
PHYSICAL REVIEW E VOLUME 49, NUMBER 5 MAY 1994

Propagation dynamics of ultrashort pulses in nonlinear fiber couplers
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The nonlinear fiber coupler is considered as a Hamiltonian dynamical system with an infinite number
of degrees of freedom, with the soliton states of the coupler being the singular points of this dynamical
system. Numerical simulations show that arbitrary initial conditions give rise, asymptotically, to oscilla-
tions around some of the stable singular points and some amount of radiation. Examples of different ini-
tial conditions, including unstable soliton states and single pulses launched in one channel of the coupler
are considered.
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I. INTRODUCTION

The reason for the current increase of interest in all op-
tical switching devices is that these devices can potential-
ly operate at speeds much higher than those possible with
electronic or optoelectronic switches. The nonlinear
directional coupler has certainly been the most frequently
studied device since it was proposed [1,2]. Switching
properties of this device, using continuous wave (cw) and
very short pulses, have been extensively studied both
theoretically [3—16] and experimentally [17—20]. It has
been shown experimentally [20] that input pulses as short
as 100 fsec can be used to obtain complete switching. In
principle, this is not the fastest switching time that can be
achieved with directional couplers.

Although much work has already been done to under-
stand the processes taking place in a nonlinear fiber
coupler, the theory of this device is still incomplete. Only
special (and simple) cases have been considered using nu-
merical [5—7,9] or semianalytical [8,10, 12—15] ap-
proaches. On the other hand, experimental data have
shown that pulse propagation on this device is not always
so simple. For example, the pulse can break up into
smaller pulses [18]; this effect, which leads to incomplete
self-switching, cannot be explained using simple theories.
Hence, a more elaborate approach is needed. The aim of
this paper is to develop a general approach which can
answer the question: what will happen if we excite a non-
linear directional coupler with an arbitrary pair of
pulses? In principle, this kind of general approach can
help to develop the theory of any particular device which
is based on the nonlinear coupler, e.g., the optical transis-
tor [1],pulse compressors [21],logic elements [22], etc.

From a mathematical point of view the problem of
wave propagation in a nonlinear fiber coupler reduces to
a study of the properties of the solutions of a pair of cou-
pled nonlinear Schrodinger equations (NLSE's) with a
linear coupling term [5]. This set of equations is nonin-
tegrable in the sense that methods such as the inverse
scattering technique cannot be applied to it. Therefore,

the initial value problem cannot be solved analytically.
Nevertheless, two integrals —the energy invariant and
the Hamiltonian of the set —exist and the corresponding
dynamical system with an infinite number of degrees of
freedom can be considered as Hamiltonian. This means
that some general methods of the theory of Hamiltonian
dynamical systems can be applied to the set, and a sys-
tematic investigation of its solutions can be made. Al-
though the theory of dynamical systems has been
developed mostly for finite dimensional systems described
by ordinary differential equations [23,24], many features
of it can be applied to infinite-dimensional systems de-
scribed by partial differential equations [25].

The most characteristic feature of a dynamical system
described by nonlinear evolution equations is that smooth
bound initial conditions give rise, during propagation, to
a finite number of bound states (solitons) plus some
amount of radiation, which disperses in time (or diffracts
in space). The classical example of this type of behavior
is the standard NLSE [27] with bound initial conditions.
This happens in more complicated cases of systems which
are Hamiltonian but nonintegrable [28]. Menyuk recent-
ly pointed out [26] that solitons of integrable systems are
robust in the presence of Hamiltonian deformations. In
fact, even if the dynamical system is far from integrable
but is still Hamiltonian, it can admit soliton states which
in some aspects behave similarly to those in integrable
systems.

Our numerical simulations show that this is the case
for the nonlinear directional couplers studied in this pa-
per. In contrast to simple systems described by a single
NLSE, the coupled set of NLSE's has composite soliton
states rather than single solitons. Moreover, the coupled
set of NLSE's has several types of soliton states [29], al-
though not all of them are stable [30]. Hence, we expect
that asymptotically, the output of the coupler will consist
of a finite number of stable soliton states and a certain
amount of dispersed radiation. In contrast to solitons in
integrable systems, stable soliton states of the coupler are
usually excited with oscillatory perturbations.
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From this point of view, the systematic investigation of
a Hamiltonian dynamical system should consist of the
following steps (either analytically or numerically): (i)
Finding the stationary solutions (singular points); (ii) in-
vestigation of their stability (establishing the type of
point); (iii) study of the evolution of the unstable states;
and (iv) solution of the initial value problem. Step (i) of
this sequence has been done previously in Ref. [29],
where the full set of soliton states for the coupled set of
nonlinear Schrodinger equations has been found and a bi-
furcation diagram for them has been constructed. Step
(ii) has been partly done (for symmetric and antisym-
metric states in a limited range of parameters) in Refs. [6]
and [13]. A comprehensive study of the stability proper-
ties of the full set of soliton states has been recently
completed in [30]. Step (iii), and partially step (iv), are
accomplished in this work. Numerical simulations start-
ing from unstable symmetric and antisymmetric states,
which are also in agreement with our general conclusion,
have been done previously in Ref. [6].

