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We study the propagation of uniformly translating fronts into a linearly unstable state, both analyti-

cally and numerically. We introduce a perturbative renormalization group approach to compute the

change in the propagation speed when the fronts are perturbed by structural modification of their

governing equations. This approach is successful when the fronts are structurally stable, and allows us

to select uniquely the (numerical) experimentally observable propagation speed. For convenience and

completeness, the structural stability argument is also briefly described. We point out that the solvabili-

ty condition widely used in studying dynamics of nonequilibrium systems is equivalent to the assumption

of physical renormalizability. We also implement a variational principle, due to Hadeler and Rothe [J.
Math. Biol. 2, 251 (1975)], which provides a very good upper bound and, in some cases, even exact re-

sults on the propagation speeds, and which identifies the transition from "linear marginal stability" to
"nonlinear marginal stability" as parameters in the governing equation are varied.

PACS number(s): 03.40.Kf, 68.10.Gw, 47.20.Ky

I. INTRODUCTION

The steady-state equation for a traveling wave propa-
gating into an unstable state does not uniquely determine
the wave speed. As an alternative to directly solving the
initial-value problem, velocity selection principles have
been sought, which identify a priori the wave speed that
would be dynamically selected from those permitted by
the steady-state equation. Such velocity selection andior
wave-number selection problems [1—14] arise in a wide

variety of nonequilibrium systems that exhibit propaga-
tion of well-developed patterns and fronts into initially
unstable and hoxnogeneous states. Exaxnples occur in
such diverse fields as population dynamics [15] and pulse
propagation [16] in nerves in biophysical systems,
Taylor-Couette Qows [11] and Rayleigh-Benard convec-
tion [12] in hydrodynamic systems, and crystal growth
[14,17], models of solidification and aggregation [18], as
well as traveling waves in reaction-diffusion systems [19].
In the present paper, we consider only those systems for
which the pattern emerging behind the propagating
fronts is homogeneous, or can be described by an en-

velope curve, and concentrate on predicting the propaga-
tion velocities of uniformly translating fronts.

There already exist several proposed criteria [1,2,20]
for the dynamical velocity selection mechanism: a
minimum speed rule, marginal stability, and structural
stability. Among them, the minimum speed principle has
in certain cases a rigorous basis in the Aronson-
Weinberger theorem [3]. According to the marginal sta-
bility hypothesis [1,2,6—8], for most sufficiently localized
initial conditions, the propagation velocity of well-

developed fronts generically approaches the xnarginal-
stability point which apparently coincides with the
minimal velocity out of a faxnily of stable propagating
fronts. The marginal-stability point can be determined
explicitly from the linearized leading edge approxima-

tion, in which only the linearized equation of motion is
studied near the front. In the literature, this is sometimes
referred to as the linear margin-al stabilit-y case or the
pulled case. However, as emphasized by Ben-Jacob et al.
[2] and later by van Saarloos [7,8], on the basis of
rigorous work by Aronson and Weinberger [3] for a class
of simple equations, there exist cases in which the linear-
marginal-stability selection fails. This is often referred to
as the pushed case or nonlinear marginal s-tability ca-se.

Thus the marginal-stability argument apparently pro-
vides a practical method to calculate the selected velocity
analytically, but cannot tell when the xnethod is reliable,
since there is no general method known to distinguish a
priari between pushed and pulled cases. This is an impor-
tant limitation because a given equation may make a
transition from pulled to pushed cases as a parameter in
this equation is varied.

The most recent proposal is the structural stability hy-
pothesis [21—23], in which the observable fronts are sup-

posed to be stable against small changes in the governing
partial differential equation (PDE) itself. When the
Aronson-%einberger theorem is applicable, this hy-
pothesis has the status of a theorem. The hypothesis ap-
plies (so far) without counterexamples to both the pushed
and pulled cases, but until now it has not been able to
yield an analytical means to obtain the selected velocity.
Instead, a numerical xnethod, based on the structural sta-
bility hypothesis, has been used.

The principal purpose of this paper is to use the pertur-
bative renormalization group (RG) theory to analyze the
stability of uniformly translating fronts, and to show that
this method can be used to calculate the change in front
propagation velocity when the governing equation of a
structurally stable front is perturbed. In addition, the
RG allows us to predict the uniquely selected velocity by
combining the structural stability principle with it. As a
biproduct of our study of fronts, we have investigated a
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variational principle due to Hadeler and Rothe [24] for
the phase trajectories of steady-state solutions of propa-
gating fronts. We will see that the variational principle
can give useful upperbounds on propagation speeds in
both pulled and pushed cases and is able to estimate the
transition point between those regimes. This work,
presented in Sec. VI, is due solely to L.-Y. Chen.

