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Nonlinear Schrodinger soliton in a time-dependent quadratic potential
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We examine the one-soliton solution of the nonlinear Schrodinger equation (NLSE) with an external

potential of the form of V(x, t) =f, (t)x+f2(t)x~ where f, (t) and f2(t) are arbitrary functions of t ex-

cept that fz(t) stays above a certain negative value. It is shown that, while the center of the soliton

obeys Newton s equation with the potential V(x, t), the internal structure of the soliton is determined by

the NLSE of the "body-fixed" coordinate system. The soliton structure is found to be independent of

f, (t). The soliton is rigid if fz(t) is t independent but it can be diffused when fz(t) varies rapidly. Nu-

merical experiments, however, show that the soliton withstands very rapid variations off2(t).

PACS number(s): 03.40.Kf, 03.65.Ge, 42.25.Bs

I. INTRODUCTION

Let us consider the nonlinear Schrodinger equation
(NLSE) in 1+1 dimensions with an external potential

ig, = — P„„g~f~ g+—V(x, t)g,1

where P=P(x, t), Q, =BQ/dt, Q„„=BQ/Bx, m( &0) is
the "mass, "g ( & 0) is a constant, and V (x, t) is the exter-
nal potential. It is understood, in this paper, that f is
normalized as f"

~ P(x, t)
~

dx =1. The NLSE finds ap-
plications in many areas of physics. It can be regarded as
an equation of the Hartree-Fock type (with units such
that A'= I} for a many-body system in quantum mechan-
ics [1]. Then the nonlinear Schrodinger soliton described
by Eq. (1.1) simulates a many-body bound system (like an
atomic nucleus) placed in an external potential field. The
NLSE also describes electron (Langmuir} waves in plas-
ma physics, propagation of optical pulses in a nonlinear
optical fiber, and so on [2,3]. The purpose of this paper is
to examine the behavior and structure of the soliton of
Eq. (1.1) when the external potential is of the quadratic
form

II. THE METHOD

In the absence of the external potential, V (x, t) =0, Eq.
(1.1) has the well-known one-soliton solution given by

i [mvx —(eo+mu /2)t]
x, t =Aux vte—

' 1/2

(2.1)

solving the usual linear Schrodinger equation with the
potential of Eq. (1.2). It also comprises the ingenious
method used by Chen and Liu [5,6], who examined the
NLSE with time-independent linear and quadratic exter-
nal potentials.

In Sec. II we present the method and discuss general
aspects of the soliton solution. We examine explicit ex-

amples in Sec. III. We are particularly interested in the
stability of the soliton when f2(t) becomes negative, i.e.,
V2(x, t) becomes an inverted harmonic oscillator (HO} po-
tential. We also discuss the stability of the soliton against
rapid time dependence of the external potential. The sta-
bility of the soliton in an inverted HO potential will be-
come relevant in developing approximation methods for
V(x, t) of more general form such that 8~V(x, t)/Bx2 (0
in some spatial region. A summary is given in Sec. IV.

V(x, t)= V, (x, t)+ Vi(x, t), V„(x,t) =f„(t)x", (1.2)
K

A (x)=0 sech(tax ), (2.2}

where f, (t) and fz(t) are arbitrary functions of t except
that f~(t) satisfies certain conditions which we will dis-
cuss. What we find will give insight into cases of more
general form of the external potential.

Analysis of Eq. (1.1) is facilitated by transforming the
coordinate from the "laboratory" system to the "body-
fixed" system. The latter system is such that the center
of the soliton is at rest at the origin. For V(x, t) of Eq.
(1.2) this transformation completely separates the center-
of-mass motion and the internal structure of the soliton.
The transformed equation determines the structure of the
soliton which turns out to be independent of its motion.
This method is an application of Husimi's method [4] for

50=, K=—mg
2772

(2.3)

The A o(x },which determines the shape of the "free" sol-

iton, is the bound-state solution of the t-independent
equation

1 3=
2m

Ap gAp =E'pAp (2.4)