The results from steps (iii) and (iv) can be found asymp-
totically for large distances of propagation, where the sol-
iton states are well separated from the radiation and from
each other. This is analogous to a single NLSE where
asymptotic results can be predicted from the spectrum of
the inverse scattering problem. At short propagation dis-
tances there is still a strong interaction between the
diFerent parts of the solution, and so each case has to be
considered separately. Both cases, i.e., short and long
couplers, can be interesting in practice. Note also that
we are considering here only the cases when two or more
soliton states are well separated at the output. The cases
when they are superimposed on each other are more
complicated and require more numerical simulations to
understand the processes in the coupler.

The remainder of this paper is organized as follows. In
Sec. II we formulate the problem, summarizing the main
conclusions obtained in Refs. [29] and [30]. In Sec. III
we present some numerical results on the evolution of the
unstable states. In Sec. IV we present several numerical
results on the initial value problem. In Sec. V we summa-
rize and discuss our results, comparing them with previ-
ous ones from other authors. Finally, Sec. VI contains
our conclusions.

II. SOLITON STATES OF A NONLINEAR COUPLER

Pulse propagation in a dual-core fiber coupler, includ-
ing the eFects of dispersion to second order and self-
phase modulation can be described in terms of two linear-
ly coupled nonlinear Schrodinger equations. In a refer-
ence frame traveling along the g axis with the light group
velocity, this set of equations takes the form [5]

iU, +-,' U„+ i
U/'U+Z V=o,

iV~+ —,
' V„+/ V/ V+KU=O,

where U(g, ~) and V(g, r) are the electric field envelopes,
K is the normalized coupling coefficient between the two
cores, g is the normalized longitudinal coordinate, i is
the normalized retarded time, and the equations are writ-

—K(UV*+U*V) dr,

where an asterisk means complex conjugate. Using Eq.
(2), Eqs. (1) can be written in a canonical form

5H .
V

5H
SU'' ' ' SV'

Equations (2) and (3) define the Hamiltonian dynamical
system on an infinite-dimensional phase space of two
complex functions U, V decreasing to zero at infinity. %e
assume that the functions U and V are smooth functions
of both variables.

Separating explicitly the fast oscillatory part e'q~ from
the envelope functions, we can represent the solutions of
Eq. (1) in the form

U((, r) =u'((, ~)e'~&,

V(g, r) =v'(g, ~)e '~~,
(4)

where q is the spatial frequency shift and u'(g, r) and
v'(g, r) are the new envelope functions. It is supposed
that these functions do not contain fast oscillations. The
value q can be considered as the parameter of a soliton
state family of solutions. It is analogous to the propaga-
tion constant in the theory of nonlinear guided waves
[31]. The rest of the parameters of the soliton states de-
pend on q. By inserting Eqs. (4) into Eqs. (1), one obtains

iu (+ ,'u'„qu—'+ ~u—'~'u'+Kv'=0,

iv(+ —,'v,', —qv'+ ~v'~ v'+Eu'=0, (5)

which has two parameters q and E. Using the following
rescaling,

u'=u&E, v'=vv'E, r=~VK, z=Eg,
Eqs. (5) become

iu, + ,'u« — u+ ~u ~
u—+v=0,

iv, +—,'v« —q v+~v
~

v+u =0,

so that there is now only one combined parameter, viz. ,
q /E. The latter transformation shows that all results can
be presented in terms of this combined parameter.

Equations (1) have a second invariant:

0 =f (I Ul'+
I
VI')«= f (lu'I'+

I

v'I')«

=&Xf (/u ['+ Jv /')dr,

which corresponds to the total energy transmitted by a

ten assuming anomalous group-velocity dispersion
(GVD).

An invariant of Eqs. (1) is the Hamiltonian,

l
Ul'+

I
VI'
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signal in the fiber coupler.
A useful integral relation is

=4i Im f "
UV'd r=4i ~K Im f uu *dt,

d 00 00

(9)

where b,Q= f "„(~U[ —
~V~ )dr=~E f "„(~u~

—
~
v

~
)dt is the difference between the energies carried by

each core. Equation (9}shows that the rate of energy ex-
change between cores depends on the relative phase of
their field envelopes.

Equations (5) have stationary (independent on g) solu-
tions: u p(r), U p(T). These solutions can be found by solv-
ing Eqs. (5), with the terms involving the derivatives with
respect to g set to zero. In particular, the set of equations
(5) has symmetric,

&2(q —K)QO=VO=
cosh[&2(q K)~]—

and antisymmetric,

&2(q+K)
cosh[&2(q+K )r]

(10)

solutions.
In addition to symmetric and antisymmetric states, the

set of equations (5) has also asymmetric solutions with
unequal field components u p and Up. There are no analyt-
ic solutions for them, but they can be found numerically
(see Ref. [29]). There are two different families of asym-
metric solutions; they bifurcate from the symmetric and
antisymmetric states at q /K = ', and q /K =—1, respective-
ly. They have been named in Ref. [29]: A- and B-type
asymmetric states. Figure 1, taken from Ref. [29], shows
the dispersion curves on the (Q, q) plane for symmetric,
antisymmetric, and asymmetric soliton states. It is seen
from Fig. 1(a) that the A- and B-type asymmetric states
split off from the symmetric and antisymmetric states at
bifurcation points M and N respectively.

