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Kinks in the presence of rapidly varying perturbations
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The dynamics of sine-Gordon kinks in the presence of rapidly varying periodic perturbations
of difFerent physical origins is described analytically and numerically. The analytical approach
is based on asymptotic expansions, and it allows one to derive, in a rigorous way, an effective
nonlinear equation for the slowly varying Geld component in any order of the asymptotic procedure
as expansions in the small parameter ~ ', ~ being the frequency of the rapidly varying ac driving
force. Three physically important examples of such a dynamics, i.e., kinks driven by a direct or
parametric ac force, and kinks on a rotating and oscillating background, are analyzed in detail. It
is shown that in the main order of the asymptotic procedure the effective equation for the slowly
varying 6eld component is a renormalized sine-Gordon equation in the case of the direct driving
force or rotating (but phase locked to an external ac force) background, and it is the double sine
Gordon equation for the parametric driving force. The properties of the kinks described by the
renormalized nonlinear equations are analyzed, and it is demonstrated analytically and numerically
which kinds of physical phenomena may be expected in dealing with the renormalized, rather than
the unrenormalized, nonlinear dynamics. In particular, we predict several qualitatively new efFects
which include, e.g. , the perturbation-induced internal oscillations of the 2m kink in a parametrically
driven sine-Gordon model, and the generation of kink motion by a pure ac driving force on a rotating
background.

PACS number(s): 03.40.Kf, 74.40.+k, 74.50.+r, 85.25.Cp

I. INTRODUCTION

As is well known, the effect of rapidly varying pertur-
bations on the dynamics of nonlinear systems may lead
to a drastic change of the system behavior in the sense
of the averaged dynamics. In particular, large-amplitude
parametric perturbations may give rise to a stabilization
of certain types of dynamical regimes. A typical and fa-
mous example is a stabilization of a reverse pendulum by
parametric forced oscillations of its pivot [1] (see also the
recent paper [2] and references therein), and a similar ef-
fect may be also achieved by applying a direct ac driving
force of large amplitude [3]. Such a dynamical stabiliza-
tion has its analog in nonlinear systems with distributed
parameters supporting, in particular, unusual types of
kink solitons [4—7]. However, the method which is usu-

ally used to derive an averaged equation describing the
system dynamics in the presence of rapidly varying per-
turbations is not rigorous and, as a matter of fact, it is not
well justi6ed. Such a method, even being very clear from
the physical point of view, uses a splitting of slow and
fast variables and subsequent averaging which is based,
in fact, on solutions of a linearized equation for fast vari-
ations where the slowly varying coefFicients are assumed
to be constant [1,4,5]. The procedure of such a lineariza-
tion assumes that the amplitude of the forced (rapidly
varying) oscillations is small, and this is certainly valid

for parametrically forced oscillations far from the para-
metric resonance. For direct ac perturbations, the forced
oscillations may become large. To describe the dynam-
ics in an approximate way, the so-called "rotating-wave
approximation" was used without detailed mathematical
justification [6—8]. It is necessary to note that the deriva-
tion of an effective averaged equation for the slowly vary-
ing field component is an important (and nontrivial) step
of the analysis of such systems, and in many of the cases
the corresponding equation determines the leading phys-
ical effects observed in the presence of rapidly varying
perturbations. In all the cases it is necessary to justify
the averaging procedure as well as to estimate the in-
ffuence of the higher-order contributions. Unfortunately,
the latter are beyond the usual averaging methods. How-
ever, as we show in the present paper, a rigorous analysis
of the efFect of rapidly varying periodic perturbations on
nonlinear dynamics of ac driven damped systems can be
performed in a straightforward way to describe the aver-
aged dynamics with any accuracy.

