ = k; i 0, the result (55) approaches
(28).

The set of vectors (Qs} defines a lattice obtained from
the reciprocal lattice (Kp, }by a translation of Ic&. All
the lattice sums exhibit a simple pole if k~ equals the
magnitude Qi, of a vector from the translated lattice. At
the same time, the problem presents no symmetry, all the
vectors Qi, are diiferent and, consequently, all the poles
of the lattice sums are nondegenerate. The behavior close
to a pole is given by the formula

8 (k ) - t' e*es"4
(56)

k —Q2

the residue of the corresponding pole being a complex
quantity. This formula also applies to So . In addition,
all the lattice sums exhibit a simple pole at k~ ——k&, for
K6 ——0.

There is an interesting special case when the incident
wave vector is confined in the 2:z plane (8 = 0):

„;&&&)

Note the difFerence between (52) and (53) regarding
the involved series, namely, in (53) the terin for h = 0 is
omitted in the series and generates an extra term in the
coeKcient of bg 0.

The formulas (52) and (53) may be used instead of
l'Hopital's rule; when k~ approaches a zero of the Bessel
function we have to use the corresponding formula for
m+ 1.

2K
Ir' = ——(sin p, 0, cos p) = (k&, 0, k~~),

and the definition of the lattice sums takes the form

8 (k ) ) r ~( )(k gti2 + m2) eiearctan (rn/n) einkz

where the prime indicates that the term with n = m = 0
is to be omitted. For this particular oH'-axis incidence
the lattice sums satisfy the relation

8 e(ki) = (—1) Se(ki),

and, therefore,

C. Analytical properties of the lattice sums 8 e(k~) = (—1) Se (k~) .

Generally, in the case of oblique incidence, from (43),
we have

8 e(k~) = Se '(k~),

and the lattice sums 8& are complex for all S, except 80

Actually, in this case, the symmetry with respect to the
re8ection y -+ —y is preserved Consequentl. y, from (50),
we deduce that the lattice sums 8& are real for even E

and imaginary for odd E.
The lattice defined by the set (C}i,}is obtained from

the reciprocal lattice (Kh} by a translation along the x
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s"
0

of 80 and 8» as functions of k~, when 8 = 0. Note
that 80 is real, while 8» is pure imaginary. Therefore,
the figures display the real part of 80 and the imaginary
part of 8»+, respectively.

IV. NEUMANN SERIES FOR THE GREEN'S
FUNCTION

-2-

-4-

In the case of normal incidence, by means of (15) we

obtain the expansion of the doubly periodic Green's func-

tion (9), defined over the direct lattice, as a Neumann

series, the coeKcients being the lattice s»ms:

FIG. 4. Oif-axis incidence. Sp (k~) for A = 2.3, p = s/12
and 8=0.

axis, introduced by k&. We have similar relations to (54)
and (55) for the behavior of the lattice sums for small
k~. The lattice sums also preserve the simple pole at
k~ ——k&, corresponding to the translation of the ori-
gin. All the other poles are degenerate in two ways. To
make clear this behavior we separate the reciprocal lat-
tice, excepting the origin, into two kinds of patterns, each
of them containing four points. These patterns are de-
fined by the sets (2n (+n, Q), 2m(Q, kn)}, containing two
equidistant points on each axis, and (2m(kn, +m) },with
no point on the axes, i.e., we have patterns containing
four vectors Kh of the same magnitude but different di-
rections. Each pattern, of the first or second kind, con-
tributes to only one pole in (29). The translation by
k&, along the z axis, breaks the symmetry and changes
the patterns of the first kind such that they will contain
three different vector magnitudes, while the patterns of
the second kind will contain only two difFerent vector
magnitudes. This explains the splitting of poles, &om
the case of normal incidence, into three or two distinct
poles for 8 = Q.

A similar situation appears if k& is confined in the
yz plane (8 = kn/2), or, more generally, if 8 equals an
integer number of vr/4.

In Figs. 4 and 5 we give two examples for the behavior

Gs(r; p) = —Hp('i(kg
I
r —p I)0

OO

+—) S4r(k~) J4g(k~ I
r —p I)e *4~~.

(57)

Therefore, the doubly periodic Green's function (9) con-
tains all the symmetry properties of the lattice.

Let us assume that p = 0. Then, we replace the lattice
sums by their expression S4g(k~) = —br p + i'&(k~), so
that the Green's function becomes

Gs(r) = — Yp(k~r—)2

) S4&(k~)J4r(k~r) e
2 ~=-

(58)

Gg(r) = ——Yp(k~r) ——S
2 2

where

) S r(ki) —4Y4r(kid)

x J„(k~r)e-'4", (59)

Here, r = gz +y and 8 = arctan(y/z), with r re-
stricted to the central unit cell.