For the external V(x}=max where a is a constant,
Chen and Liu [5] showed that Eq. (1.1} is integrable.
Their one-soliton solution shows that the soliton behaves
exactly like a classical particle of mass m subject to the
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potential V(x) =max. The shape of the soliton remains
the same as the free soliton given by Ao of Eq. (2.2).
Chen and Liu [6] further pointed out that Eq. (1.1) with
the HO potential V(x) =

—,'mes x has a one-soliton solu-
tion which again behaves like a classical particle. The
structure of the soliton in this case becomes difFerent
from the free soliton, but Chen and Liu did not examine
this aspect of the problem in any detail.

Chen and Liu [5,6] employed a transformation in ex-
amining the NLSE with an external potential. Their
transformation belongs to the type that was proposed
long ago by Husimi [4] in order to solve the usual linear
Schrodinger equation for the generalized HO potential
V(x, t) of Eq. (1.2). Husimi's transformation is to change
the space variable from x to x' where

x'=x g(t) .— (2.5)

This x is the coordinate with respect to the moving ori-
gin g(t) Lat.er g(t) will be taken as the center of mass of
the soliton. Let us also write g(x, t) as

P(x, t) =P(x', t)e' (2.6)

where /=de(t)/dt Subs.tituting Eqs. (2.5) and (2.6) into
Eq. (1.1) yields

+[mg+ V((g, t)]x'P [ ,'m—g —V(g,—t))P, (2.7)

where V&(g, t)=BV(g, t)/Bg. In deriving this we have
used

mf= —Vg(g, t) . (2.9)

V(x'+g, t)= V, (x', t)+ V(g, t)+x'V&(g, t), (2.8)

which is valid for V(x, t) of Eq. (1.2). We now require
that g(t) satisfy Newton's equation P(x, t) = 2 [x —((t)]e' '"'",

S(x, t)=mg(x () et+ f L—(t'—)dt',

(2.15)

(2.16)

HO with a t-dependent frequency. Including Husimi's
paper [4] there is vast literature on this subject [8]. Equa-
tion (2.12) with g =0 and f2(t)) 0 obviously has bound-
state solutions. All of these bound states remain when
the attractive nonlinear term is added. The lowest state
is strongly afFected by the nonlinear interaction and
forms a soliton. It becomes more deeply bound and
strongly localized while higher states are much less
affected by the nonlinear interaction. Iff2(t) (0, Vz(x, t)
is an inverted HO potential; if g =0, Eq. (2.12) admits no
bound state. If g & 0, however„ there can be a bound soli-
ton state even when fz(t) (0 as we will elucidate later. .

Next let us examine the compatibility between Eqs.
(1.1) and (2.9). This has to do with Ehrenfest's theorem
of quantum mechanics [9]. Following the standard steps
in deriving Ehrenfest's theorem we obtain

m g = f (gp„—V„)pdx, (2. 1 3)

where p(x, t )=
~ g(x, t)

~

. The term with p„=Bp/Bx on
the right-hand side vanishes because j"„p„pdx
=

—,'[p ]"„=0.Thus Ehrenfest's theorem in the usual

form follows. For V(x, t) of Eq. (1.2)

f" V,pdx = V&(g, t) (2.14)

obviously holds, and Eq. (2.13) is reduced to Eq. (2.9).
This concludes the formal presentation of the method.

In order to be able to see some interesting features of
the method without undue complication, let us first focus
on the case in which f2(t) is t independent. Then y of
Eq. (2.12) can be written as y(x', t)=A(x')e '", where
A (x') is real. For the soliton we take the ground-state
solution of Eq. (2.12). The solution for this case can be
summarized as follows:

Then we arrive at

P(x, t)=y(x', t) exp

immix'+i

f L(t')dt', (2.10)

1
A„„(x)—gA (x)+ V2(x) A (x)=eA (x) . (2.17)

In Eq. (2.17) we have put (=0 so that x'=x without los-
ing generality. The sohton obtained in this way moves in
the x space exactly like a classical particle of mass m [10].
No "radiation" takes place, that is, the energy of the f
field remains contained in the soliton. The shape of the
soliton, determined by A (x')= A (x —g) of Eq. (2.17),
remains the same throughout the course of motion. The
solution is valid no matter how rapidly f, (t) varies with
time [11,12].