The purpose of this paper is to present the basic steps
of the method mentioned above and, selecting the sine-
Gordon (SG) model as a particular example, to describe
the dynamics of kinks in the presence of rapidly varying
driving forces of very difFerent physical origins. Consider-
ing the external ac driving force to be rapidly oscillating,
we apply an asymptotic procedure based on a Fourier
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series where the coefficients are assumed to be slowly
varying functions on the time scale u, u being the fre-
quency of the rapidly varying ac force which is assumed
to be large. The basic idea to split fast and slow variables
is not new, and the well-known example is, as mentioned,
a stabilization of the reverse pendulum by oscillations of
its suspension point. However, our analytical method to
derive an effective equation for the slowly varying field
component is not standard, and this method allows us to
calculate, in a self-consistent way, all the corrections us-

ing solely asymptotic expansions rather than direct aver-
aging in fast oscillations. It is clear that the applicability
of the method itself is much wider than the particular
examples covered by the present paper.

The paper is organized as follows. In Sec. II we con-
sider the case of a direct ac driving force demonstrating
the basic steps of our analytical approach in detail. The
main result of such an analysis is the so-called averaged
equation, i.e., that describing slowly varying system dy-
namics. In the case of the direct driving force this equa-
tion is shown to be a renormalized SG equation. Section
III presents the case of a parametric driving force where
the final equation describing the slowly varying dynamics
is the double SG equation which, as we show, may display
new features in the averaged kink dynamics, e.g. , oscil-
lations of the excited internal mode of the kink, which is
absent in the standard SG model. The case of kink stabi-
lization on a rotating background by applying a rapidly
oscillating ac force is discussed in Sec. IV. There we ana-
lyze an effect of an induced dc force on the kink motion,
as well as showing numerically that the main conclusions
of our analysis may be easily extended to cover multi-
soliton dynamics. Finally, Sec. V concludes the paper.

II. DIRECT DRIVING FORCE

A. Asymptotic expansions

As the first example, we consider the case of the direct
driving force in the SG model when the system dynamics
is described by the driven damped SG equation for the
field variable 41(z, t),

82$ 82$ . 8$
Ox

+ sing = f —p + e cos(ut),
Bt

where f is a constant contribution of the driving force, p
is the damping coefFicient, and the amplitude e of the
driving force may be large (in fact, up to the values
of order of u2). The standard physical application of

the model (1) is to describe the fiuxon dynamics in long
Josephson junctions (see, e.g. , [9]),so that f and e cos(ut)
are the constant and varying components of the bias cur-
rent applied to the junction. In the subsequent analysis
we consider the direct driving force ( e) as rupidly o8-

cillating, i.e., the frequency ~ is assumed to be large in
coinparison with the frequency gap (= 1) of the linear
spectrum band. Our purpose is to derive an averaged
nonlinear equation to describe the slowly varying dynam-
ics of the SG field.

In order to derive an averaged equation of motion, we
note first that in the case of very different time scales the
SG field P may be decomposed into a sum of slowly and
rapidly varying parts, i.e.,

(2)

The function ( stands for fast oscillations around the
slowly varying envelope function 4, and the mean value
of ( during an oscillation period is assumed to be zero
so that (P) = 4. Our goal is to derive an effective equa-
tion for the function 4. The standard way to do that
is to substitute Eq. (2) into Eq. (1) and to split Eq.
(1) into two equations for slow and fast variables, mak-
ing an averaging to obtain the equation for the slowly
varying field component (see, e.g. , [4,5]). However, such
an approach must be properly justified for the case when
the fast oscillations are not Small as it is for the direct
driving force considered here, and in a similar problem
it was proposed [6] to use the so-called rotating-wave ap-
proximation to find the rapidly oscillating field compo-
nent. All these approaches, although quite satisfactory
for the first-order approximation (see, e.g. , [4,6,7]), do
not allow to make the next-order expansions to calculate
higher-order corrections, and thus they cannot be rigor-
ously justified. Nevertheless, as we show in the present
paper, a rigorous approach may indeed be proposed to
obtain an effective equation for the slowly varying field
component 4 with any accuracy.