Taking into account that, for large 8, we may approx-
imate p.p. Sz& 4Y4g(k~ d), we apply the Kummer
method [12] to accelerate the convergence of the series in
(58):

10 ~

5-

0

-5-

—.p I

FIG. 5. Off-axis incidence. Ini[8$(k~)] for A = 2.3,
rp = s /12, and 8 = 0.

S = 4 ) Y4r(kJ d) J4r(kJ r) e '

= Yp(kg I
r —di I) + Yp(kg I

r + di I)

+ Yp(k~ Ir -4 I)+ Yp(k~ Ir+4 I)

i and j being the unit vectors along the x and y axes,
respectively.

This result is valid only within the central unit cell,
where r & d/~2 ( d.

From the definition (7) we deduce

S r (ki) = (—1) Sr (ki )

and, from (59), by replacing d = 1, we obtain



S. K. CHIN, N. A. NICOROVICI, AND R. C. McPHEDRAN

FIG. 6. Normal incidence. G(z, y) for k~ ——6. FIG. 8. Off-axis incidence. Im[G(z, y)) for A = 2.3,
8 = Sm/6, p = s/2, and ki = 6.

Gg(r) = —— Yp(kyar) + S
2

+ So (4.) —4&o(&~) &o(4.~)) Yo(—ki—r) —— ) 8, (ki) Jr(kyar)e
' .

2

(6I)

x J4g(kyar) cos (488). (60)

%e also have to mention that this formula is true only
for a square lattice and within the central unit cell, in
the case of normal incidence. From the comments made
in relation to Table II, we see that the series in the rep-
resentation (60) should be rapidly convergent.

In Fig. 6 we display the surface plot obtained from
(60), for ki = 6.

For o8'-axis incidence, and p = 0, the Green's function
(38) takes the form

Here, the lattice sums 8& are complex for all values of
E and 8 &(k~) = Sf*(ki). Kummer's method could
once again be applied to (61), to exhibit explicitly the
nearest-neighbor terms.

In Figs. 7 and 8 we display the surface plot of the real
and imaginary parts of Gd(r), for the incidence angles
(p = n/2, 8 = 5+/6, the wavelength of the incident ra-
diation being A = 2.3 and k~ ——6. In the surface plots
of Gg, note that the central peak in fact represents an
under-sampled logarithmic singularity.

As a check of these results, Fig. 9 displays the sur-

Re

2

FIG. 7. Off-axis incidence. Re[G(z, y) j for A = 2.3,
8 = 5vr/6, (p = s/2, and k~ = 6.

FIG. 9. Off-axis incidence. Abs[G(z, y)} for A = 2.3,
8 = 5x/6, (p = vr/2, and k~ = 6.
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TABLE III. Numerical values of the Green's function along
the boundaries of the unit cell in Fig. 9. We truncated the
series in (61) at t = 20 and used m = 1 in (52). The first
column displays the values of z and y, respectively.

(*,-1/2) (* +1/2) (-1/2, y) (+1/»y)

V. LATTICE SUMS AND THE CREEN'S
FUNCTION FOR IMAGINARY WAVE NUMBER

In the case of an imaginary k~, we replace k~ by i k~,
and the Green's function is the elementary solution of
the inhomogeneous Helmholtz equation

+1/2

2.831 05
2.790 23
2.667 21
2.46344
2.19149
1.888 26
1.629 45
1.522 93
1.629 46
1.888 28
2.19151
2.463 47
2.667 23
2.790 26
2.831 10

2.831 10
2.790 26
2.66723
2.463 47
2.19151
1.888 28
1.629 46
1.522 93
1.629 45
1.888 26
2.19149
2.463 44
2.667 21
2.790 23
2.831 05

2.83105
2.842 40
2.864 88
2.873 30
2.84 902
2.795 58
2.739 87
2.71601
2.739 80
2.795 48
2.848 92
2.873 23
2.864 84
2.842 40
2.831 10

2.831 10
2.842 40
2.864 84
2.873 23
2.848 92
2.795 48
2.739 80
2.71601
2.739 87
2.795 58
2.849 02
2.873 30
2.864 88
2.842 40
2.831 05

b,2G(r) —k~G(r) = —2~h(r) .

Then, from (5), we obtain the formula

G(r) = Ko(km') ~

(62)

(63)

G&(r'p) = ).Ke(k& I
r R p I)

e'

p

in the direct lattice space, and

'w'(~-e)
G„(rp)=2 )2~ „-~„+k~

(64)

(65)

where K is the modi6ed Bessel function. Consequently,
we have the quasiperiodic Green's function:

face plot of IGg(r) I, which, according to (37), is a doubly
periodic function over the direct lattice.

In Tables III and IV we illustrate a numerical test
of the quasiperiodicity condition (37) by means of the
numerical values of the Green's function, given by (61),
along the boundaries of the unit cell. The lattice sums in
Tables III and IV have been evaluated by summing over
the same region of reciprocal space. However, in Table III
we have used Eq. (52) with m = 1, and in Table IV with
m = 6. The lattice sums in the second case are much
more accurate, as can be seen from the quasiperiodicity
test.

