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Quantitative experimental study of the free decay of quasi-two-dimensional turbulence
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A quantitative experimental study of freely decaying quasi-two-dimensional turbulence is presented.
The flow is produced in a thin layer of electrolyte by using a steady, spatially periodic, electromagnetic
forcing. The particle-image-velocimetry method is used to determine the instantaneous velocity field,

the vorticity field, and the stream function. Global quantities, such as the energy, the enstrophy, and the

kurtosis of the vorticity distribution are measured, and geometrical properties, such as the number of ed-

dies, their size, and their mean separation, are determined. Unexpected characteristics are obtained, re-

vealing the existence of a new form of quasi-two-dimensional turbulence, which we call liquid.

PACS number(s): 47.27.—i

I. INTRODUCTION

Understanding and modeling two-dimensional tur-
bulence are important issues of fluid mechanics and have
many implications in geophysics and astrophysics. Much
progress has been done on the problem these past years,
partly because of the considerable amount of information
originating from numerical simulations of the Navier-
Stokes equations. Various aspects of two-dimensional
turbulence have thus been investigated with new ideas
such as the decay, the forced regime, or the statistical
equilibrium. The importance of coherent structures, and
the dynamical role of vortex filamentation among other
phenomena, have been widely discussed [1—4].

The problem that we address here, from the experi-
mental point of view, is the free decay of turbulence in

extended systems, i.e., including initially a large popula-
tion of vortices. The phenomenology of the decay pro-
cess in such systems is now well established, at least in its
main aspects: one finds, both numerically and experi-
mentally, that large-scale structures are generated by suc-
cessive merging of like-sign vortices. There are also
many other phenomena, such as vortex stripping [5], di-

pole propagation, recombination of vortex filaments, etc. ,

which form the intricate world of vortex dynamics, and
one would, in principle, need a considerable amount of
information to describe completely the decay process; the
question of the relevance of a statistical approach arises
and has still not received a definite answer. This ap-
proach has been proposed first by Batchelor, in a pioneer-
ing paper [6], which consists several important results
about two-dimensional turbulent flows. In this approach,
the statistics of the decay regime, characterized by
geometrical and dynamical indicators, is determined.
The argument used by Batchelor in this study is dimen-
sional: It is based on the assumption that, during the de-
cay phase, all the quantities related to the Aow depend
only on the total kinetic energy E (which is an invariant)
and the time t. The corresponding laws then read:
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where a(t) is the mean size of vortices, r(t) their mean
separation distance, p(t) the density of vortices, Z(t) the
enstrophy, and ~,„,the vorticity extremum of the system.
Such laws infer, among other consequences, that the
mean size of the vortices increases with time, which is in

qualitative agreement with the observations.
Actually, these laws are not observed in the numerical

simulations of freely decaying turbulence. One of them,
due to McWilliams [4], clearly shows that (1) does not de-

scribe quantitatively the decay process. Some time after,
Carnevale et al. [7] proposed a new statistical theory,
which is also based on dimensional arguments, and which
assumed the existence of another conserved quantity-
the extremum vorticity cu,„,—during the decay phase.
Such an assumption is justified, to some extent, by the
Helmholtz theorem, and is found consistent with the nu-

merical simulations mentioned above [4]. Using the total
kinetic energy E and the maximum vorticity cu,„„onecan
form a length scale k and a time scale ~, according to the
relations
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In terms of these quantities, the power laws found by
Carnevale et al. [7] for r(t), p(t), a (t), and Z(t) read:
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where g is a free parameter. By setting (=0.75, the au-

thors found good agreement with the numerical results of
Ref. [4]. Laws consistent with (3) have been found in a
discrete vortex system model [8]. Actually, the subject is