The basis of our asymptotic procedure is a Fourier se-
ries expansion with slowly varying coefficients. We look
for rapidly oscillating component ( in the form

( = A cos(art) + Bsin(ut) + C cos(2ut)
+D sin(2~t) +

where the coefficients A, J3, . . . are assumed to be slowly
varying on the time scale cu . Substituting the ex-
pressions (2) and (3) into Eq. (1), we note that the effec-
tive coupling between different harmonics of the expan-
sion (2) and (3) is produced by the nonlinear term sing,
which generates the following Fourier expansion:

sin P = sin C' [no + ai cos(ut) + a2 sin(&ut) + as cos(2urt) + n4 sin(2urt) +.. .]

+ cos 4 [Po + Pi cos(ut) + P2 sin(ut) + Ps cos(2urt) + P4 sin(2urt) +.. .], (4)
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and Jo, J1, etc. , are Bessel functions. Collecting now the
coefBcients in &ont of the different harmonics, we obtain
an infinite set of coupled nonlinear equations,
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and similar equations for the coefBcients in &ont of the
higher-order harmonics. To proceed further, we note that
different terms in Eqs. (8)—(11) are not equivalent pro-
vided u is a large parameter. Indeed, if we assume the
amplitude e large as well (otherwise, the dynamics of the
system is rather trivial because the effect of small ampli-
tude but rapidly oscillating force is negligible), let us say
up to the order of A&2, the large term —ur2A in Eq. (8)
may be compensated only by the term e &om the right-
hand side of Eq. (8). Thus, assuming c u2 we find the
first term of the asymptotic expansion A = —e/ur . On
the other hand, the right-hand side of Eq. (9) is zero,
and the large term —u2B may be compensated only by
a contribution &om the other terms A, thus giving

the 6rst term of the expansion for the coefBcient B, viz. ,

B —pe/us. Such a simple reasoning may be effectively

applied to other coefBcients as well as to other correc-
tions of the asymptotic expansion. As a matter of fact,
to generalize and simplify the procedure of calculation
of the expansion coefficients, we look for the coefficients

A, B, . . . in the form of the power series in the small pa-
rameter ~ as follows:

g2 61 b2A=a1+ —+ B= —+ —+~2 (d

&1 C2 ~1 d2+ + ~ ~ e D —+ +
(d4 (d

Substituting Eq. (12) into Eqs. (8)—(ll) and equating
the terms of the same orders in the small parameter ~
we find
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and so on. In Eq. (13) the parameter h = e/~2 is as-
snmed to be of order of O(1), but all the results are valid
also for the case b « 1. The expansions (12) allow us to
find the coefficients A, B, . . . in each order of u, and
all the corrections are determined by algebraic relations
rather than additional differential equations. For exam-
ple, a2 is determined by Eq. (14) through bq which, in
its turn, may be found from Eq. (15) as a function of aq,
i.e., through the slowly varying part 4, and so on. This
statement is valid for all coefficients of the asymptotic
expansion: The coefficients are found through algebruic
relations involving lower-order terms of the asymptotic
expansions and their derivatives, and one does not need
to find solutions of additional differential equations.

B. Renormalised equation

Applying the expansions (12) to Eq. (7), we may find
the equation for the slowly varying field component 4
with any accuracy in the small parameter ~, e.g. ,

where 0 = +1 is the kink's polarity and lo

[Jo(e/u )] ~ is the kink's width at rest. The motion
of the kink in the presence of small dc force f and damp-
ing ( p) is characterized by the steady-state velocity

o f4pl r e
V, =—

I
Jo

(
—,

/1+F2 gn f ) Eu2 (22)

III. PARAMETRIC DRIVING FORCE

In the theory of long Josephson junctions the kink's ve-
locity is connected with the voltage across the junction
(Pq), where () stands for the averaging in time, so that
the result (22) for the steady-state kink velocity gives
the so-called zero-field steps in the current-voltage (IV)
characteristics of a long junction. As follows &om Eq.
(22), the renormalization of the parameter g leads to a
change of the kink's velocity V, (f) and this, therefore,
changes the slopes of the voltage steps by the effect of
the ac driving force.
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Equation (20) takes into account an effective contribu-
tion of the rapidly varying force to the average nonlinear
dynamics and this contribution might becoxne large for
b = G(1), i.e., when e u2. Thus the dynamics of the
SG xnodel with a rapidly varying direct driving force may
be described by a renormalized SG equation (20) up to
the terms of order of e/ur2.