An exhaustive study of the stability of all of these types
of soliton states can be found in Ref. [30]. Here we

briefly summarize the results of [30], as they are needed
later in this paper.

(i) The symmetric soliton states are stable up to the
point of bifurcation. They are unstable beyond the point
of bifurcation and it is in this range of q values that asym-
metric A-type soliton states exist. In the region of insta-
bility there is only one (even) perturbation function with
a real growth rate. This is an example of a symmetry-
breaking instability [6].

(ii} For the antisymmetric soliton states there are even
and odd perturbation functions which give instability.
The odd perturbation function has the larger growth rate,
and the eigenvalue can be complex for certain values of q.
As a result, the antisymmetric states are unstable in al-
most the whole range of q values where they exist. The
range of q values where even eigenfunctions exist is small
compared to the range where odd perturbation functions
exist. The growth rate values for them are lower than
those for odd functions. Hence, their influence on the
field evolution in nonlinear couplers will be less pro-
nounced.

(iii) The asymmetric A-type soliton states are unstable
at the values of q where dQ/dq is negative. The only
eigenfunction of perturbation in this region is even. The
A-type states are stable in the part of the dispersion
curve where dQ/dq is positive.

(iv) In the case of asymmetric B-type states, there are
two different (even and odd) bound perturbation func-
tions. The growth rates for both of them are real in the
entire region where B-type soliton states exist. As both
eigenvalues are real, these states are all unstable. The
two eigenvalues for even and odd perturbation functions
are of the same order of magnitude. This means that the
evolution of unstable B-type states can be quite compli-
cated in general. For this reason, in the following sec-
tions we will present numerical results for evolution of all
unstable states except B-type states. The study of the
evolution of these states deserves special investigation.

The above results concerning the stability of the
different type of soliton states are summarized in Fig. 1.
The continuous curves denote the stable branches and the
dashed curves stand for those found to be unstable.
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FIG. 1. Total energy carried by the soliton states vs the nor-
malized soliton parameter q. Solid lines correspond to stable
branches and dashed lines to unstable branches. The arrow
shows an example of the transformation of an unstable sym-
metric state into a stable asymmetric A-type state. Note that
the curves for the s~~etric (S) and A-type asymmetric (A)
soliton states have stable as well as unstable branches.

Figure 1 indicates that if we launch into the coupler a
symmetric soliton state with lower energy than that cor-
responding to the bifurcation point M, it will propagate
without changing its profile at all. The same would hap-
pen with an asymmetric A-type soliton state in the region
dQ/dq ~0. In this section we shall consider a few exam-
ples of the evolution of the unstable soliton states. %e
cannot cover all possible cases, of course, but some gen-
eral conclusions can be drawn from these examples. It is
shown that unstable soliton states can be transformed
into the stable soliton states of another branch. The
stable states belong to the elliptic type of singular points
(or centers) for our infinite dimensional dynamical sys-
tem, and the unstable soliton states are saddle-type
points. In principle, elliptic type singular point cannot be
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reached by any trajectory. The presence of radiation can
partly transform the elliptic type points into stable foci or
limit cycles. Hence, the radiation of energy from the sig-
nal plays an important role in the transition from a
saddle-type singular point into an elliptic type point.

We have solved Eq. (1) numerically by using a split-
step Fourier method on a time interval [

—r,„,r,„],
where r,„is much bigger than the width of the initial in-
put pulses. The temporal grid size was chosen to have up
to 8192 points (usually 2048). The step size in the g
direction was typically taken to be b,(=0.001. Numeri-
cal accuracy was checked by repeating the simulations
for different grid and step sizes. The calculations were
performed using the following initial conditions:

U(0, r) =u()(r)+iMf (r),
V(0, )r=U(')(r)+ph(r),

(12)

where uo(r) and vii(r) are some unstable soliton state,
f(r) and h(r) are the perturbation functions as obtained
in Ref. [30],and i' is a small parameter.

In the first example we chose a coupler with @=0.3,
and as initial condition we took the symmetric stationary
state associated with q = 1, to which we added the corre-
sponding eigenperturbations multiplied by p =0.001.
Any other situation, with different q and E but the same
q/K, produces identical results. Figure 2 shows the ini-
tial stationary state up( Uo) and its corresponding per-
turbative function f, which is equal to —h.

Figures 3(a) and 3(b) show the pulse profiles at diff'erent

propagation distances g, for the above input. We can see
that the pulses keep their even shape and that several
small sidepulses split off from the central part. This cen-
tral part can be considered as the signal. The side pulses
are emitted from the signal, partly reducing its energy.
The emission of these small subpulses from the signal can
be considered as radiation which mostly propagates away
from the signal and spreads out. Radiation emission is a
general and unavoidable property of this problem. Al-
though the dynamical system is Hamiltonian, the radia-
tion emission makes the signal lossy. This could change
the properties of the central pulse in propagation. We
used some absorbers at the edges of the numerical grid to
prevent the reflection of the radiation back to the center.