The applicability of RG to traveling fronts is predicat-
ed upon its recent successful application to the study of
long-time global behavior of physical systems described
by nonlinear PDE's: porous medium equations [25—28],
convection-diffusion transport with irreversible sorption
[29], the propagation of a turbulent burst [30,31], and
linear continuum mechanics [32]. In these problems, the
global solutions approach the similarity form
u(x, t)=t f(xt ~), where x is the spatial coordinate, t
the time, and a and P are constants. In many cases —the
so-called intermediate asymptotics of the second kind
[33]—the exponents a and P cannot be determined by
simple dimensional analysis. In fact, these exponents are
analogs of the anomalous dimensions in field theory, and
can be evaluated by using renormalized perturbation
theory [25-27]. A. mathematically rigorous formulation
has been given by Bricmont, Kupiainen, and Lin [34];
these methods have also been used to study front propa-
gation in the Ginzburg-Landau equation [35,36]. A de-
tailed and pedagogical discussion of the application of
RG to the asymptotics of partial differentia equations
and its physical interpretation is given in the book by
Goldenfeld [37]. We emphasize only that RG can be
used to solve the above categories of problems; standard
techniques, such as multiple-scale analysis, may also be
used (perhaps with more diSculty), and in fact there is a
general relationship between multiple-scale analysis and
the RG, whose elements are discussed elsewhere [23].

A steady propagating wave solution has the form
P(x —ct), where c is the propagation speed. If we intro-
duce X and T as x=lnX, t=ln Tthen f(x, t)=%(XT ')
for some %. That is, the solutions can be expressed in the
form of similarity solutions. Because X and T must al-
ready be dimensionless, the velocity c can be viewed as an
anomalous dimension, analogous to the exponents a, P
above in the intermediate asymptotics of the second kind.
Thus it is a natural guess that there is an RG method to
compute the velocity. However, there is an important
difference between the similarity solution problems and
the propagation problem. In the former, there is a
unique asymptotic exponent, whereas in the latter the
propagation speed is not unique. Thus, for the selection
problem RG is not sufhcient. We will see that it must be
combined with some new physics —the structural stabili-
ty hypothesis.

The outline of this paper is as follows. In Sec. II, a for-
mal renormalized perturbation theory for the front prop-
agation is formulated. In Sec. III, technical aspects of
the renormalization method are discussed. The central
issue is the nature of the eigenvalue spectrum of the
linearized PDE; this is resolved using considerations of
structural stability. In Sec. IV, we discuss the relation-
ship between solvability conditions and renormalizability.
Section V contains a number of applications of the for-

malism, in which we compute the propagation velocity
using perturbative RG. Section VI presents results using
the variational principle and a simple trial function. In
Sec. VII, we use the variational and RG methods to pre-
dict the transition between the pushed and pulled cases.
We summarize and conclude in Sec. VIII.

II. FORMAL THEORY
OF PERTURBATIVE RENORMALIZATION

A. Perturbation theory

We consider formally a system described by the follow-
ing abstract nonlinear (usually parabolic) equation:

(2.2)

Let $0(x cot+xo) be a—stable traveling front solution of
(2.2) with speed co, where xo is a free parameter indicat-

ing the translational symmetry of the problem explicitly;
there is a one-parameter family of traveling-wave solu-
tions with a given speed. Let us add a small structural
perturbation 5N to (2.2); for example, in (2.1) we replace
F with F+5F. We assume that the operator norm of 5N
on an appropriate domain is less than some small positive
number e; for example for (2.1), the C norm of 5F is
less than e, that is, ((5F() (e, where the norm
[[5F((=sup„[5F(u)[. Assume that in response the front
solution is modified to $0+5@,where [[5$([ is of order e.
Linearizing (2.2) to order e in the moving frame with ve-

locity co, we find the following equation governing the
first order correction:

any 5
co +DN 5$+5N I $0],at

(2.3)

where DN is the Frechet derivative of N at
g:—x —c~t+xo, and the initial condition satisfies

5$(g, to) =0.
To make our mathematica1 formalism as simple as pos-

In this paper we mostly concentrate on the so-called
Fisher-Kolmogorov-Petrovsky-Piskunov (Fisher-KPP)
equation [15]:

+F(f),
Bx

where F is a continuous function with F(0)=F(1)=0. If
F satisfies the condition f(g) )0 for all QE(0, 1), then
there exists a stable traveling-wave solution interpolating
between P=l and /=0 with propagation speed c for
each value of c greater than or equal to some minimum
value c', where c' ~ c —=2&F'(0) (if F is differentiable at
the origin). As suggested by the analogy between similar-

ity solutions and traveling waves, there should be an RG
method to compute the propagation speed. Here we
show that when a front is structurally stable, we can de-
vice a renormalized perturbation method to compute the
change in the propagation speed due to a small perturba-
tion in, e.g., the "reaction term" F.
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sible, first, without loss of generality, we will consider the
case for which the highest di8'erential operator is the
second order; however, the conclusions to be drawn
below apply to other high-order nonlinear operators too.

The formal solution to Eq. (2.3) reads

5$(g, r)= f dr'f dg'G(g, r; f, r')[5N[uo]](g'),

(2.4)

is the change in the front speed, but there are two prob-
lems with this identification. First, the naive perturba-
tion theory is not controlled due to the secularity. A re-
normalization procedure, given below, will be used to re-
move the secularity. Second, both the numerator and the
denominator of the expression for 5c may be divergent.
This potential difficulty may be treated using the con-
siderations of structural stability given in Sec. III.

where 6 is the Green function, which satisfies B. Renormalixation and renormalixation group

aG ac, +DN G=5(r r')5—(g g')—
ar 'ag (2.5)

with G ~0 in
~ g

—g'
~

~~. The Green function may for-
mally be written as

cp +DN u„=—co„u„ (2.7)

We do not need to solve completely this seemingly for-
midable equation. Differentiating Eq. (2.2) with respect
to g, we have

co +DNd d4o

dg
(2.8)

showing that, due to the translational invariance of the
original equation, uoa-dgo/dg satisfies (2.7). For the
fronts in which we are interested, this function is well lo-
calized (square integrable), so that 0 is an eigenvalue. We
assume that the operator on the left hand side of (2.7) is
dissipative, so that 0 is the upper bound of its spectrum.

