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Adiabatic pair potential for charged particulates in plasmas and electrolytes
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A treatment of the linear screening approximation for the adiabatic interaction between charged
"heavy" particles (particulates, macroions) is presented, which highlights the common points and the
different points in its application to disparate physical systems such as plasmas and colloidal suspen-
sions.
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I. INTRODUCTION

Equilibrium many body systems composed of charged
"heavy" particles (particulates, macroions) coupled to
charged "light" particles (microions), e.g., liquid metals,
plasmas of ions and electrons, colloidal suspensions, or
dust "particulates" in microelectronic process plasmas,
are commonly treated in the adiabatic approximation
[1,2]. The microions are assumed to adiabatically follow
the motion of the macroions, and the traditional Born-
Oppenheimer formalism [3] is invoked to derive the
screened, effective Hamiltonian for the motion of the ma-
croions while the coordinates of the microions are in-
tegrated out. In the linear-screening approximation a
simple Debye-like (Yukawa) effective pair potential is ob-
tained, as e.g., the electrostatic component in the
classic Derjaguin-Landau-Verwey-Overbeek (DLVO) po-
tential between the macroions in a colloidal suspension
[4], or the Poisson-Boltzmann-Thomas-Fermi screened-
Coulomb potential between the ions in plasmas [5] or be-
tween dust grains in plasmas [6].

According to the prevailing wisdom [1,2,7,8], the
Born-Oppenheimer adiabatic separation of the motions of
"heavy" and "light" charged particles leads to an
effective interaction between the macroions (particulates}
which is derived from the Helmholtz free energy of the
nonuniform microion system in the external field created
by the macroions at their instantaneous locations. Yet,
the basis of this result and the details of its formal deriva-
tion are not generally known, leading to conflicting re-
sults in the literature. For example, attractive regions for
the effective interaction potential between like macroions
were obtained, within the linear-screening approxima-
tion, from the potential energy or from the Gibbs free en-
ergy of the nonuniform light particles [9]. This result
was criticized [10] and further discussed [11],and can be
shown (see below} to follow from an incomplete treat-
ment of the kinetic contributions of the microions. The
analogy between the calculation of effective interactions
for colloid dispersions and the linear-response treatment
of electron screening in liquid metals was fruitfully ex-
ploited [8], invoking the pseudopotential theory and
linear-response formalism for liquids [7].

The purpose of this short article is (1) to show that the
effective adiabatic interaction between the macroions

(particulates) is necessarily derived from the Helmholtz
free energy of the nonuniform microion system in the
external field created by the macroions at their instan-
taneous locations, and (2) to present a particularly simple
and general treatment of the linear-screening approxima-
tion which highlights the common and the different
points in its application to quite disparate physical sys-
tems like plasmas and colloidal suspensions.

II. ADIABATIC INTERACDON

Iq@,(w, ) &
= I+@,(&)& I+,( ) &,

where I+& (~) ) obeys

(2)

(f'„+f'„„+t)'~,.)l+~,,( ) &=E,(&)I+~,,( ) &, (3)

while
I 46 (% ) ) is obtained from

8 f,,lq'6, ,(w)&—= [f' +P'~, +E (%)]1+6,,(x)&

=Eo I+6 (%)) . (4)

The "effective" Hamiltonian for the heavy particles is

Let At: I M, j—, A—:[R, j, 6= [ g, j and rn = [m; j,
~—:[r; j, y=[q;j denote the masses, coordinates, and
quantum state labels of the heavy and light particles, re-
spectively. The Hamiltonian of the system is

8=I'~+0~~+1'„+P.„+P~. (1)

f'& and f'„de ntoe the kinetic-energy operators for the
heavy and light particles, respectively. t)'& denotes the
interactions between the heavy particles, „„denotes
the interactions between the light particles, while t)'& „
denotes the interactions between the heavy and light par-
ticles.

The adiabatic approximation [3], which is valid for
small ratios of the microion mass to the macroion mass,
assumes that the Hamiltonian of the system can be
separated by integrating out the motion of the light parti-
cles, and consists of the ansatz that the total wave func-
tion of the system I+o (%,~) ) can be written as a prod-
uct of the wave functions for the separated Hamiltonians,
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where the effective potential is given by the standard textbook result [3]

f'g, =v„„+&+„,( )I1'„+P„„+v,„I+~,( )& .