The results obtained above may immediately be ap-
plied to describe the renorxnalized dynamics of kinks in
the presence of the rapidly varying ac force. In fact, Eq.
(20) is the dc driven damped SG equation with a renor
malized coefBcient in &ont of the term sin@. This
sixnply means that we can apply all the results known for
the standard SG equation (see, e.g. , [9,10]) making only
a renormalization of the kink's width. For example, , the
kink solution of Eq. (20) at p = f = 0 has the form

x —Vt
4(x, t) = 4o tan exp

lo 1 —V2
(21)

Thus, &om the asymptotic procedure described above
it is quite obvious how to calculate the corrections of
the first, second, and subsequent orders and to find the
averaged equation with any required accuracy.

In the first-order approximation in v only the term
Jo(aq) sin@ contributes, so that Eq. (19) yields

Let us consider now a parametric driving force applied
to the SG system, with the main purpose to demon-
strate that such a case is very diferent from that an-
alyzed above. The qualitative difference between the ef-
fects produced by direct and parametric (rapidly oscil-
lating) forces is the following: A sufficient change of the
system averaged dynamics due to a rapidly oscillating di-
rect force may be observed for amplitudes e u2 whereas
in the case of a parametric force, similar effects may be
already observed for 8maller amplitude, i.e., in fact for

To prove this statement and to show how our
asymptotic method works for the case of the paramet-
ric force, we consider the parametrically perturbed SG
equation in the form

P = e'+A cos(art) + Bsin(~t)
+icos(2vt) + D sin(2urt) + . (24)

where the functions 4, A, B, . . . are assumed to be slowly
varying on the time scale u . The function 4 in Eq.
(24) determines, in fact, the evolution of the averaged
field component because (P) = 4, where the brackets ()
stand for the averaging in fast oscillations. Substituting
the expression (24) into Eq. (23) and collecting, as in
the case of the direct driving force, all the coefficients
in &ont of the different harmonics, we again obtain an
infinite set of coupled nonlinear equations. The subse-
quent (and very important) step of such an analysis is to
find the form of the asymptotic expansions for the coef-

82$ 82$ BP
Bt Bx22 + sing = f —p + esinpcos(vent), (23)Bt

where f and p have the same sense as above, but this
time e is the amplitude of the parametric force. Vari-
ous applications of the model (23) were discussed in the
review paper [10] (see also Ref. [11]).

We assume that the parametric force is rapidly oscillat-
ing, i.e., the &equency u is large. As above, we look for a
solution of Eq. (23) in the form of asymptotic expansion
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Using the power series (25), we obtain the "averaged"
equation in the form

ficients A, B, . . . . In the present case it is easy to check
that the expansions (12) do not give a closed asymptotic
procedure, and in the case e u the driving force &om
Eq. (23) contributes to all the harmonics, so that con-
tributions of the other harmonics become large as well.
Comparing, as in the previous case, diferent terms of
the equations for the coefEcients A, B, . . ., we may easily
check that the asymptotic procedure may be electively
formulated for smaller (but not small) amplitudes, i.e.,
when e u, and, as above, it gives all the corrections to
the averaged nonlinear dynamics in a rigorous way. Thus
we take the asymptotic expansions in the form

and Eq. (26) yields

B4 B4 1 2 5 . B4
+

~

1+ —4 coscm'
~

sin@ = f —p, (28)Bt2 Bx2 ( 2 ) Bt

where 4—:e/~. Equation (28) takes into account an
effective contribution of the rapidly varying parametric
force to the slowly varying nonlinear dynamics in the low-
est order, and all the corrections coming from the approx-
imation of the next order are proportional to the small
parameter ~ 2. However, even the lowest-order con-
tribution might become large for 6 = O(1), i.e. , when
6 ~(d.