Thus, only the zeroth eigenfunction Po contributes to
the secular term which is proportional to t —tp, and the
perturbed solution can be written as

di)'o
P(g, r)=go(g) —5c(r —t, } +(5$)„+O(e') . (2.9)

Here 5c is given by

dip(g)uo(g)[5N [uo] ](g')6e=-
f dip(g)~o'(g)

(2.10)

and (5g), represents the nonsecular terms, which are
unimportant for the purpose of determining the
modification of the velocity, leading only to finite O(e)
corrections to the profile of the front.

One may immediately guess that this expression for 5c

G(g, t;g', t')=&p(g')p(g) g, e " u„(g)
~ ——p C~

X u„'(g')8(t t'), (2—.6)

where we use the summation symbol to represent both
summation and integration; p(g} is an appropriate weight
function, [C„] are appropriate normalization constants,
and 8 is the Heaviside function. The summation is over
the spectrum [co„], and [u„] are corresponding ap-
propriately normalized (generalized) eigenfunctions obey-
ing

For a certain class of sufficiently localized initial condi-
tions, all the transient solutions to the unperturbed PDE
of the form u(x, t)=u(x x,(t—, co,xo), t) asymptotically
converge to the same uniformly translating propagating
front, u(x, t)=u(x cot+—xo) as t~~. After the per-
turbation has been switched on„xp is no longer a con-
stant of motion of the perturbed system, and is therefore
not observable at long times. From a measurement of xp
at late times, the initial value of xp cannot be deduced;
hence, it must be renormalized from the RG point of
view [37]. As we saw in the Introduction, if we make
transformations x =lnX, t =lnT, xp =ln Ap, and
u (x, t ) = U(X, T ), the traveling-wave solution can be ex-
pressed in the form of a similarity solution

U(X, T)= U(lnA X/T ')=U, (A X/T ")

= Ui(T/( AoX) "),
for appropriate functions U, U„and U2. It now becomes
clear that the role of the constant of motion xp is the
same as that played by the initial total amount of mass or
energy Qo in the nonlinear diffusion problems studied
previously [31—33]. Although it is possible to renormal-
ize traveling-wave problems by regarding them as simi-
larity solutions [38], here we will perform an alternative
type of RG analysis directly on the traveling-wave solu-
tion.

The divergence of the secular term (5u ), o-(t —to) as
t ~ ~ can be removed order by order in e by regarding t p

as a regularization parameter and introducing an additive
renormalization constant Z=Z(to, p, c) with p, an arbi-
trary time. Note that the limit t —t p

-~ ~ can be
achieved in two equivalent ways: either by keeping tp
fixed and letting t ~~, or by keeping t fixed and letting
tp ~ ao . We will use the latter method in the following
text, which corresponds to the conventional treatment of
logarithmic divergences in the zero cuto6' limit of the
bare perturbation series for, e.g. , y" field theory. t corre-
sponds to lnT in the analogy discussed in the preceding
section, so that t to corresponds t—o ln(T/To), where
1nTp corresponds to tp. In the standard Gell-Mann —Low
RG [39],we introduce an arbitrary length scale (or rather
time scale in this context) L and split T /To into
(T/L)(L/To); the term ln(To/L) is absorbed into the
(multiplicative) renormalization constant often denoted
by Z. The corresponding procedure here is to split t —t„
into r p(to p—), w,

—here —
JLi, ,corresponds to lnL in the

standard approach. Since multiplications in the standard
multiplicative renormalization procedure correspond to
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addition in our case, we renormalize xo(tp) by

xf +Z(tp, p, ,e), and Taylor expand Z =g„",a„(tp,p, )e" .
The coefficients a„(n & 1} are determined order by order
in e in such a way that all the secular divergences in

f(x, t) are cancelled out. In this way, the renormalized
solution g(x, t) remains finite even in the limit to +-—00.

Hence, to O(e), the solution g(x, t} can be rewritten as

5$(g„t)=e ' ' f dt' f dg'G(go, t;g', t')

Xe ' [5F[g I](g') .

(2.16)

Here, 6 is the Green function, satisfying

aG XG—=5(t t ')5—(g g')—

dgp
g(x t )=go(gp) 5c(t tp ) +O(e)

0

4—X —Cpt+Xp t

with G~O in ~g
—g'~~ att, and

Cp
2

+F'(fo(g))
5g2 4

=Pp((+ca, }—Sc(t to—) +O(e),0

g=x Cpt+Xo

dWo d0o=Pp(g) +ea, 5C—
( t to )— +O(e), (2.11)

where O(e) refers to all finite terms of order e, regular in
the limit tp~ —ao. By choosing a, e=5c(p —tp), the sec-
ular divergence is removed. We obtain the renormalized
solution

0f(x, t ) =P (g) —5c(t —It ) +O(e),p

g=x —cot+xp (tu) . (2.12)