— Im( f')

FIG. 2. Real (dashed line) and imaginary (dotted line) parts
of the eigenperturbation (f= —g) of the symmetric state at the
point q/I( =0.333. The shape of the initially symmetric state
u o

=Uo is shown by a solid line.

0=
-59

FIG. 3. Pulse profiles (a)
~

U~ and (b)
~ V~ upon instability

transformation at the propagation distances /=20 {continuous
line), /=29 (dotted line), and /=42 (dashed line).

Note the asymmetry between the U and V functions and
the diff'erent scales in the y axes of Figs. 3(a) and 3(b).

The evolution of the peak amplitude of both pulses
~U(r=0)~ and

~
V(r=0)~ is shown in Fig. 4(a). Because

f= —h the pulse amplitudes change in opposite ways.
After propagating a certain distance up to )=3, during
which the pulses hardly change, the field amplitudes
diverge exponentially from their stationary values and
after a short distance reach a different mean value,
around which they oscillate. This oscillatory behavior is
presented in Fig. 4(b), where we have plotted the imagi-
nary vs the real part of the functions
Y, = U(g, r=0)exp( i l. 71(—) and F2= V(g, r=
0)exp( i l. 71(—), where g is the parameter of these
curves. Two initially close trajectories separate exponen-
tially and rotate around two different fixed points.

These two fixed points are obviously centers (or elliptic
points) according to the theory of dynamical systems
[24]. The presence of radiation makes them behave more
like stable foci or limit cycles. The oscillations occur
around certain points with distances Uo and Vo from the
origin; these can be determined exactly. Note the ex-
ponential factor exp( i 1.71$), —which makes these points
motionless. Effectively, this factor corresponds to a shift
in the spatial frequency of the signal. That is, the q value
of the signal, as well as its energy, is shifted on propaga-
tion. The final state is obviously the asymmetric A-type
state (or oscillations around it) associated with q =1.71.
We have checked that the whole shape of this solution os-
cillates around the profile of this A-type state. This
simulation is an example of a transformation from an un-
stable symmetric state into an asymmetric A-type state
with q/K =5.7. This transformation is indicated in Fig.
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coupler, could be more reliable than those suggested be-
fore. On the other hand, this effect could be used for a
precise comparison of the amplitudes of two pulses by
launching them into the two inputs of the coupler.

Because of the stability of the asymmetric A-type soli-
ton state, the convergence to this state is not direct but
involves an oscillatory approach. This means that the
Snal state can be a limit cycle rather than the exact asym-
metric state. Nevertheless, this limit cycle is located
around the A-type state and can be described in an ap-
proximate form by

u'(g, r) =u 0(q, ~}+Re[f(q, ~}]cos(cog}
1.5

+i Im[f (q, r)]sin(cog),
(13)

0.5

E
—0.5

I I I I I I I I I I I I I I I I I I I1 5~ a/

-2.5 -1.5 -0.5 0.5 1.5
Re(Y; I 2)

FIG. 4. (a) Pulse amplitudes
~
U

~
and

~ V~ at the center of the
pulse (v=0) vs g. The arrows indicate those values of g at
which the field profiles are plotted in Fig. 3. (b) Trajectory of
the solution on the complex plane. The data are presented in
the frame which includes the additional phase factor
exp( —i1.71/). The filled circle is the starting point. Trajectory
1 corresponds to the function U and trajectory 2 to the function
V. Both trajectories converge to the asymmetric state A (the
final point of the arrow in Fig. 1).

1 by the arrow. The surplus energy is emitted during
transformation, in the form of small subpulses, symmetri-
cally from both sides of the signal.

This kind of pulse evolution had been observed previ-
ously in numerical simulations (see Figs. 1 and 2 of Ref.
[6]). However, the final states found through these simu-
lations has been left unexplained in [6] because the asym-
metric soliton states were unknown at that time. More-
over, we can predict that any type of initial perturbation
will produce similar transformation because the sym-
metric state has only one eigenperturbation with a real
growth rate [30). This explains why the change of the in-
itial perturbation did not qualitatively modify the pulse
evolution shown in Fig. 4 of Ref. [6].

The question is, in which core will the larger pulse ap-
pear at the output? Because of the symmetry of the prob-
lem, both channels should have the same probability.
The point here is that the result of the evolution of this
symmetric state depends strongly on the sign of the
eigenfunction in the initial perturbation. This means that
a small perturbation or control pulse on the top of the in-
itia11y symmetric state could completely change the out-
put. This effect can be used in all-optical switches for
routing the signal pulses to the desired channel by using a
small controlling pulse added to either of the two strong
pulses. This type of switch, based on the nonlinear

0 ]
I I I I )& I I I I2

15

& 10
C)'

0
5
q/K

10

FIG. 5. The same as in Fig. 1. The heavy solid line shows the
energy of the antisymmetric states divided by 2. The arrows in-
dicate the transformations of antisymmetric states into two A-

type asymmetric states.

v'(g, r) =vc(q, r)+Re[h(q, r)]cos(cog)

+i Im[h (q, r) ]sin(cog),

where ro is defined by 5=iso, 5 being the purely imagi-
nary eigenvalue associated with the perturbation (f,h ).
For the A-type soliton states, the frequency r0 of its single
eigenfunction depends on its q value.