Thus the averaged dynamics of the SG model with a
rapidly varying parametric force is described by the dou-
ble SG equation (28). As a matter of fact, the double
SG equation is rather well studied (see, e.g., Refs. [12,13]
and references therein) and properties of its kink solu-
tions are known as well. In particular, the kink solution
of Eq. (28) at f = p = 0 may be written in the form [12]

B2C B2O ( 1 a+
~

1 ———+ ~sine
BtBZ2 '( 4 td )

= f — + —cos o —+ —+ ), (26)
OC ai a~

7g] 2 2 4

C(x, t) = 2tan —'
Ql + b, 2/2

~2 *-vt ~
xcscll

l 1+, (29)

ay = —&sine) (27)

The expansions (25) allow to find the coefficients of the
asymptotic expansions in each order in the small parame-
ter u, and all the corrections are determined, as above,
by algebruic relations.

In the first-order approximation only the term eaq
contributes to Eq. (26). From the asymptotic expansions
it follows that

and this solution may be treated as two coupled vr kinks.
In Fig. 1 we show the results of numerical simulations
of the parametrically driven SG system, Eq. (23). In
all the cases analyzed in the present paper we have in-
tegrated the driven damped SG equation on a spatial
interval of length I, with periodic boundary conditions.
As seen &om Fig. 1, the sech-type shape of the 2' kink
corresponding to the standard (unperturbed) SG system
is modiffed, and the function P displays a two-peaked
profile which, as a matter of fact, is one of the main fea-

E

FIG. 1. The steady-state profile of the (a)
P and (b) P fields as a function of space in
the case of a parametric driving force. The
parameters are p = 0.2, L = 10, cu = 100,
and. ~ = 200.
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tures of the kink solution (29). Increasing b, one may
observe, in accordance with Eq. (29), that the function

P has an evident shape of two 7r kinks separated by a
distance

As has been shown in Ref. [4], m kinks themselves may
exist in the parametrically driven SG chain provided the
condition A2 ) 2 is satisfied. This condition simply
means that the effective averaged potential for the slowly
varying field component 4 exhibits a local minimum at
C = x so that this stationary state becomes stable.

The appearance of new features in the slowly varying
(averaged) system dynamics of the SG system for b, 2 ) 2
is similar to the phenomenon of the parametric stabiliza-
tion of the reverse pendulum in the well known Kapitza
problem [1,2]. However, in the problem under considera-
tion some interesting features in the nonlinear dynamics
of the parametrically driven SG system may be really
observed for any value of the effective parumeter Az. In-
deed, as is known &om the theory of the double SG equa-
tion [13],at any value of b 2 the kink (29) possesses the
so-called internal ("shape") mode which describes varia-
tions of the kink's width. This internal mode is absent
for the standard SG kink, and the mode &equency 0, I
splits at any b, z g 0 &om the gap &equency of the linear
spectrum. For 6 ) 2 the kink's internal mode may be
described as relative oscillations of the x kinks of which
the 2n kink consists. However, this mode does, in fact,
exist at any value of the effective parameter A2, and

1.4 I I I I I I I I

13
V

1.2
Q

0
~ M

0
CG

1.0:-
100 200

Ac Amplitude

FIG. 2. The frequency of the internal oscillations of the 2m

kink, 0, ~, as a function of the amplitude of the ac parametric
force e for two values of the external force &equency ~ = 50
(squares and crosses) and u = 100 (diamonds and pluses).
The results presented by diamonds and squares are obtained
using the etfective double SG equation (28) whereas the pluses
and crosses are the result of direct integration of the para-
metrically driven SG equation (23). Note that the agreement
between the parametrically driven model (23) and the effec-
tive ("averaged") model (28) is better for smaller E = c/u,
when corrections to Eq. (28) &om the higher-order terms are
negligible.

it may be observed as periodic variations of the kink's
shape.