L (t) =-,'mP —V(g, t),

t'ai = — x..—glxl'x+ V2(x' t)x .1

(2.11)

(2.12)

Equation (2.12) looks like the original Eq. (1.1), but
there are two crucial differences. (i) Equation (1.1) is for
the laboratory system, whereas Eq. (2.12) is for the mov-

ing system with its origin at x =g(t). (ii) The term V, is
absent in Eq. (2.12) and parity with respect to x' is a good
quantum number. This second feature allows Eq. (2.12)
to have a bound-state solution such that
J"„~g(x',t)~ x'dx'=0. Here, by a "bound state" we

mean a state confined in a finite spatial region; the density
~y(x', t)~ does not have to be t independent [7]. Equa-
tion (2.12) determines the structure of the bound state,
which is independent of P t) The center o. f mass of the
bound state is at x'=0, i.e., x =g(t) The x'-coor.dinate
system is the "body-fixed system" of the bound state.

If g =0, Eq. (2.12) is the Schrodinger equation for a

III. EXAMPLES AND DISCUSSIGNS

V(x, t)= V, (x, t) =ma(t)x, (3.1)

where a(t) is an arbitrary function of t. Since V2 =0, we

Let us consider four explicit examples for V(x, t). All
the quantities can be taken as dimensionless. In numeri-
cal illustrations for the examples we put m = 1, g = 1, and
a =

—,
' throughout.

Example I: Linear potential with



49 NONLINEAR SCHRODINGER SOLITON IN A TIME-. . . 4499

find that A (x)= Ao(x) and @=co. The g(t) is determined

by mg= —a(t). With this g(t), S(x, t) of Eq. (2.16) can
be worked out. This is a straightforward generalization
of Chen and Liu's solution for t independent a [5].

Example II; HO model with

0.2

—0.2
V(x)= V2(x)= —,'mco x2, (3.2)

where co is a constant. Equation (2.17) in this case be-
comes

p4 iiiiliiiil«iili «i
-20 —i 0 0 i 0 20

X

1 A„„—gA +( ,'mc—o x )A =eA . (3.3}
FIG. 2. The same as for Fig. 1, but for the first excited state.

The relative strength of the external potential versus the
nonlinear self-interaction can be gauged by (mco)' /a.

where ic= —,'mg as before. If (mco)'~ /a = 1, the contribu-
tion of the two interactions to the soliton binding are
about equal. However, such a case is uninteresting be-
cause the HO potential is so narrow that the soliton has
no room to move around. We are interested in cases of
(mco)' /a « l.

We have not been able to solve Eq. (3.3) analytically; so
we solved it numerically. For the strength parameter of
the HO potential we took —,'mao =0.0005, which means
(mco)'~ /le=0. 36. Figures 1 and 2 show the effective po-
tential

in the absence of the nonlinear term. We take the ground
state for the soliton. The excited states are much more
diffuse than the soliton state. The phase S(x, t) of Eq.
(2.16) can be explicitly worked out by using, for example,

g(t) =gocoscot. This S, combined with the approximation
A = Ao, gives Chen and Liu's solution [6].

Example III: Inverted HO model with

V(x)= V2(x }=—
—,'m co2x (3.6)

There is no particular difBculty regarding the phase func-
tion S(x, t) of this model. Therefore, let us focus on the
amplitude function A(x). Equation (2.17} with /=0
reads

V,(t(x) = V(x) —gA (x) (3.4) 1 A„„—gA —( —,'mco x )A =eA . (3.7)
for the ground and the first excited states, respectively.
The e for these states are —0. 1266 and —0.018, respec-
tively. These can be compared with co= —0. 125 and
co/2=0. 032. Apart from the energy as a classical parti-
cle of mass m moving in the potential V(g, t), the energy
of the system is given by

8= f (A„) —
—,'gA +(—,'mco x )A dx . (3.5)

2m

This 8 is not equal to e. [Ifwe replace the term —g A /2
with —gA in Eq. (3.5}, then 8 becomes equal to e ]The.
8 for the ground and excited states obtained above are
—0.0401 and 0.0169, respectively.