It is impossible that the actual solution P(x, t) can depend
on the arbitrary time scale p„because (as with L in the
standard procedure) p is not present in the original prob-
lem. This is expressed by the renormalization group
equation

=0.
t}p, tt, ctt, t, t'

(2.13)

Hence, to order e the RG equation yields, after equating

p with t,

&+5. ~=O.
at 'ag

This has the form of an amplitude equation, an observa-
tion discussed further in Sec. IV and in Ref. [23]. Thus
the speed of the renormalized wave is indeed c =c0+5c,
and the leading long-time asymptotic behavior, to O(e), is

g(x, t)-go(x ct+xo—)+O(e), (2.15}

C. Apylication to Fisher's equation

Now we consider the application of the above formal-
ism to Fisher's equation. An important technical aspect
of this discussion is deferred to Sec. III. We consider
only a perturbation 5F to the nonlinear reaction term F
of (2.1},so that (2.4}reads

where x 0 is the new constant of motion for the perturbed
system.

Formally, G reads

G(g, t;g', t')= up(g) up(g')+ pe " u„(g)u„'(g'),

where Sup=0, and Xu„=k,„u„. The summation sym-

bol, which may imply appropriate integration, is over the
spectrum other than the point spectrum [OI. Since the'

c,P2,
system is translationally symmetric, u o ~ e Po( g }.
Due to the known stability of the propagating wave front,
the operator X is dissipative, so that zero is the least
upper bound of its spectrum. Hence, only up contributes
to the secular term in 5$. A similar argument as in the
general case gives the explicit formula for (2.10):

f d g e ' Po(g)5F [goI (()5c=— (2.17)

f dge ' fo2(g)

III. JUSTIFICATION OF PERTURBATIVE RG
AND STRUC;TURAL STABILITY

Before proceeding further, we must now address the is-
sue that the formula for 5c, for example, may not be
finite. The formal perturbation approach may fail if zero
is not an isolated eigenvalue of the linearized operator.
In this section, we will discuss when the restricted formu-
la (2.17) is meaningful. To this end, we need results from
our structural stability analysis, and so we begin with a
brief summary of this topic [21-23].

Equation (2.1) can be classified into two cases: ambigu-
ous and unambiguous. We say that the equation is
unambiguous if it allows a unique propagating speed for
its traveling-wave solutions (here, we consider the waves
traveling in the positive direction only), and is ambiguous
otherwise. A necessary and suScient condition for (2.1)
to be unambiguous is that F does not have any isolated
minimum at the origin. Notice that by a certain
indefinitely small C perturbation 5Fof F, we can convert
an ambiguous equation into an unambiguous one. Hence,
at most one propagating speed can be stable against this
modification of the system. Because we are perturbing F,
that is, the equation itself, we call such a perturbation a
structural perturbation. Thus we may say that there is at
most one structurally stable propagating speed for (2.1).
It has been proved that the slowest propagating speed c*
which allows stable (in the usual sense) propagating
waves is a continuous functional of F so long as
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Q(F) —= sup&~~o, )F(g)/g is a continuous functional of F.
This is satisfied if 5F is C -small and sup&E~o i)5F(g)/g
is smaller than some positive number which converges to
zero as ~)5F~~ goes to zero. We call such a perturbation a
physically small (p-small) perturbation. Thus we may say
that the wave with speed c * is structurally stable against
p-small structural perturbations.

We have conjectured that only structurally stable solu-
tions of a model equation correspond to the physically
observable phenomena. This structural stability hy-
pothesis is closely related to, but not identical with the
idea originally proposed by Andronov and Pontrjagin
[40] for dynainical systems. The conjecture implies for
(2.1) that c' is the selected propagation speed. It seems
to be widely believed that c * is indeed the unique observ-
able speed for (2.1), but a proof does not exist for general
F [41]. However, our numerical studies have so far failed
to uncover counterexamples. The structural stability hy-
pothesis is usually redundant, but has predictive power in
cases where one's model of a physical phenomenon inad-
vertently includes unphysical features. This is the case
for the overidealized models [such as (2.1)] of propaga-
tion phenomena considered here,

Prompted by our structural stability analysis, we have
used the following numerical method to estimate the
selected velocity. We apply the shooting method to the
ordinary differential equation (ODE) governing the prop-
agating wave front shape g,

"'~ = —c "~+F(q),
dg

(3.1)

where c is the propagating speed, and g corresponds to
x —ct after modifying I' by adding a p-small perturbation
to convert the equation into the unambiguous class. We
know that the unique speed is almost identical to the true
selected velocity, since c* is continuously dependent on
F. Therefore, there is only one c which allows the shoot-
ing method to give a solution. This c is the selected
speed. However, in practice, the method may not be very
accurate, because the true unique solution and other solu-
tions which do not reach /=0 for large g may not be
easy to distinguish when the perturbations are small.