We have measured numerically the frequency of the
shape oscillations of the 2z kink (29) directly solving Eq.
(23) and also using the averaged equation (28). The nu-
merical results are shown in Fig. 2 for selected values of
the external frequency, cu = 50 and u = 100. For rel-
atively small 6 (i.e., e in Fig. 2), when higher-order
corrections to Eq. (28) are negligible, a perfect agree-
ment between the results for the parametrically driven
SG model (23) and those for the averaged equation (28)
are clearly observed, justifying the validity of our asymp-
totic procedure.

IV. KINKS ON ROTATING
AND OSCILLATING BACKGROUNDS

As was mentioned in Ref. [7], the other physically im-
portant case when a rapidly varying ac force may change
drastically the kink dynamics is the case of a rotating
and oscillating background. %e should note, however,
that if one considers relatively small system's length I,
even a relatively weak driving force may lead to com-
plicated dynamics involving coexisting states of bunched
kinks and nontrivial background states [14]. These latter
effects are probably caused by the inBuence of nonzero
boundary conditions which may "help to lock" kinklike
states on rotating backgrounds. Here we are interested
in the dynamics of the long SG systems (i.e., the kink's
length is much smaller than the system length I,) when
the high-&equency force phase locks the SG Beld in an
oscillating and rotating state and thereby creates a mech-
anism (an effective gravitation field) for supporting kink
solitons. However, we should note that the theory pre-
sented below cannot be applied to formally infinite SG
system because for the case of the continum linear spec-
trum the applied ac force may create resonances making
the system dynamics much more complicated and even
chaotic. In fact, we need finite-width (but of large L) sys-
tems in order to avoid linear resonances if the &equency
of the external ac force is selected in a gap between the
nearest eigen&equencies.

To describe the effect of the kink phase locking on a
rotating background analytically in a rigorous way, we
consider the perturbed SG equation (1) assuming f ) 1,
in which case the ground state of the SG chain is not
stable and the chain rotates with the &equency 0 so that
P = Ot. Applying the high-frequency ac force e we
are interested in the slowly varying phase locked system
dynamics on such a rotating background. Accordingly,
we look for a solution of Eq. (1) in the form

p =@+ot+g, (30)

where ( is the rapidly varying part oscillating with the
large kequency cu of the external ac force, 4 is the slowly
varying (long tiine scale) part, and 0 is the average &e-
quency of rotation for the background field, which we
assume to be phase locked to the external ac field, i.e.
0 = +km, A: being integer. Looking for the rapidly oscil-
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Normalized Voltage (Pt&
FIG. 3. The normalized IV curves (for the first Shapiro

step) characterizing the SG dynamics with the parameters

p = 0.1, L = 16, e = 12.5, and 0 = 2.5 and with peri-
odic boundary conditions. Shown are the zero-6eld steps at
n = 0, 1, 2, 3, 4, and 5, n being the number of kinks in the sys-
tem. Note that the IV curves clearly cross the zero current
axis and the steps are slightly asymmetric around the volt-
age (Pi) = 2.5; the latter effect is caused by the background
oscillations and relatively small velocity.

lating part f in the form of a Fourier series with slowly
varying coefiicients,

( = A cos(ddt) + Bsin(~t) +

we obtain the following equations for the averaged Beld
component 4 and the expansion coefficients A, B, . . .,

BA O'B 'I O'B—~ B+2~ +
Bt Bz2 ) Ox'

—[Js+i(A) + Js i(A)] sin@ + p l

/BB
iOt )

(34)

ag bg
gy + + o ~ o B — + sea

~2 (35)

we find the following relations [cf. Eqs. (13) and (15)]:

and so on. Unlike the case considered in Sec. II, in the
present problem there are two rapidly oscillating contri-
butions with the &equencies u and k~, so that the 6nal
equations (32)—(34) for the slowly varying coeflicients dif-

fer from the corresponding equations (7)—(9) of Sec. II.
To take into account the second term in the right-hand.
side of Eq. (32) in a self-consistent way, we also assume
the dissipation to be rather small, pu 1, which is a
typical case for Josephson junctions.