far from being closed since other numerica1 studies do
not reveal so explicitly the existence of power laws [9,10]
or find different exponents [11].
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On the experimental side, the decay of quasi-two-
dimensional turbulence has been studied, some years ago,
in rotating tanks and in stratified systems [12], and in
horizontal soap films [13]. Such experiments revealed
many interesting features of quasi-two-dimensional sys-
tems, such as merging, dipole propagation, and emer-

gence of coherence structures; actually, due to the large
experimental uncertainties on the measurement of the
flow field, it has been difficult to extract accurate infor-
mation on the decay laws themselves. More recently, two
of the present authors [14] performed similar studies in a
thin layer of electrolyte, finding results apparently con-
sistent with the theory of Carnevale et al. [7]. All these
studies actually suffer from the absence of reliable mea-
surements of the local velocity, from which the vorticity
field could be deduced. The aim of the present study is to
achieve such measurements by using particle image velo-
cimetry. From these measurements, we shall be in a posi-
tion to characterize our system both geometrically and
dynamically, and further proceed to a quantitative com-
parison with the existing theories. The result will be
somewhat surprising, since unexpected characteristics for
the turbulence will be found. We report here and discuss
the corresponding results.

II. EXPERIMENTAL SETUP

a normal solution of sulfuric acid to match the height of
the rods; by this way, we suppress any meniscus effect on
the boundaries. An electric current I is driven through
the electrolyte from one side of the cell to the other. It is
supplied by a constant current source, regulated to 10
and controlled by a computer. The fluid is thus subjected
to an electromagnetic force, stationary in time and
periodic in space. The period of the forcing is twice the
length of a magnet, i.e., 16 mm, and its magnitude is con-
trolled by I. For a current of 300 mA (which is a typical
value), the Reynolds number calculated on the size of the
cell is about 2000. The flow is visualized by using clusters
of neutrally buoyant particles, several tens of microme-
ters in size. The particles are made visible by illuminat-

ing the fluid with an halogen lamp. The images of the
flow are taken with a video camera located above the ex-
perimental cell, and recorded on a Umatic video take
recorder.

The experimental procedure consists in imposing an
electric current I at time t = —~ switching it off at t =0,
and leaving the system relaxing to an equilibrium state.
During the process, an audio signal is generated by the
computer and recorded on the sound channel of the video
tape recorder, so as to identify each frame of the video
signal. In a second step, the video frames are digitized,
ordered, and stored on a magneto-optical disk.

A. Experiment

The experimental arrangement, which is shown in Fig.
1, is similar to the one used in a precedent study. The
cell is machined out of PVC and the bottom of the cell is
a thin layer (1-mm thick) of glass. Permanent magnets
are located just below the bottom of the cell. They are
samarium cobalt parallelepipeds, 5X8X3 mm in size
and their magnetization axes are vertical. Each magnet
produces a magnetic field which has a maximum value of
0.34 T and decay over a typical length of 3 mm. The
magnets are put together to form a square array of alter-
nated poles. It is possible to use an arbitrary number of
magnets, up to 14X13. The flow itself is confined hor-
izontally by solid rectangular rods. The cell is filled with

Electrolyte

FIG. 1. Schematic representation of the experimental system
(not to scale); the walls confining the flow and the lateral limits
of the cell are not represented.

B. Experimental determination of the velocity field

The calculations are performed on a Macintosh II fx
computer, assisted by a double digital signal processor
card DSP32C. The method which we use consists in
discretizing the flow surface on a squared grid and com-
putering, for each node, the correlation, on a square cell
of size (A, XA, ) centered around the node, of the intensity
field between two images separated by a time interval 5t
The position of the maximum of correlation provides the
information on the local coarse-grained velocity, with a
spatial resolution equal to the size of the cell itself. We
usually discretize the flow domain into a 32X32 grid.
The choice of the summary of the elementary cell A, is
guided by the following considerations:

(1) It is much smaller than a typical scale of variation
of the flow.

(2) It contains many particles, so as to take advantage
of statistical averaging. In practice, a mean number of 5
particles per cell is a minimal value.