There are several important consequences of our
structural stability study. First, notice that even if 5E is p
small, —5F need not be. Furthermore, it is easy to con-
struct an indefinitely C -small 5F which increases F'(0)
indefinitely, but 5F is p-smal—l. An example of such 5F
is a very tiny but very sharp spike well localized near the
origin. This implies that for this 5I', 5c must be
indefinitely large, while 5c for —5I is infinitesimal. Now
(2.17) is a linear functional of 5F, so that the sign change
of 5I' cannot cause such a drastic change. This clearly
demonstrates that the formula (2.17) is not meaningful, if
either 5I or —5I' is not p-small. More explicitly,
sup„~5F(u)/u

~
must vanish as ~~5E(( goes to zero. If 5F

is differentiable at the origin, the condition is satisfied.
The perturbation approach outlined above is legitimate

only when zero is an isolated point spectrum of the
operator X. Unfortunately, this is not the case for many
reaction-diffusion equations. For (2.1) the essential spec-
trum has the range (

—&n, q), where

g=max[F'(1), F'(0)] —co/4, as is easily seen from
Rota's theorem (a generalization of Weyl's theorem) [42].
Hence, if co=2&F'(0), which is the important case for
the pulled equations, then the eigenvalue zero is not iso-
lated. Nevertheless, we can justify the formula or rather
its augmented version as follows.

Notice that we can always find a sequence I5fl, ] of
piecewise differentiable perturbations such that 5fk con-
verges to zero in C norm, but 5fk (0) is always —1. This
is a sequence of p-small perturbations„so that
c*(F+5fk) converges to c*(F) Ho. wever, the essential
spectrum of the operators X is bounded from above by—1, so for these perturbed systems, 0 is always isolated.
Now consider the perturbed system with 5F. Instead of
the system with I'+5I', we again consider a sequence of
systems F+5F+5fk. For this sequence, c' converges to
c'(F+5FI. Thus we may study the perturbation of the
system with 5E+5fk instead of the original system with
5I' to compute the charge in velocity. Thus we may con-
clude that the ordinary perturbation theory can be used,
as done formally in Sec. II.

For the pulled case, c'=2VF'(0), so that both the
numerator and the denominator of (2.17) diverge. This
difBculty is removed if we consider the sequence men-
tioned above instead of the original system. In this case,
all the members of the sequence are unambiguous equa-
tions (pushed cases), so the decay rate of the eigenfunc-
tion belonging to zero is much faster than e ' ~ near the
tip. That is, we have a natural regularizing factor for the
member of the sequence. Taking the limit is thus
equivalent to computing the limit with the aid of
1'Hopital's rule„

J "dr "'e )[5EIPo]](4)
5c = —lim j d(e ' $0' (g)

(3.2)

IU. AMPLITUDE EQUATIONS,
SOLVABILITY, AND RG

The general formula (2.10) for the modification of ve-

locity due to the external perturbations can also be con-
structed from a solvability condition, analogous to that
occurring in the dynamics of defects and dislocations in
nonequilibrium patterns [43—46]. We start with the per-
turbed equation

=&[0]+5&I0] (4.1)

which is assumed to have a steady-state solution of the
propagating front g(x, t ) =P(g), with g=x cot+xo. —
We further assume that the operator norm of 5N is of or-
der e. Suppose that the perturbed velocity and solution
can be written as c=co+5c and /=1(to+5/, where co
and ito correspond to the unperturbed velocity and solu-

Thus with the aid of the structural stability considera-
tion, we can give the correct form (3.2) for the change of
velocity and a sufficient condition for its validity: +5F
must be p-small and the right and left derivatives at the
origin must exist.
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tion. Then to order e we get
r

DN+cp 5$=5c +5N[gp] .d dt}lp
(4.2}

V. EXAMPLES

We now apply the perturbation approach to a variety
of front propagation problems.

Because the linear operator on the left-hand side of Eq.
(4.2}has a zero eigenvalue corresponding to an eigenfunc-
tion up~dip/dg, the condition for the existence of a
nontrivial solution to (4.2) is that the right-hand side
should be orthogonal to the null space of the operator:
gp =p(g—)fp=p(g)dupldg, where we have included the
appropriate weight function p,

5c(pg, g }+(pg,5N [P ] )=0 . (4.3}

We immediately recover the formula (2.10) for 5c.
In particular, let us now consider a case in which the

change in the speed 5c results from the change of some
parameter y in the nonlinear operator N(g, y). If we as-
sume that the traveling-wave solution exists for some y,
and that we can write 5N=(dN/dy)5y, and further as-
sume that the order of the differentiation and the integra-
tion can be exchanged, then from (2.10) we obtain the
formally exact result

f dg e'~gp(g}dN/dy

f dke'4p'(4}
(4.4)

Unfortunately, we have not found a way to use this for-
mula in cases where exact results are not already avail-
able.

The reader may well wonder why we make a fuss about
the RG in Sec. III, given that the formula for 5c is ob-
tained trivially from the solvability condition of (4.2).
Our point is to demonstrate that the solvability condi-
tions (order by order) and the perturbative renormaliza-
tion procedure are equivalent. The use of solvability con-
ditions is reminiscent of pattern selection in dendritic
crystal growth phenomena [14], the derivation of ampli-
tude equations, such as the time-dependent Ginzburg-
Landau equation, or more generally the equations of
motion on the slow or center manifold (in the loose sense
of the word) [47]. Indeed, (2.14) is the equation of motion
governing the slow motion relative to the original unper-
turbed front. It is actually a general feature that ampli-
tude equations and slow motion equations are RG equa-
tions. These general features of the renormalization
group approach are discussed more thoroughly elsewhere
[23,38].