This type of behavior of the output pulses is rather
general. Arbitrary initial conditions give rise to some of
the stationary solutions and additional radiation emitted
from the main pulses, depending on the initial energy.
Concerning the antisymmetric states, Fig. 5 clearly shows
that the energy of any unstable antisymmetric state is
sufiicient to excite two other soliton states. The heavy
solid line in this figure shows the energy of the antisym-
metric state divided by 2. It crosses the point M and is
higher than each of the stable branches of the symmetric
and asymmetric A-type states. Hence, an antisymmetric
state could evolve into two symmetric or two asymmetric
A-type states upon propagation.

We have studied the evolution of many antisymmetric
states with initial conditions (12). For these states it is
shown in Ref. [30] that the eigenperturbation with the
largest growth rate (f,h } satisfies f=h, and that it is an
odd function of v. Figure 6 illustrates an antisymmetric
stationary solution, the one associated with q =1 and
I(. =0.85, and its corresponding eigenperturbation f. The
perturbation functions for any other q/K qualitatively
have the same shape. Obviously, .the odd perturbation
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FIG. 6. Real (dotted line) and imaginary (dashed line) parts
of the perturbation [f{r}=g{r}]for the antisymmetric state at
the point q/K=1. 176. The shape of the antisymmetric state
u 0

= —
Uo is shown by a solid line for comparison.

(a)

q/K =3.33

p(gE—
p(jM

0—70 70

2- q/K =10

0—70 70

FIG. 7. Two examples of transformations of antisymmetric
states into A-type asymmetric states. In both eases the calcula-
tions were done up to /=80. The initial values of q /E are writ-

ten above the curves.

function will make the initially even functions
~ U~ and

~ V~ asymmetric on propagation.
Some examples of the evolution of these antisymmetric

states are shown in Figs. 7(a) and 7(b), where the inputs
correspond to q/I{.'=3.33 and 10. These inputs were
launched in couplers with %=0.3 and 0.1, respectively.
Because of the conditions f=h and u o

= —u 0, the pulses
in both channels evolve keeping the symmetry
IU(r)I=IV( —r)(, for all g. For this reason only one of
the functions (~U~) is shown in these figures. The other
one ( ~ V~ ) is just the mirror image of

~
U ~.

As can be seen from these Sgures, the antisymmetric
states keep their shapes for some propagation distance,
which depends on p, and then split off into two A-type
asymmetric soliton states. Using the method of the tra-
jectories in the complex plane, we have found that these

two soliton states are two stable A-type soliton states
with q /K values of 3.9 and 10.9, respectively. These pro-
cesses are indicated in Fig. 5 by the arrows. The left and
right arrows correspond to the above simulations. The
arrow in the middle is one additional example of such
transformation. The initial energy is more than the sum
of the energy of the two final A-type solitons states.
Again, the surplus energy is radiated in the form of small
subpulses. The radiation is clearly seen in Fig. 7(a) but
becomes negligible in the case of Fig. 7(b).

The two asymmetric A-type states separate from each
other. This means that two A-type states will appear at
the output with certain delay, which depends on the
length of the coupler. This delay at the output can be
much larger than the width of the pulses and for a given
coupler depends on the q value of the initially antisym-
metric state. The sequence of appearance of the two
asymmetric A-type states is de5ned by the sign of the
perturbation in the initial conditions (12). Mathematical-
ly speaking, the small odd perturbations on the top of the
even functions are equivalent to two even pulses shifted
slightly in time. For small perturbations this initial shift
is much smaller than the width of the pulses itself. These
types of initial conditions have been used in the numeri-
cal simulations of Refs. [6] and [9] [see Figs. 5-8 of [6]
and Fig. 6(a) of [9]] where results similar to our Fig. 7
were obtained. From a practical point of view, using ini-
tial conditions in the form of two pulses with opposite
signs and with a small delay between them allows us to
switch the sequence of the two soliton states at the output
just by changing the sign of the small delay.

Using our approach, we obtain a complete understand-
ing of the processes occurring when initial conditions
close to the antisymmetric soliton states are used. If we
decrease the total energy of the initial antisymmetric
state shifting to the left along the curve AS in Fig. 1

( —0.6(q/E (0.71) then the perturbation to the an-
tisymmetric states has complex eigenvalues with a corn-
paratively small real part. This means that the instability
becomes weaker and that it involves oscillations on prop-
agation. If we further decrease the energy of the soliton
states (q/K( —0.6) then the antisymmetric states be-
come stable.