The A of the ground state is not very difFerent from Ao
of Eq. (2.2), while the A of the first excited state is like
the first excited state (of odd parity) for the HO potential

If the nonlinear term —gA is absent, there is no bound
state. With —g A, however, Eq. (3.7) can have a bound-
state solution. Imagine a trial function A localized
around the origin. It produces an efFective attractive po-
tential —gA . If we delocalize A, —gA becomes less
attractive and the energy of the system increases. If A is
further delocalized away from the origin, the energy be-
gins to decrease because A feels more of V(x) which is
negative. Suppose a parameter A, measures the degree of
localization of A. Then the energy as a function of iL will

have a local minimum. This implies the existence of a
bound state.

Let us put the above argument on a firmer ground.
Note that Eq. (3.7) is equivalent to the variational prob-
lem,

0.2
A

[8(A}—eA ]=0, (3.8)

where 6( A) is the energy functional defined by Eq. (3.5)
with the sign of the HO potential reversed. As an illus-

tration, assume that

—0.2

0 4 « i i I » i i I « i i I

-20 -10 0 10 20
X

1/2

A (x, A, ) = — sech(Ax ) .
2

Then we obtain e ( A ) as a function of A, ,

2

(3.9)

FIG. l. The effective potential V,ti(x) of Eq. (3.4) for the
ground state of example II. The parameters of the model are
m =1, g=1, and 2m' =0.0005. The x, t, and V(x) can be
taken as dimensionless quantities.

6(A, }=
6m ling A,

mco

4

The d g(A, )/d A, =O has two real positive roots if

(3.10)
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m
—'meI &(—') (3.11)

300

where x= —,'mg. The larger one of the two roots corre-
d t the minimum of C(A, }. Condition (3.11) canspon s o e

also be written as (mt0)' /It&( —,') Ir =0.70.
We have numerically solved Eq. (3.7) and found a

&~«0 39bound state when —,
' m co 0.0007, i.e., ~ m co,'

Equation (3.11) leads to Imto &0.0013, which is too
lenient. Figure 3 shows the effective potential V,Ir(x) for
the bound state obtained for —'ma) =0.0005. We found

2
2e= —0. 1230 and 8= —0.0434 for this state. If —,mao

exceeds 0.0007, the bound state begins to be unstable. In
order to see this we solved Eq. (1.1) starting with Itt(x, t
of Eq. (2.1) with U =0. The g quickly settles down to a
stationary state if —,'men «0.0007. Figure 4 shows how

the bound state "decays" when —,'mco =0.001. In this
case, however, we can restore the soliton, i.e., pull the
diffused soliton back to a compact form, by reducing
—'mco to «0.007 before the soliton gets too di8'used.
2

Example IV: Forced HO model with

V(x t)= 'maI x —mto F—(t)x, (3.12)

where mt0 F(t)x is the additional perturbation. By solv-

ing Newton's equation for g(t) we find

((t) =cof F(t') sin[a)(t t')]dt' . — (3.13)

A term like (Ocoscot can be added to the right-hand side
of Eq. (3.13). The amplitude function A (x —g) remains
the same as that of example II. The phase S(x, t) can be
worked out by substituting Eq. (3.13) into Eq. (2.16). Let
us emphasize that F(t}can be chosen arbitrarily as long
as the integral of Eq. (3.13) can be defined. No matter
how violently F(t) varies, the solution remains valid.
This aspect is essentially the same as what was recen yntl
emphasized for the linear Schrodinger equation for the
forced HO [13]. With this note we end the explicit exam-
ples.