A. Generalized Fisher's equation

Consider the model

Bu Bu +u(u —p)(1 —u), 0&p& —'.
t —

2
(5.1)

Here, we identify E=u (1—u) and 5I' = —pu (1—u) and
regard p as a small perturbation parameter. The equa-
tion is unambiguous for all p~ —

—,'. In particular, the

unperturbed case is unambiguous and its unique propaga-
tion front shape is described by

1up= —,g=x cpt+xp1/+2('
(5.2)

Van Saarloos considered the following equation [8],

y '~+4(b+~)(1 ~), -
Bt gx~ 5x4 b

(5.3)

where y& —,', and 0&b ~1. He numerically solved both
this full time-dependent equation for g(x, t) and the cor-
responding ordinary differential equation for the steady
propagating wave state P(g) in the moving frame with ve-

locity c for various values of b and y [8]. For y=0.08
and b =0.1, he observed that the velocity c =2.715.

Here we present analytical results obtained by treating
the fourth-order term —yB P/Bx as a small perturba-
tion. The unperturbed equation has the propagating-
front solution [8] P„(g)= (1+e "t

) ', g=x —cpt+xp,
where a=[cp —Qcp —4]/2, and cp=2 for —,

' &b &1;
a=[cp+Qcp —4]/2, and cp=v 2b +I/&2b, for
0&b ~

—,'. The transition point from the pulled to the
pushed case is b =b, =

—,'. It is worth mentioning that it is
straightforward to obtain these results by applying the
variational method presented in Sec. VI. From the for-
mula (2.10) we obtain, for 0 & b &

—,',

where c'=c(@=0)=1/~2 and xp is an arbitrary con-
stant. From (2.17) we obtain 5c= —v 2p, . Thus, the
selected velocity of the perturbed equation, to O(p}, is
c'= I/~2 —v'2', which is the same as the exact result
from the variational method we will describe below.
Presumably higher-order terms in p will spoil this result.

B. Van Saarloos' fourth order equation

CpSc=—y~ 1 —2— 7 9 cp 13— + 3
2 5 ]c 5

Cp Cp4— (5.4}

and 5c = —y for —,
' & b & 1.

Note that the linear-marginal-stability velocity ci
switches from cI=2 to ci =2—y=2&1 —y as b crosses
the value —,'. We find that the O(y) RG prediction agrees

very well with the numerica1 calculation. For instance,
for y=0.08, we obtain c=2.696+0(y ) for b=0. 1,
which is close to the numerica1 result c=2.715 by van
Saarloos [8].
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C. Newman's population equation VI. VARIATIONAL PRINCIPLES

The second example which we consider is a modified
porous medium equation which has been extensively dis-
cussed by Newman [48] in the contexts of population
genetics and combustion. The equation can be represent-
ed as

Bu 1

Bt 2 Bx
u" +u(1 —u), n ~0 .

BQ
(5.5)

For n =0, it reduces to the Fisher-KPP equation and the
propagation velocity is co=&2. For n=1, it has a
unique traveling-wave solution,

u, (x, t) =(1—er)e( —g),
g=x cot+—xo, (5.6)

where 8 is the Heavyside function.
Numerical results by Newman [48] suggest that for any

n & 0, solutions evolve asymptotically into traveling-wave
solutions with a unique velocity c=(n+ I) ', depending
only on the value of n.

To study this problem analytically, we write n =1+5
and perform a perturbative RG calculation, regard-
ing 5 as a small parameter. Expanding Eq. (5.5) in
5, we obtain, to O(5), the perturbation
5%I uo] =(5/2)B„(uoB„uolnuo). The weight function is
p(g)=e& and the ground state is $0(g) =duo jdg= —e~,
—00 & /&0. Using formula (2.10) we have 5c = —( —,", )5,
and the perturbed velocity to O(5) is c=—,

' —( —,", )5. A
consistent formula c=[2+(—'„'}5+0(5 )] ' works re-

markably well even for 5 as large as 1. Setting 5=1, i.e.,
n =2, we obtain c =0.3243, which is in excellent agree-
ment with the numerical result c=0.32 obtained by
Newman [48].

D. Pulled case revisited

The renormalized perturbation theory result (2.10) can
also be used to calculate heuristically the selected velocity
of the unperturbed system by imposing the structural sta-
bility principle. Within the perturbation theory, a neces-
sary and sufficient condition that c * be the selected speed
is that 5c(c') must vanish as 5F vanishes. For concrete-
ness, we consider the Fisher-KPP equation (2.1) with
F=g(1—g). It is found that the change in the velocity
5c(c) is zero as ((5F (( ~0 for all perturbations 5F, which
are both p-small and dilerentiable at the origin, only for
c=c'=2; for c &c' there exist such perturbations for
which 5c does not vanish as )(5F[(~0. A simple example
of the latter is the perturbation 5F=Q( 1 f)—

(f 6)(1 f)—e(tP —6), w—here 8 —is the step function,
and we let 6~0+. The RG calculation shows that
5c-+c —4 as 6~0+. Obviously, only for c =c*=2,
5c goes to zero, but for c)c*=2, 5c does not vanish.
Therefore, only the wave with c=c*=2 is structurally
stable, and c=2 is identified as the selected velocity of
the unperturbed system.