As a third case, we used initial conditions in the form
of the asymmetric A-type soliton state at q/E =1.7, the
coupler having E=0.59. The A-type state is unstable in
this region with a comparatively low value of the growth
rate (see Ref. [30]}. The pulse behavior is slightly
different from the two previous cases due to the proximi-
ty of two stable branches: the symmetric and the A-type
asymmetric states. The trajectories become periodic
without any noticeable radiation. In fact, starting from
the A-type unstable state, we can obtain periodic motion
around either of the stable states, depending on the sign
of the perturbation. These two types of trajectories are
shown in Figs. 8(a}and 8(b). There is almost no radiation
in this case and the orbit remains oscillatory during the
whole evolution process. The q value changes during this
transformation. In Fig. 8(a} the corresponding phase fac-
tor is exp( —i l.068$) and in Fig. 8(b) it is
exp( i 0 989$) T—he fo. rmer .value of q corresponds to
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FIG. 8. Evolution of the imaginary vs the real part of the
field at ~=0 of an unstable A-type soliton state. (a) Negative
perturbation: p =—0.01 in Eq. (12). The data are presented in

a frame which includes the additional phase factor
exp( i 1 06—8$).. The Slled circle is the starting point of the
simulation (/=0). (b) Positive perturbation: p=0.01. The
data are presented in a frame which includes the additional
phase factor exp( —i0.989$). Trajectory 1 in both cases corre-
sponds to the function U( f,v=0) and trajectory 2 to the func-
tion V( f,r=0).

IV. INPUT PULSES LAUNCHED INTO ONE CHANNEL

In order to observe switching phenomena, the direc-
tional coupler is excited in only one channel [5]. Usually
a sech-type function is considered the proper input in nu-
merical simulations,

the A-type stationary state at the same energy level as the
initial soliton state, that is q =1. The latter value corre-
sponds to the symmetric state at the same energy level.
Trajectories 1 and 2 are associated with U and V, respec-
tively, multiplied by the above phase factors, as in Fig.
3(b). The oscillations of these two trajectories around
two diFerent points in the complex plane show that the
limiting case is an asymmetric A-type state. The trajec-
tories are gradually converging to the center. The oscil-
lations of both trajectories in Fig. 8(b} take place around
the same point, which shows that the central point is a
symmetric soliton state.

In principle, if two centers are located close to each
other in Hilbert space, then there could be trajectories os-
cillating around both of them simultaneously, thus span-
ning a larger phase space. Special initial conditions are
required to excite them. An example of excitation of this
type of trajectory is given in the next section.

where Ao is the pulse amplitude and 0 defines the width
of the pulse {the width is inversely proportional to 0}.
The initial shape is not critical. We could have used
Gaussian pulses and obtained similar results. The pulse
shape mainly in6uences the amount of radiation pro-
duced. The output signal will consist of one or several
soliton states of the coupler. The important initial pa-
rameter is the input energy. If the initial energy (after
subtracting the part that will be radiated) is lower than
that of the soliton state at the point M of Fig. 1, then we
can suppose that the final result will be a symmetric soli-
ton state plus perturbative oscillations around it. On the
other hand if this energy is higher than the energy at the
point M, then the final state would be one or several
asymmetric A-type soliton states with perturbative oscil-
lations around them. Hence, the energy of the states at
the point M (Qsr ) can be considered as the threshold en-

ergy.
In reality, this simple behavior can be complicated by

the presence of radiation and transient phenomena. As a
result, the threshold energy is higher than Qsr and the
threshold itself is not sharp. We give here four examples
of pulse evolution with initial energy close to the
modi6ed (taking into account the radiation} threshold.
Fig{tre 9(a) shows the distribution of the energy (E, 2 ) be-
tween both cores as a function of the propagation dis-
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FIG. 9. The energy distribution along the coupler for the ini-
tial conditions given by Eq. (14). The corresponding parameters
are 0/K=2. 1, K=1, and (a) AD=2. 300, Q/~K =5.03810;
(b) AO=2. 337, Q/v K =5.20149; (c) AD=2. 360, Q/v K
=5.30440; (d) AD=2. 400, Q/v K =5.48571.



4526 NAIL AKHMEDIEV AND J. M. SOTO-CRESPO

-2

2 I

I I 1 I I t I I I I I I J I I J I 1 I I

—1 0 1 2

Re(Y, )

—1.5 '

0
Re( Y,. )

FIG. 10. Trajectories on the complex plane
of the field amplitude at ~=0 for the same
cases as in Fig. 9.
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tance g for a directional coupler with K= 1 and initial
conditions given by Eq. (14), where Ao =2.3 and 0=2. 1.
This value of 0 is found to be the best to reduce radiation
to the minimum value, and will be the same for all the
cases exhibited in Fig. 8. The pulse energy in this case is

Q =5.04. For comparison, the energy at the point M is

QM =4.6. The figure indicates that the solution oscillates
around a symmetric soliton state with equal amplitudes.
Note that there are a couple of large oscillations of the
energy before the convergence to a symmetric state takes
place. This convergence to the symmetric state is

presented more explicitly using the trajectories on the
complex plane [Fig. 10(a)]. After one rotation around the
origin, when most of the radiation is emitted, both trajec-
tories begin to rotate, with smaller amplitude, around the
points corresponding to a stable symmetric soliton state.
This transition is indicated in Fig. 11 by the left arrow.