Making now asymptotic expansions similar to the case
of the direct ac force considered above, i.e.,

FIG. 4. The steady-state profile of the (s)
P and (b) P fields as a function of space over
ten periods of the external driving force. Pa-
rameters are L = 16, p = 0.1, e = 12.5,

2.5, snd f = 0.25. The value of f
is selected at the center of the Srst Shapiro
step and therefore the kink does not move as
follows from the theory because the e8ective
force acting on s kink f —pkru is zero.
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FIG. 5. The same as in Fig. 4 but at
f = 0.5.
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wh1ch allow us to obtain the effective equation for the
slowly varying system dynamics by just combining Eqs.
(36), (35), and (32). The final equation is just Eq. (32)

2with A = —e/ur, w}uch describes the kink dynamics on
the background rotating with the frequency 0 = +km. It
is important to note that the resulting (effective) dc force
in the averaged nonlinear equation (32) is represented by
the term f —pk~ but not f itself, i.e., the kink on the ro-
tating and oscillating background may move even in the
absence of the constant contribution to the bias current
f = 0. Figure 3 shows the results of the numerical calcu-
lation of the first Shapiro step (k = 1) of a long Josephson
junction described by the model (1) with the parameters

seen &om that figure, the steps cross the zero current
axis, displaying the property mentioned above; constant-
voltage zero-crossing steps are of considerable practical
interest for voltage-standard applications of Josephson
junctions (see, e.g. , [15] and references therein). If we
select f = 0.25, the effective force acting on the kink
vanishes and the kink is observed at rest (see Fig. 4).
This result is in excellent agreement with the averaged
SG equation (32), where the effective force is found to be
f —pku. Increasing the value of the bias current f, we
create an effective force acting on the kink and it moves
to the left (see Fig. 5). It is very interesting to note that
the kink motion is even possible in the absence of the
constant component of the bias current, i.e., at f = "

Ei C)

20

15
E

10

FIG. 6. The same as in Fig. 4 but at
f = O. The kink is moving dne to the uncom-
pensated contribution of dissipative losses
—pA:~.
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rigorous analytical approach to derive the averaged equa-
tion for the slowly varying field component, and we have
dexnonstrated that in the xnain order of the asymptotic
procedure the effective equation is a renormalized SG
equation in the case of the direct driving force or rotat-
ing (and phase locked to the external ac driving force)
background, and it is a double SG equation for the para-
xnetric driving force. However, the method itself does
allow to find in a rigorous way the effective equation for
the slowly varying field coxnponent in any order of the
asymptotic expansion in the parameter cu, cu being the
&equency of the rapidly varying perturbations which has
been assumed to be large.

Our main purpose was to show which kinds of quali-
tatively new physical efFects xnay be expected in dealing
with the renormalized nonlinear dynamics instead of un-
renormalized one. In particular, we have predicted that
the parametric driving force may support oscillations of
the kink's shape (absent in the SG model) which may be
viewed as creation of a shape mode of the 2x kink char-
acterized by the internal &equency 0, ~. For the problem
of the kink propagation on rotating and oscillating back-
ground, we have shown that a periodic ac force produces
a drift in the kink motion, which may be understood as
an efFect described by an efFective dc force to the kink

motion in the &amework of an averaged nonlinear dy-
namics.

One of the main conclusions of our analysis and nu-

xnerical simulations, i.e., that the averaged nonlinear dy-
namics is drastically modified by rapidly varying (direct
or parametric) driving force but still may be effectively
described by renormalized nonlinear equations, is rather
general and applicable to many other nonlinear models
supporting various kinds of solitons.
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