t. IfLet us now consider the case of t dependent fz(t).
the variation of fz(t) is sufficiently gentle, the g of Eq.
(2.15) can be taken as an adiabatic approximation. In
that case e becomes t dependent, and et in Eq. (2.16) has
to be replaced by j'e(t')dt'. If the variation of fz(t) be-

comes wild, the y(x, t) which was in the ground state of
Eq. (2.17) can get an admixture of higher states and be-

FIG. 4. The variation of the density p{x,t) showing how the
soliton decays in the inverted HO potential of example III:
-'mco =0.001. The x, t, and p{x,t) can be taken as dimension-
2

less quantities.

come difFuse. If fz(t)&0, the y(x, t) may escape to
infinity. Below Eq (1.2) we stated that "fz(t) can be neg-
ative provided that fz(t) satisfies certain conditions. "
The conditions we meant are that fz(t) varies gently and
it stays above the negative value which we estimated in
example III.

%e have done a variety of numerical experiments on
E . (1.1). We already emphasized that the soliton sur-
vives any rapid variation of f, (t). This was a py

Srmed by our numerical solutions. We are more in-
terested in situations in which fz(t) vatMs rapi y. e
let fz ( t) vary within the range of —0.0007
& fz(t) &0.001. Note that fz(t)=0.001 corresponds to
(mco)I~z/It=0. 42. This is indeed a very strong HO po-
tential. We were surprised to find that the soliton does
not break even when fz(t) changes suddenly. We found
no significant trace of "radiation" emitted from the soli-
ton. Figure 5 shows that the soliton easily survives the

—O.OOOS.sudden and large change of fz(t) from 0.001 to —.
The condition of gentle variation of fz(t) stated in the

preceding paragraph is sufficient for the soliton survival
but it is certainly not necessary.

300

0.2

0

—0.2

I I I I I I I I I I I I I I I I I I I

-80 -10 0 10 20
X

FIG. 3. The same as for Fig. 1, but for the inverted HO po-
tential of example III.

FIG. S. The variation of the density p{x,t) showing how the
soliton survives a sudden change oof, (t), from

f (t &60)=0.001 to fz(t &60)=—0.0005. The x, t, and p(x, t)2

can be taken as dimensionless quantities.
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1
A —gA +65(x)A =eA .

2m

This equation has a bound-state solution with

(3.14)

(3.15)

which is valid if 26 & g [14]. Imagine that the 5 function
is simulated by something like a Gaussian function with a
very small width. Then the curvature of this potential at
x =0 will be very large in magnitude [15].

The V(x, t) of Eq. (1.2) has a constant curvature as a
function of x. If the curvature varies with x, our method
does not apply exactly. However, if the variation of the
curvature is very small over the width of the soliton
( = I/a), the method will be very effective. When the sol-
iton is in a region where the curvature of V(x, t) is nega-
tive, i.e., d V(x, t)/dx &0, the soliton feels something
like an inverted HO potential. We suspect that the soli-
ton can easily survive such an environment. The restric-
tion on the curvature found for example III can probably
be much relaxed if V (x, t) is bounded from below. As an
extreme example, consider the repulsive 5-function po-
tential V(x) =65(x). Equation (2.17) with Vz replaced
by 65(x) is

IV. SUMMARY

We have shown for the soliton described by the NLSE
(1.1) with the t-dependent quadratic potential of Eq. (1.2)
that its internal structure can be separated from the
center-of-mass motion of the soliton. Equation (1.1) is re-
duced to Newton's equation (2.9} for the center of mass
and Eq. (2.12) for the structure of the soliton. The soli-
ton structure is independent of the linear term V, (x, t };
hence the soliton withstands any rapid variation of f, (t).
The soliton can be diffused, in principle, if f2(t} varies
rapidly. We found through numerical experiments, how-
ever, that the soliton is extremely tenacious against rapid
variations of f2(t}. We examined in detail the case of
V(x, t) being an inverted harmonic-oscillator potential,
i.e., f2(t}&0. The soliton can survive such a situation
unless fz(t) is very large in magnitude and remains so for
a long time.
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