This behavior is typical of initial conditions with low

energies (Q 5). However, on decreasing the initial ener-

gy, the convergence to the symmetric soliton state be-
comes slower, and for very low amplitudes (Ao& 1.5),
when nonlinearity weakens, large oscillations around the
symmetric state occur during the whole process, with the
energy being transferred completely from one channel to
the other during each oscillation. The period of the oscil-
lations is m/(2E). This behavior is similar to that exhib-
ited by a linear coupler excited by a continuous wave
(cw). We recall that the pulses of the symmetric soliton
state become wider in the limit q —+K. This is clearly
seen from Eq. (10). Hence, this is the linear cw limit.
Correspondingly, the widths of the pulses (initially short)
increase upon each oscillation due to the dispersion.
There is almost no radiation in this limit, in contrast to

the cases with high energies.
If we increase slightly the energy of the input pulse, the

behavior changes qualitatively. This is shown in Fig.
9(b), where Q=5.20. After an initial short stage with
large amplitude oscillations (0 & g & 12), the energy stays
mainly in one channel with irregular small oscillations.
The trajectory of the field at the origin on the complex
plane corresponding to this process is shown in Fig.
10(b). Both trajectories gradually converge to the fixed
points corresponding to the A-type soliton state close to
the point with minimum energy in Fig. 1 (see also Fig.
11). Hence, this amount of energy (Q =5.20) can be con-
sidered as a threshold.

It is feasible that further increase of energy would give
qualitatively similar behavior. However, three singular

'S

0 1 2 3
q/K

FIG. 11. Transformations shown in Figs. 9 and 10 on the

(Q,q ) plane. The curves represent a part of Pig. 1 magnified for
clarity. The arrows show the transformation upon propagation
of the pulses given by the initial conditions (14) into specific sol-
iton states.
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TABLE I. Generation of A-type soliton states.

Ao

2.8
3.0
3.5
6.0
4.0
3.0
3.0

2.1

2.1

2.1
2.1

1.0
0.5
0.7

Q /&K

7.46
8.57
11.67
34.285
32.0
36.0
25.7

~ values
K

5.804
7.365
11.825
16 and 45
20 and 20
12, 12, and 8

22, 3.2, and 3.2

points (two stable and one unstable) are close together in
phase space above the point of minimum energy. Due to
this effect a small increase in energy (Q =5.30) produces
a trajectory which embraces both symmetric and an-
tisymmetric states at the same time. Figures 9(c) and
10(c) clearly show that this is an example of an excitation
of large oscillations around the two stable points men-
tioned in the previous section.

The above case is, of course, a very special one. When
we increase the energy a little more, we directly excite an
asymmetric A-type state with no long transition phenom-
ena [Figs. 9(d) and 10(d)]. As usual, we have radiation
and small nondecaying oscillations around the final state.
The behavior is almost the same for larger input energies
(14) until the input energy is high enough to excite two or
more soliton states. Table I shows a few examples of nu-
merical simulations, with different initial parameters Ap
and Q, confirming this behavior. In all of these examples
the final states are one or more A-type asymmetric soli-
ton states. The value N in Table I is the number of A-

type soliton states. Note that the pulse with larger width
(smaller Q) produces more soliton states. Their q values
are given in the last column. In some cases two soliton
states with equal q values are produced. In cases when
two or more soliton states are produced, they propagate
with different speeds. E= 1 in all these latter cases.

V. DISCUSSION

From the above examples it is concluded that by using
the approach of nonlinear dynamical systems generalized
to systems with infinite degrees of freedom, it is possible
to predict qualitatively the behavior of pulses propa-
gating along a nonlinear directional coupler. Depending
on the initial energy of the signal at the input, the output
pulses are always close to one of the stable soliton states:
a symmetric state below the point of bifurcation or an
asymmetric A-state above the point of minimum energy.
Although the total energy of the input signal is con-
served, we can consider the central (signal) pulse as hav-
ing energy losses related to the emission of radiation from
the central pulse. Radiation plays an essential role in the
processes of pulse transformations, allowing the pulses to
adjust their energies to those corresponding to the stable
soliton states.

Stable soliton states are always excited with small per-
turbations unless the initial condition is an exact soliton
state. The perturbation behaves oscillatorily because its

growth rate is purely imaginary for stable states. Hence,
arbitrary initial conditions produce periodic motion
around stable soliton states after the radiation is emitted.
This general idea can be applied to any particular case.

