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Correlation in laser speckle
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We demonstrate experimentally that the intensity correlation function with shift in the scattered wave

vector or with identical shifts in both the incident and scattered wave vectors form Fourier transform

pairs, respectively, with the intensity distribution on the output surface and the propagator between the

input and output surfaces. Measurements in samples with and without internal reflection are in excellent

agreement with diffusion theory without adjustable parameters.

PACS number(s): 42.25.Bs, 42.25.Fx, 42.30.Ms

The nature of wave propagation in random media is re-
vealed in the degree of correlation of intensity fluctua-
tions as a function of the spatial, spectral, or temporal pa-
rameters of the incident or scattered wave [1]. Perhaps
the most dramatic display of wave correlation is the
grainy appearance of the scattered laser light known as
laser speckle [2]. Nonetheless, a quantitative study of the
angular correlation within the static speckle pattern of
transmitted multiply scattered light and its relationship
to the underlying diffusion within the medium and to oth-
er correlation functions involving shifts in both the in-

cident and scattered wave vectors has not been presented
previously. The intensity correlation function which has
been investigated most extensively is the "memory
effect, " in which both the incident and scattered wave
vector are shifted by the same amount [3—7]. In this
case, the output speckle pattern appears to track changes
in the incident wave vector and the range of wave vector
change over which correlation persists is therefore con-
siderably larger than that which is found within the
speckle pattern for fixed incident excitation. Freund,
Rosenbluh, and Feng [4] found a discrepancy between
measurements of the memory effect and calculations by
Feng, Kane, Lee, and Stone [3]. They showed [6] that
this discrepancy could be largely removed by incorporat-
ing internal reflection [8] in the description of transport
and using the internal reflection coefficient R in the ex-

pression for the memory effect as a fitting parameter. In
this paper, we confirm experimentally an expression for
intensity correlation as a function of arbitrary shift in the
incident and scattered wave vectors in terms of surface
intensity distributions. Measurements of the angular in-

tensity correlation function within the static speckle pat-
tern and the memory effect are shown to be Fourier
transforms, respectively, of measurements of the intensity
distribution on the output surface and of the propagator
between the input and output surfaces which is the out-
put spatial intensity distribution for a tightly focused in-
cident beam. These results are consistent with diffusion
theory using a value for R which is found independently
from measurements of the scale dependence of transmis-
sion [9].

Intensity correlation has generally been considered in a
waveguide geometry between the X=Ak /2m distinct

transverse momentum and polarization channels of a
waveguide of area A at frequency co=ck [3,10]. The
transmission coefficient from channel a on the left of the
disordered region to channel b on the right is denoted as

Tb, . Macroscopic matrix [10] and diagrammatic [3] cal-

culations show that the correlation matrix

C,b, „=(5T„,5Tb, ) of fractional fluctuations in the

transmission coefficients from their ensemble average
values 5Tb, =(Tb, —( Tb, ) )/( Tb, ) can then be written

as a sum of three terms distinguished by the range of
correlation between modes [3,10],

ab, a'b' Cab, a'b' + ab, a'b' ab, a'b'(1) (2) (3)

When the sample length I. within the waveguide is much

greater than its width W- A ', the ensemble average of
the intensity distribution in the transverse coordinate has

a width W independent of the distribution of the incident
excitation. The correlation matrix may then be written

as [10]

Cab, a b A15'a'a'5bb'+ A215ga'+5bb')+ A3

The coefficients A, , A2, and A3 are of order 1, 1/g, and

1/g respectively, where g is the dimensionless conduc-
tance g-Nl/L, and where l is the photon transport
mean free path. The first term arises in the field factori-
zation approximation, C,b, . b. =

~ I,b, .b. ~, where

I,b, b =(E,b E,'b. ), and ( ) denotes an average over

an ensemble of sample configurations [11]. This term
dominates intensity fluctuations. The Kronecker 5 in the

C, term represents the sharp cutoff of correlation be-

tween different transverse momentum channe1s with a
correlation wave vector of 5k —1/W. The C2 term gives

rise to long-range correlation and dominates transmission
fluctuations, whereas the C3 term is the source of univer-

sal conductance fluctuations. Only the lowest order C,
term will be discussed here.