TABLE IV. Numerical values of the Green's function along
the boundaries of the unit cell in Fig. 9. We truncated the
series in (61) at 8 = 20 and used m = 6 in (52). The first
column displays the values of z and y, respectively.

(s, —1/2) (z, +1/2) (—1/2, y) (+1/2, y)

)I+1 ) K (k g )
'rrp 1c

Ã
p+0

—:(—i) +' —Sr(k~) . (66)

Further, substituting in (48), multiplying by ( + and
integrating over ( from 0 to 1, the system (48) becomes

in the reciprocal lattice space.
We may apply the same method as in Sec. IIIB, or,

simply replacing in (41) and (48) the Bessel and Hankel
functions, whose argument depends on k~, by the corre-
sponding modified Bessel functions [12]:

J„(ik~()= i"I„(k~(),
H(')(ikg() = (—i)"+' —K„(kg().

7r

From (41) we obtain

Sg(ikg) = ) H( (ikgR ) e' ~ e' L +
pro

+1/2

2.831 06
2.790 24
2.667 24
2.463 47
2.19151
1.888 28
1.629 45
1.522 92
1.629 45
1.888 28
2.19151
2.463 47
2;667 23
2.790 25
2.83109

2.831 09
2.?90 25
2.66 723
2.463 47
2.19151
1.888 28
1.629 45
1.522 92
1.629 45
1.888 28
2.19151
2.463 47
2.667 24
2.790 24
2.831 06

2.831 06
2.842 39
2.864 85
2.873 25
2.848 96
2.795 53
2.739 84
2.71603
2.739 84
2.795 53
2.848 96
2.873 25
2.864 85
2.842 40
2.831 09

2.831 09
2.842 40
2.864 85
2.873 25
2.848 96
2.795 53
2.739 84
2.71603
2.739 84
2.795 53
2.848 96
2.873 25
2.864 85
2.842 39
2.831 06

1
Sr(kg)Ig+a(kg) = Ky(kg) — hr p

kg

Jr+~(Q~) ae.+2xkgi e'
Qa(Q~ + k~ )

For normal incidence, we have to separate from the
series the term for k = 0 so that the system (67) takes
the form

~ —1
Sr(kg)Ig+g(kg) = Kg(kg) + hg, p

kg

.g Jr+) (Kg) iteg

Kg(K~2+ k~ )

(68)
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The method to accelerate the series, described in
Sec. IIIB, may be also applied to (67) and (68).

We mention that in all cases So is real and exhibits
an essential singularity at the origin, generated by the
logarithmic behavior of Ki for small arguments [12]. All
the other lattice sums have a pole of order E at the origin.
In contrast with the case of real k~, there are no other
poles along the imaginary axis in the plane of complex
k~. The lattice sums are monotonic functions of k~,
tending to zero for large k~.

By applying the addition theorem for the K functions
[14], we may express the Green's function (64) as a Neu-
mann series in terms of the Ig functions:

Gg(r) = Ito(k~r) + ) St(ki) It(kyar) e
e=—~

For a TM mode, the system corresponding to (40),
obtained from the Rayleigh method, has the form

(—i)"B „+) (—i)"BkSi,+„(ki)= 0. (69)I„(kia)

on cylinder conductivity. Consequently, they can be used
in difFraction problems involving square arrays of dielec-
tric or lossy metallic cylinders.
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APPENDIX

We denote by g = r —p, P = arg(r —p), and assume
that ]r] & [p.

From Fig. 2 we have P = n + 8, and we apply Graf's
addition theorem [12,14], which, in our case, takes the
form

VI. CONCLUSIONS

We have discussed methods for representing in abso-
lutely convergent form the lattice sums arising in dou-
bly periodic electromagnetic di8'raction problems. The
6nal expressions for the lattice sums are quite simple,
but remarkable in that they contain an arbitrary inte-
ger, which permits an arbitrary degree of acceleration of
the convergence of the series. We have shown how these
lattice sums may be used to construct expressions for
the Green's function which converge well throughout the
unit cell. The results presented here will, therefore, be of
great use to those interested in electromagnetic di8'rac-
tion by doubly periodic systems. Note that, although
we have introduced the lattice sums and Green's func-
tion in the context of the diKraction by an array of per-
fectly conducting cylinders, both, in fact do not depend

Jt( kz()e'™= ) Jt+k(kip) Ji, (kyar)e'" e '"~. (Al)

We use the complex conjugate of this expression in the
right hand side of (15) so that

Jt(ki()e '~ = Jt(kif)e i™e

=.-'" ) J„,(k p) J„(k,r). '"se*"~-

= ) J„„(kp) J„(k,r)e *f"+'ls-e*"~,

(A2)

and, changing k into —k, we obtain (16).
We apply the same method to obtain (17).
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