For smooth initial pulses launched into one of two
cores, there can be different regimes depending on the ini-
tial energy of the signal. (i) If the total energy of the in-

put pulses is lower than some Qo (Qo =Qsr+Qz, where

QM is the energy at the point M and Qa =0.1QM is the
radiated energy), then the field will consist of radiation
(which decreases the amount of energy in the signal) and
periodic oscillations around a stable symmetric state.
The oscillations gradually decay with propagation so that
the signal converges to the symmetric soliton state. This
convergence is slower for smaller initial energies. For
very low initial energies, the oscillations have larger am-
plitudes and are nondecaying. In the linear limit, the
coupler swaps the energy of the pulses between the chan-
nels as in the case of cw initial conditions. (ii) If the ener-

gy of the initial pulse is higher than Qo, then the propa-
gating field consists of radiation and periodic oscillations
around an asymmetric A-type state. We can observe the
unequal pulse amplitudes at the output of the coupler.
There is an intermediate range of energies where sym-
metric and asymmetric states exist at the same value of
energy. It can happen in this case that the motion con-
sists of periodic oscillations around both symmetric and
asymmetric soliton states simultaneously.

If the energy of the initial pulse is much higher than

Qp so that it is enough to excite two or more soliton
states, then several soliton states will appear. Each of
these cases requires special consideration. In principle,
these more complicated processes can be used for coding
of information by solitons in transmission lines.

Another interesting possibility is to initially excite un-
stable soliton states and superimpose on them a certain
small pulse, which acts as a perturbation to seed the in-
stability. Two examples considered in this paper illus-
trate this possibility. Depending on the sign of the per-
turbation, the output of the nonlinear coupler will be one
of the two different asymmetric A-type stable soliton
states with the main part of the input energy concentrat-
ed in one of the channels. In this way, the energy of the
output signal in each channel is controlled by a weak sig-
nal. Based on this idea new types of fast switches could
be developed using nonlinear fiber couplers.

Finally, we would like to discuss the limits of applica-
bility of the variational approach to this particular prob-
lem. Two recent papers [14—15] consider pulse propaga-
tion in nonlinear couplers using a variational approach
with hyperbolic secant trial functions. This approach
cannot be considered satisfactory in this problem for the
following reasons. Using a trial function reduces the
dynamical system with an infinite number of degrees of
freedom to a dynamical system with a finite number of
degrees of freedom. Solutions of the latter can greatly
differ from the solutions of the former one. In particular:

(i) Using the trial function with fixed pulse shape [14]
can "freeze" the second derivative on the left-hand side
of the coupled set of equations (1). This is the reason why
the authors of [14] obtained qualitatively, for pulse prop-
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agation, the same results as those given by Jensen [2] for
continuous-wave propagation. The overall motion is
periodic below and above the threshold and it converges
to equal energy splitting at the threshold. This is not
correct, as our numerical simulations show. The whole
motion is more complicated than that obtained by using a
simple trial function. The approximation of [14] roughly
describes the field behavior of the half-beat-length
coupler. However, even in this case it does not take into
account the dependence of the output signal on the initial
pulse shape (see, for example, [7]).

(ii) The prescribed evolution in pulse shapes in the vari-
ational approach does not follow the actual changes in
shape given by the dynamical system defined by Eqs. (1).
This explains why the structure of bifurcations and the
stability properties of the soliton states found in [15] are
in disagreement with the exact results of Refs. [29] and
[30]. The saddle-type (unstable) points in Fig. 1(b) of [15]
would correspond to the A-type asymmetric states in our
notation. However, it is found in [15] that they exist only
at medium energies and they are always unstable; this is
in contradiction with our results. On the other hand, the
central point in Figs. 1(b} and l(c) of Ref. [15] (analog of
the antisymmetric soliton states) is elliptic (i.e., stable).
This also disagrees with the stability analysis of [30].

(iii) The variational approach does not take into ac-
count the radiative part of the field, but it is important, as
we found from our numerical simulations. Emission of
radiation from the signal can inhuence the evolution of
the pulses during propagation. Moreover, radiation plays
an important role, allowing arbitrary initial conditions to
produce a particular soliton state.

(iv) The important parameter which defines the stabili-

ty properties of the soliton states is the spatial frequency
shift q, as we found in [30] and this work. This parame-
ter is hidden when the variational approach is used
[14—15]. This creates some additional difficulties in the

analysis of pulse propagation and in the interpretation of
the results.

This critical analysis shows that the variational ap-
proach can be applied to problems of pulse propagation
generally only when the solution is already known from
other methods. Roughly speaking, the use of trial func-
tions is analogous to setting up rails in the complete
space of functions dined by the dynamical system so
that solutions can move only along those rails. Due to
this constraint, the direction of motion may be erroneous
in principle.

VI. CONCLUSIONS

In conclusion, we have considered the propagation and
transformation of short pulses in nonlinear directional
couplers. We have interpreted the results of our numeri-

cal simulations in terms of Hamiltonian dynamical sys-
tems with an infinite number of degrees of freedom. In
this approach, soliton states can be considered as singular
points of the dynamical system. The singular points can
be stable (elliptic type) or unstable (saddle type}. We have
shown that, for smooth initial functions which approach
zero at infinity, the output signal at large distances con-
sists of stable soliton states plus some amount of radia-
tion. Any unstable soliton state is transformed, on prop-
agation, into a stable soliton state and radiation.
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