For a slab geometry illuminated by a wide beam such

that the width of the output intensity distribution is

much greater than the slab thickness, 5p &&L, Feng et al.
found [3]

Ck"k k, „,=A, 5b~ bk F, (bk, L),a' b
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where

F&(x)=x /sinh x . (4)

(internal refiection). It shows that the intensity correla-

The Kronecker 5 in shifts hk, and 6kb of the incident
and scattered wave vectors, respectively, reflects the
short correlation range 5k —1/5p when either the in-
cident or scattered wave vector is changed separately.
On the other hand, the range of the correlation function
F, (hk, L) for identical shifts in the incident and scat-
tered wave vectors is 5k —1/L. The function F, is found
to be the Fourier transform of the intensity propagator
between the input and output surfaces [6]. This result is
analogous to the intensity correlator with frequency shift
[12] in which the input and detected frequency are shifted
by the same amount. The intensity correlation function
with frequency shift then becomes the Fourier transform
of the time-of-flight distribution across the slab, which is
the propagator in the time domain [13].

The field correlation function IIk Ik I k Ik between a

field EIk Ik with scattered wave vector kb arising from a
a b

distribution of incident wave vectors represented by
[k, J, which give rise to an intensity distribution I(p, } in
the transverse coordinate p, on the incident surface and a
field E(k, )k„can be written as [6,14]

I(k }k~ (k )k~ f fI(P, )P(P& P, )—
Xexp[i(hk, p. —hk, p, ]dp, dp, ,

(5)

where P (pb
—p, ) is the intensity propagator in the trans-

verse displacement between the output and input sur-
faces. For g &&1, the intensity correlation function is the
amplitude square of the field correlation function.

In this paper, we verify Eq. (5) experimentally in two
special cases. For the first case in which b,k, =0, Eq. (5)
is integrated over p, and squared to give the correlation
function,

2
C(b,k, ) fI(p, )exp( ~6k, p, )d—p,', hk. =0,

(6)

where I(pb)= fI(p, )P(pb —p, ) dp, is the intensity dis-

tribution on the output surface given by the convolution
of the input intensity distribution with the propagator.
Equation (6) shows that the field correlation function
versus 6kb and the intensity distribution as a function of
pb are a Fourier transform pair. Consequently, if 5p is
the width of I(p&), the range of correlation in the static
speckle pattern is 5k —1/5p. Equation (6) is also a mani-
festation of the van Cittert-Zernike theorem of classical
coherence theory which gives a spatial correlation along
a screen for light emitted by an incoherent planar source
[15].

For the second case, in which 4k, =6kb =—4k, we ob-
tain the intensity correlation function

2
C(hk) ~ fP(p)exp( ihk.p)dp, bk,—=6kb (7)
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FIG. 1. Intensity correlation functions C(60) vs detector an-

gle for an alumina sample in air for laser beams focused on 5

pm and 2 mm. The solid lines are the Fourier transforms of the
intensity profiles for focused and wide beams, respectively. The
data shown in figures are for I.=280 pm.

tion function, with hk, is the amplitude square of the
Fourier transform, and P(p), where p=pb —p, . Since
the width of P(p) is 5po-L, the range of the correlation
5k —1/L.

The relationships (6) and (7}between intensity correla-
tion functions and intensity distributions are explicitly
confirmed in measurements of these quantities made on a
280-pm polycrystalline alumina slab. The sample provid-
ed by Valley Design Corporation is 99.7% alumina with
a solid fraction of 0.97. From the measured specular
reflection coefficient 0.072 near normal incidence with a
He-Ne laser, we find the refractive index of the sample to
be 1.70, which is close to the refractive index 1.76 of pure
alumina. From measurements of total transmission
versus thickness in a wedge, we find that the transport
mean free path in this material is 1=31.4 pm and the
internal reffection coefficient R =0.81 [9]. Since the sum

of reflected and transmitted light in this sample is equal
to the incident intensity within the experimental uncer-
tainty of 1%, absorption is negligible.