(3) Most of the particles stay within the cell during the
interval of time 5t. This introduces some limitations on
the largest measurable velocity.

For the flows which we consider, a typical size which
meets all these criteria is 32 pixels. The choice of 5t also
requires some adjustment: for a given cell size, it must
satisfy condition (3), and be such that the displacement of
the particies is measurable. In practice, we adjust 5t for
the mean displacement of the particles, which we mea-
sure to lie between 1.7 and 2.5 pixels.

Even when all the above criteria are met, we may ob-
tain, in some cells, aberrant data. To check the validity
of the measurement, we compute the local divergence of
the velocity field and, if it exceeds some threshold value,
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we replace the actual velocity by a local average of the
neighboring values. The resulting velocity field is further
interpolated on a 128 X 128 points lattice. Fourier
transformed, and low-pass-filtered at half the Nyquist fre-
quency (i.e., the fourth of the sampling frequency). The
vorticity field and the stream function are computed in
the spectral space, and backtransformed into the real
space. A typical result of such a calculation is shown in
Fig. 2. In this case, the flow was initially composed of 10
vortices, and Fig. 2 corresponds to a state obtained one

second after the quench. Figure 2(a) represents the direct
image of the flow averaged over 0.20 s. Figures 2(b), 2(c),
and 2(d) represent, respectively, the velocity field, the
stream function, and the vorticity field. It is instructive
to compare the stream-line patterns of Figs. 2(a) and 2(c).
The agreement between the two images is excellent and,
in the mean, the differences between them can be estimate
to a few percent. One can infer that the error on the vor-
ticity field is typically lower than 20%. This estimate is
in agreement with the amplitude of the fluctuations ob-
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FIG. 2. Freely decaying turbulence from an ordered lattice of 100 vortices obtained at I =300 mA for 1.2 s, with a t
'

mm. Image of the gow is taken ] s after the sudden quench of the electric current. The size of the system (80X80 mm ) gives the
scale of the figures: (a) direct image of the flow average over 10 frames (—' s); (b) corresponding velocity field computed using correla-

tion zone of size g= 32 and a time interval Bt =0.04 s; (c) computed stream function based on the velocity field (b); (d) computed vor-
ticity field based on the velocity field (b).
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served from one image to the next one, in conditions
where the time separation is so small that we expect a
continuous evolution.

When the velocity field is determined, we calculate
various global quantities characterizing the flow, such as
the energy E and the enstrophy Z defined as

E= u2dS= E k dk

and

Z = f co'dS= fk'E(k)dk, )g gl III ~

where E (k) is the Fourier component of the energy, at
wave number k =Qk„+k,where k„and k are the
component, in the spectral plane, of wave vector k. We
also determine the geometrical properties of the flow,
characterized by the number of vortices or the vortex
density p(t), their mean size at a (t), and the mean separa-
tion distance r(t) between vortices. There is no ambigui-

ty in defining the vortex size by the relation

a (t) =&E/Z

The other quantities are more delicate to define, and

may involve some ambiguity. It turns out that in our sys-
tem, the local maxima of the vorticity field tend to form
clusters [see Fig. 2(d)]. The criterium that we use assimi-
late such clusters to vortices. In practice, we carry out
the calculation on the stream function rather than the
vorticity field, since vortex clusters turn out to corre-
spond to well-defined extrema on this map. This can be
checked easily for small clusters in Fig. 2(d). The pro-
cedure thus consists in determining the extrema of the
stream function and counting and localizing them, so as
to get the vortex density p(t} and the mean separation
r(t).

Concerning the computational time, it takes about 1

min to compute the velocity field on a 32 X 32 grid. Since
we calculate about 200 images in a typical experiment,
the total computational time is therefore a few hours in
this case.