In this section, we digress briefly to report results of
L.-Y. Chen using the variational principle of Hadeler and
Rothe [24]. With relatively little efFort, useful estimates
for front speeds and transition points are obtained.

We consider (2.1) in the variable u(x, t), where the re-
action term I' is continuously difFerentiable and satisfies
the condition F(0)=F(u, )=0 (where u=0 and u, are
two steady-state solutions of the PDE); other generic con-
ditions will be imposed later. Hadeler and Rothe's prin-
ciple is that [24]

F(u)
co =inf sup p'(u)+

p 0 u u p(u)
(6.1)

where supremum means least upper bound, etc.,
' denotes

differentiation with respect to the argument, and the
function p(u ):——B„u satisfies the conditions

p(u))0, 0&u &u, ;

p(0) =p(u, ) =0, p'(0) )0, p'(u, ) & 0 . (6.2)

A. Fisher's population model

We consider the equation

Bu Bu +u(1 —u )(I+vu"),
dr (jx

n~1, —1+v&+ (x), (6.4)

where u =0, 1 are two steady-state points. When n =1,
(2.7) reduces to the original Fisher's population model
that Hadeler and Rothe discussed in Ref. [24]. They in-

directly obtained correct results for n =1 by taking ad-
vantage of the known exact solution of the front profile,
although they did not choose a proper trial function.
Here we show that for n & 1, the velocities and values of
the parameter v at the transition from pushed to pulled
case are the same as in the n = 1 case, although we do not
know how to obtain the exact solution of the front profile
in any n & 1 case. In this sense, all n ~ 1 models belong to
the same universality class, as far as the velocities and
transition parameters are concerned. The numerical cal-
culations which we have performed in several n ~ 1 cases
by the shooting method are in excellent agreement with
our analytical results and support the assertions above.

We chose

p(u}=~u(1 —u ),

It was found empirically that if F is of the form
F(u ) = u (u,"—u ")4(u ), where 4(u ) is some rational
function which does not have zeros at u =0 or u„ then
the following choice very often gives the correct c *:

p(u) =u(u,"—u")g(u) [a] ),
where g is a function positive for 0 & u & u, and I x ] is a
set of variational parameters. Often one parameter ~,
which is the scaling factor of p, is sufficient. Even when
the choice fails to give the exact c', it gives a very good
upper bound of c *.
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where K&0 is some adjustable parameter related to the

decay rate of the front profile. If we define

g(u) =p'(u)+F(u) lp(u), then

1 vg(u)=s+ —+—u"—2~u .
K K

(6.6)

First we consider the case v & 0 and n & 1, and study the
behavior of the function P(u)=vu "/a —2au with a&0
fixed. It has an extremum at the point
up=(2x /nv)' " ', which is determined by the condi-

tion P'(up }=n vu p
' /a —2~=0, and further, since

P"(up)=n(n —l)vup /a&0, P has a minimum at
u =up. No matter whether uo lies in or out of 0~ u ~ 1,
the supreme bound or maximum is always reached at ei-

ther of the two boundary sides, i.e., u =0 or 1. Thus, we

have

1 v
G(~)= max [g(u }]=s+—+max 0, ——2a

O~u~1 K K
(6.7)

In the case of n = 1 and v & 0, we have

g(u) =a+1/~+(v/s —2x)u, so we have the same result
(6.7) as in the cases of n & 1. There are two separate cases
to consider below. If v/x —2a & 0, i.e., s & v'v/2, then we

have

c)u c) u n/2+1 un+1
c)t

(6.13}

Cp= '

The nonlinear source term in Eq. (6.13) can be written as

F(u} u( n/2 n/2N n/2+un/2) (6.15}

where u," =[d+(d +4)'/ ]/2 and u„"/ =[—d+(d2
+4)'/ ]/2. It always has an unstable steady state u =0
and an absolutely stable state u =u, &0. For simplicity,

we only consider the propagation front connecting the
above two steady states.

In this case, we choose the trial function

p(u)=tcu(u, " —u" ), Ic&0, 0&u &u, , (6.16}

but not p(u) =au(u, —u) as in the former example. As a
result, we obtain the complete result

For n =4, it reduces to an equation considered by van

Saarloos [8]. By using the method of reduction of order

of ODE, he obtained exact results for front velocities cp

and the transition parameter value d, :

2 for d&d, =2/v 3,
( —d+2+d +4)/~3 for d &d, .

1 v
G(a) =~+—+ ——2a

K K

1+v
(6.8)

2 for d & d, =—n /v'2( n +2),

[ nd+—(n+2)(/d +4]/2v'2(n +2),

cp =minI G(~)] = 2+v
z)0 2v

If v/ic 2a & 0, i.e.—, s & v'v/2, then we have

G(k)=z+ —+0&2,1

(6.9)

(6.10)

with equality only when K=1. Also, we must satisfy the
condition 1&v'v/2, i.e., v&2. Thus, the minimum ve-

locity is

cp=min[G(s}] =2 .
x)0

(6.11)

Secondly, we consider the case of —1 ~ v & 0 and n ~ 1.
Because v/a' —2~ is always negative for any ~&0, we
have the same results as Eqs. (6.10) and (6.11). In sum-

mary, in all cases of n & 1, we have the following minimal
velocities:

T

2 for —1~v&2,
(2+v}/~2v for v&2 . (6.12)

Since G'(z)= —(1+v)/a —1&0 for any lc, G(v) is a
monotonically decreasing function of K, and the
minimum is attained at z=(v/2)'/ . Thus, in the inter-
val v 2, our estimate for the minimal velocity is

for d &d, . (6.17)

As a check, when n =4, the result (6.14) by van Saarloos

[8] is recovered.
We remark that in these examples, only when g(u)

reaches its maximum at u =u, & 0 with K fixed is it possi-
ble for a transition to the pushed case to occur, while
when g(u) reaches its maximum at u =0 it is the pulled
case that occurs. We conjecture that this is typical.
Based on this naive picture, we have also studied several
other interesting cases.