In the present experiments a 3-mW He-Ne laser beam
is expanded, collimated, and then focused on the sample
surface. The sample is mounted on the center of a
goniometer. Intensity spectra in the far field as a func-
tion of the angle of the detector with respect to the nor-
mal of the fixed sample are recorded by sweeping the
detector along an arc from —1.5' to 1.5'. The normal-
ized intensity correlation function versus shift 68 in the
angle of the detector, C(b,8)=(5I(8)5I(8+58)), was
computed from 100 such intensity spectra recorded by il-
luminating di8'erent areas of the sample. Correlation
functions are calculated using intensity spectra normal-
ized by the angular intensity distribution (I(8) ) obtained
from the average of all spectra. We have also recorded
intensity spectra as a function of the rotation angle of the
sample with respect to the fixed detector in the forward
direction. The total rotation of the sample is about 3'.
These measurements were made for broad and narrow in-
cident beams. Measurements are made for the sample
immersed in index-matching fluid as well as in air. The
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FIG. 2. Intensity correlation functions C(58j vs rotation an-
gle of the sample in air for laser beams focused to 50 pm and ex-
panded to 2 mm, respectively. The solid line is the same as in
Fig. 1. The dashed line is F, in Eq. (4).

cumulant intensity correlation function versus shift 58 in
the sample rotation angle, C(58)=(5I(8)5I(8+58)),
was calculated using 100 intensity spectra normalized by
the average of all intensity spectra.

The intensity correlation functions versus detector an-
gle C(68) for an incident beam focused to a 5-pm-diam
spot and for a beam expanded to a spot 2.0 mm in diame-
ter on the alumina sample in air are shown as the dots
and triangles in Fig. 1. The narrower the intensity distri-
bution, the broader the corresponding angular correla-
tion function. The solid lines are the amplitude square of
the Fourier transform of the surface intensity distribution
I(pb) measured for the focused and broad beams. The
agreement with the corresponding correlation functions
confirms Eq. (6).

The angular correlation function C(58) measured for
the sample in air is shown in Fig. 2. The dots give the
measured intensity correlation function with sample rota-
tion angle 58 using a laser beam focused to 50 p,m. The
triangles give the same correlation function for a 2-mm-
diam incident beam. These results show that C(58) is in-
dependent of the incident beam profile [4] in accord with
Eq. (7). The solid line shown in Fig. 2, which gives the
amplitude square of the Fourier transform of the intensi-
ty profile for a tightly focused spot, is reproduced from
Fig. 1. The agreement with both sets of data confirms
Eq. (7) since I(pb) for the focused beam is the diffusion
propagator P(p). The measurement of I(pb} for the fo-
cused beam is in excellent agreement with calculations of
the diffusion theory using scattering parameters mea-
sured for this sample [9]. This confirms that these mea-
surements of angular correlation are consistent with
diffusion theory. The correlation function given by Eq.
(4), which does not include the influence of internal

FIG. 3. Intensity correlation function vs rotation angle of the
sample immersed in index matching 6uid for incident beam di-
ameters of 50 pm. The solid line is the square amplitude of the
Fourier transform of the calculated diffusion propagator and
the dashed line is given by Eq. (4}.

re6ection, is shown as the dashed line in Fig. 2.
The role of internal re6ection is further considered in

the measurements of the angular correlation function
C(58) for the sample immersed in index matching fluid
with n =1.70 for an incident beam focused to a 50-pm
spot. This correlation function, shown in Fig. 3, is
broader than that for the sample in air because the sur-
face propagator is narrower. The solid line is the ampli-
tude square of the Fourier transform of the calculated
difFusion propagator with R =0 using the propagation
parameters given above. This line is also in excellent
agreement with Eq. (7), using the intensity profile mea-
sured for a tightly focused beam. The dashed line is the
angular form factor F, given in Eq. (4). The agreement
demonstrates that the calculations of Feng et al. accu-
rately describe the "memory efFect" in the absence of
internal re6ection.

In conclusion, we have confirmed a general expression
for angular correlation functions with arbitrary shift in
incident and scattered wave vectors in the field factoriza-
tion approximation in a study of angular correlation
within the static speckle pattern and the memory effect.
We demonstrate that the angular intensity correlation
function in transmission is fully described by the photon
difFusion model when internal reflection is taken into ac-
count.
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