III. RESULTS

A. Qualitative aspects

As explained above, the experimental procedure that
we use consists in imposing an electric current I for a
short period of time (a fraction of second) and then turn-
ing it off. Figures 3 and 2(d) represent the vorticity field
for t =0 and t =1 s, respectively, for the case of an ini-
tially ordered pattern. We observe that the system un-
dergoes a rapid sequence events leading to the formation
of large structures. Perhaps the most important dynami-
cal event is the merging of like-sign vortices. Figure 4
represents such a phenomenon, obtained in the decay re-
gime of a system of 36 vortices. The first step corre-
sponds to the appearance of a large-scale flow embedding
the two like-sign vortices [see Fig. 4(b)]. In a second step,
one eddy increases at the expense of the other, which fur-
ther disappears; the final stage is the axisymmetrization
of the resulting eddy [see Fig. 4(d)]. Such a sequence of

FIG. 3. Vorticity at t =0 for the same condition as in Fig. 2.

events takes a fraction of second to be completed; we may
also have aggregation phenomena, for which traces of the
initial structure of the eddies never completely disap-
peared and which are not limited to two vortices. Fig-
ures 2(a} and 2(c) show aggregation of like-sign vortices
involving at least three vortices. This occurs mostly at
late times in the decay process. Another interesting
event is the formation of dipoles, as shown on Fig. 5.
When a dipole nucleates, it propagates for a fraction of
second, after which it breaks and merges with other
structures of the lattice. This time thus seems to be a
typical life duration for a dipole. Dipole formation is ac-
tually not frequent in our experiment and tripole forma-
tions have never been observed. Another qualitative as-
pect, already mentioned, is that the large-scale eddies
usually correspond to clusters of vortices, rather than iso-
lated vortices. The clusters themselves have a size com-
parable to their mean separation, so that our system
resembles a dense assembly of clusters of vortices, rather
than a population of well-separated vortices. This aspect
will be made more precise below.

B. Quantitative results and scaling laws

Figure 6 represents the evolution of the total kinetic
energy E(t), and the enstrophy Z(t) in cases where the
lattice is initially ordered. These quantities increase up to
t =0, and further decay. The decrease of the energy is
exponential, with a time constant of about 2.3 s; this
value is close to the viscous decay time ~„=2b /3v,
which corresponds to the viscous damping against the
bottom wall for the case of Poisseuilles-type flows. Then
one observes that the energy is essentially burnt by lami-
nar friction against the bottom wall. The enstrophy also
decreases, but, in a first period, i.e., from 0 to about 3 s,
faster than the energy. This period coincides with the oc-
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currence of many merging events. Beyond this period,
the How pattern no longer evolves and we find that the
two quantities decay at the same rate (see Fig. 6). We
further focus on the first period, where the interesting
phenomenology takes place.

Figures 7 and 8 summarize the results which we have
obtained, restricted to the first three seconds of decay, for
initially ordered conditions, several lattice sizes, various

energy levels, and a Auid thickness 6 =3 mm. Beyond
that time, no further evolution is observed. Figure 7
shows geometric quantities [the vortex size a (t), the vor-
tex density p(t), the distance between eddies r(t)], while

Fig. 8 represents dynamical quantities, such as the nor-
malized enstroph~ Z(t)/E(t), the normalized maximum
vorticity co„,/&F. , and the kurtosis of the vorticity dis-

tribution K(t). (Note actually that co„,does not have the
same meaning as in Ref. [7]. In our case, r~„„is the ex-
treinum of the vorticity field, while in Ref. [7], co,„,is the
average vortex amplitude. ) A remarkable result that we

FIG. 4. Merging of two like-sign vortices. (a) initial state

(t =0 s); (b) apparition of a large-scale flow embedding the two

like-sign vortices (t =0.14 s); (c) the two vortices are attracted
to each other, the smallest one decrease to the benefit of the

largest one {'t =0.40 s); (d) symmetrization of the final vortex

(t =0.70 s).