(i) The Fisher-KPP equation [15],where F(u }=u—u",
n 2. If we choose p(u)=~u(l —u" '), 0&u &1, we ob-
tain co =2.

(ii) Schlogl's second model for chemical reactions [49],
where F(u) =y —Pu+3u u=(1 —u—}(u —u, )(u —u2),
p=y+2, 0&y&1, ui=l+(1 —y)', u2=1 —(1—y)'
We choose p(u)=K(u —1)(u, —u ), 1&u &u„and find

that the exact result cp =3v'(1 —y )/2 is obtained.
(iii) A generalized version of Fisher's model [24], where

F(u) =u(1 —u )(u —
)Lt), 0 u &

—,'. If p=~u(1 —u) is

chosen, cp= 1/v 2 —&2p is obtained. This result is ex-

actly the same as the perturbative RG result we obtained
in Sec. IV.

VII. TRANSITION FROM PUSHED TO PULLED CASES

S. Other examples

A. second more complicated example is the partial
differential equation

In this section, we consider how the transition point
between pulled and pushed cases is changed when a @-
small perturbation is present. Consider the following in-
dicative example,
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BQ BQ
2+u(u, —u)(u„+u+eu"), n ~0, (7.1)

Br

where u, =[d++d +4]/2, u„=[—d++d +4]/2,
d &0, and e is a perturbation parameter. For @=0 the
transition from the pulled to the pushed case occurs [8]
as d is increased from zero at d =d, —= 1/&2. We can ap-
ply the perturbation approach only for d )d„because we
need the explicit formula for the unperturbed wave front:
uo(g)=u, (1+He"&) ', where s'=[co++co —4]/2 and

co = [3+d +4—d ]/2v 2, and A is a constant of integra-
tion. For d &d„ there is no known formula for the un-

perturbed wave front.
The zeroth eigenfunction is uo(g) ~ —auo(1 —uo/u, )

and the weight function p(g) =(u, /uo —1) ' . To deter-
mine the new transition point d„we substitute into the
formula (3.2) and obtain, to O(e),

+2+t +36
C 2

while for n = 1, we have 5c =e/2'1/ co —4 and

(1+3/2e)
v'2

For n =2, we have

(7.5)

5c =e/20u, co+3+co—4 co —+co —4 +co —4 .

(7.6)

We can also apply the variational methods to deter-
mine the velocity c* and transition point for any n ~0
and d. We choose the trial function

u,
"+' I (n+4)l (2—c /K)

5c =E
3!I(n+2 —co/a)

(7.2)
p(u)=au(u, —u ), 0& u & u, , (7.7}

2+1+au, (d, )=co(d, )+5c(d, ) . (7.3)

We also have c =2 for n &0 and c =2+1+eu, for n =0.
Setting c'(d, )=c(d, ), we find that

For n =0, we find d, = [V2+e +3m]/2 and

2+1+u, e for d &d, ,

c=co(d)+v'2e for d ~d, .
(7.8)

For n =0, we have 5c =v 2e and For n =1, we have the result d, =(1 c)/v'2—(1+@)and

2 for d&1, ,

v'2/(I+a)t/d +4+(e 1)/v'2(e—+1)(d++d +4)/2 for d &d, .
(7.9)

If we expand the above results to O(e), we find that they
coincide with the results from perturbative RG. We
suspect that the results from variational methods are ac-
tually the exact ones for n =0 and 1.

For n =2, we obtain

2 for d~d, ,

&2/(1+a}(+d +4+e'u, ) Q(1+au—, )/2u,

for d ~d, ,

(7.10)
where d, is the positive root of the equation
eu, (d, )+u, (d, ) —2=0. If we expand the velocities in
(7.10) to O(e), we observe that these results are slightly
greater than those from perturbative RG and yet give
good upper bounds. In fact, for n ~ 2 and small e, pertur-
bative RG gives more accurate results on velocities and
transition points than the trial function we used.

VIII. CONCLUDING REMARKS

In this paper, we have shown that for structurally
stable fronts, a renormalization group method can be
used to compute the change in the front speed when the

governing equation is perturbed by a marginal operator;
further, by combining the structural stability principle
with RG, we are able to predict the uniquely selected
front itself. Our results apply to both the pulled and
pushed cases. We demonstrated that the solvability con-
dition widely used in studying pattern selection in none-
quilibrium systems is identical to the physical renormal-
izability (observability) condition. We have also imple-
mented a variational principle which gives very good
upper bounds and sometimes exact results on front
speeds, and which identifies the transition between the
pulled and pushed cases.

In future work, we will investigate the application of
these methods for systems where a spatial pattern forms
behind the front.
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