FIG. 5. Dipole evolution. The time interval between two suc-

cessive images is 0.05 s. The dipole is a stable structure that can

survey in the Aow for a very long period of time.
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FIG. 10. Several quantities which appear as invariant in the
system: pa, co,„,/&Z, and r/a; the experimental conditions are
similar to those of Fig. 7.

by the vortices), and that of the ratio rla Both .quanti-
ties are conserved during the decay phase. The fact that
the value of r/a is about 1 indicates that the system is
dense. Another indicator revealing the same feature is
the kurtosis, which is found constant during the decay
phase. It thus appears that the vortices occupy almost all
the available space and there is no rarefaction process. If
the vortices were assimilated to molecules, our system
would resemble a liquid.

The dynamical signature of this characteristics seems
to be the fact that the maximum vorticity decreases as
rapidly as the square root of the enstrophy (see Fig. 10).
One can show, by using order of magnitude arguments,
similar to those of Ref. [7], that the same scaling law ap-
plies to the two quantities when the vortices occupy all
the available space. All the scaling which we find thus
seems consistent. To describe our turbulent How, we pro-
pose the following laws:

with v=0. 22+0.04. This estimate for v includes all the
experiments which we have performed, with ordered and
disordered initial conditions, depths varying between 2.5
and 4 mm and various energy levels.

IV. DISCUSSION AND CONCLUSION

We now compare our results to the theoretical predic-
tions discussed in the Introduction. If we consider first
the Batchelor theory, we find qualitative agreement, con-
cerning the fact that the system remains filled with the
vortices during the decay phase. However, we do not ob-
serve the predicted exponents and the discrepancies on
the corresponding values are important. Figure 9 shows

an example of the difference found between this theory
and our results, for the ratio of the enstrophy over the en-

ergy. Theory predicts t whereas we find t
If we now consider the theory of Carnevale et al. [7],

we find that some experimental values of the exponents
are not far from the predictions. This is the case for all
mean vortex size, which increases like t in the experi-
ment, while the prediction is t ' . Actually, the ex-
ponents for the vortex density are different, and large de-
viations are observed when we compare the evolution of
the kurtosis. Also, in our experiment, the maximum vor-
ticity decreases as the square root of the enstrophy; it is
thus dificult to consider co,„,as an invariant. There are
in fact qualitative differences between this theory and our
experiment: the theory predicts that, during the decay
process, the surface occupied by the vortices decreases,
and rapidly, the Aow becomes a dilute system of vortices.
In our case, such an evolution is not observed: it remains
densely filled with vortex clusters. This difference is evi-
dent when we compare Fig. 1 of McWilliams [4] with our
Fig. 2(b). Our values of pa and rla (which are the space
occupied by the vortices and the average distance be-
tween eddies) are of order 1, whereas those typically used
in numerical experiment are several order of magnitude
smaller (see, for instance, Refs. [3] and [4]).

To explain the differences between our results and the
previous numerical studies, several possibilities exist:
indeed our experiment is not a purely two-dimensional
system, since, like any other experiment, it lives in a
three-dimensional world. This can be an origin of the
discrepancies between our results and the numerical stud-
ies, although it is difficult to know more precisely where
three-dimensionality comes in. Another difference which
can be outlined is that in our system the dissipation rate
is much larger than in the numerical models. We believe
that this has no significant consequence, since the ex-
ponents which we measure are determined in the first
second of the decay phase, and in this period, the energy
has decreased by less than 30%. It would be interesting
indeed to be in position to work with a smaller dissipa-
tion; an experiment using mercury is now in preparation.
In the same spirit, one could argue that our regime of de-

cay corresponds to a first period and if the dissipation
was small enough, we would recover the numerical obser-
vations. It would thus be interesting to investigate nu-

merically if, eventually, liquid turbulence is observed at
early times. This is probably an interesting issue, because
there are not so many opportunities in the field of two-
dimensional turbulence where a link between the numeric
and the real world can be established.
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