The first step beyond the standard textbook treatment is to apply the coupling-constant integration trick [12], to ob-
tain

,( )I&„+t&'„„+&„I+,( )&=E',"+f &+, ,( )I&(t&'„„+& „)I+, ( )&

where

[f'„+A,(f„„+0'~„)]I% ( )&=8' 'I% ( )&

so that the effective potential takes the following form

f'~, =E',"+P'~~+ f '"
&e~, ,( )Ix(f'„„+P'~„)Ie~,,( )& .

The next step is the observation that in the case when the interactions are electrostatic, all interaction terms are pro-
portional to the coupling parameter e where e is the electron charge, so that

df'g, =E,'"+f'; &e~, , ( )It)'~~+1)„„+P'~„Ie~,, ( )& . (lo)

The expectation value on the right-hand side is the total
electrostatic energy of the system as function of the posi-
tions of the heavy particles

U, ,(A)=&%~, , ( )IP~~+0'„„+0 „I%~„( )&.

Thus, up to a constant kinetic energy of the reference sys-
tem of noninteracting light particles in state y, E' ', the
effective potential is related to U, (% ) by

(12)

where

III. LINEARIZED THOMAS-FERMI-DEBYE-HUCKEL
FREE ENERGY FUNCTIONAL

The free energy of the nonuniform system of microions
is a functional of the instantaneous density profiles,

{n,(r)], and depends parametrically on the macroion
configuration A =—{R, ]. It is usually separated [1,2] into
the ideal (F;d, noninteracting}, Coulombic (Fc, interac-
tion Coulomb potential energy between the microions},
external (F,„„interaction with the external field of the
macroions at positions {R, ] ), and correlation (F„„,ac-
counting for microion correlations and non-Coulombic,
e.g. , hard-core, contributions) parts:

F„(W)=f' "', U„(A) .
0

(13)
where

+Id + c + ext +~corr

Finally, for a thermodynamic system of light particles,
e.g., a Quid, when the light particles adiabatically follow
the heavy particles, we should replace the y-dependent
effective potential by its statistical average; i.e., the state
label y in (13) should be replaced by the thermodynamic
characterizations of the system, like the temperature T
and the mean densities of the light particles {n; 0]:

n;(r)nj( r')
Fc= gztzj f f I,

I

d rd r
l, J

p, (r' —R, )

F,„,=e gfzn(r) gfZ, I,
I

d r' d r .
1 S

(18)

0 ",=E,"'+F,(T, { n];X),

where

F, ( T, {n; 0]Pi') =f U, , ( T, {n; o };%) .
0

(14)

(15)

p, (r' —R, ) is the normalized charge distribution of the
macroion, and Z, is its total charge. In the Thomas-
Fermi-Debye-Huckel (TFDH) approximation, for exam-
ple [13],F„„is ignored, while the ideal term is approxi-
mated by the local density form, using the bulk (nonin-
teracting) free-energy density, f ( T;n; ),

Here U, (T, {n; 0];%) is the potential energy of the sys-
tem composed of the inhomogeneous fluid of light parti-
cles and of the heavy particles at static positions %, and
F,( T, {n, , ];%} is the corresponding electrostatic contri-
bution to the excess free energy as obtained by the stan-
dard relation [13,14] between the energy and Helmholtz
free energy via the charging process

Fd=g f n, (r)f(T;n, (r))d r .. . (19)

The density profiles of the particles, n;(r), are obtained

from the minimization of the free-energy subject to nor-
rnalization constraints, i.e., one considers the grand po-
tential
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Q=F g—p; fn;(r}d r

and the density-profile equations

5Q[[n, (r)] ] =0.
5n, (r)

(20) is the TFDH inverse-screening length, and Qo Fp are the

grand potential and Helmholtz free energy of the uniform
system. Specifically, for classical particles

(27)f ( T;n )=ks T( 3 lnA —1+inn ),
(21)

where A is the deBroglie thermal wavelength, so that

The nonuniform fluid is assumed to be connected with a
reservoir of the uniform fluid at large distances from the
macroions, and thus p;=JM;0(T, [n;0] ) is equal to the
ideal uniform chemical potential.

Under conditions of weak coupling, namely, when the
potential energy is much smaller than the kinetic energy,
for the microions subsystem, and when the inhomogenei-

ty is small, then one is justified in neglecting F„„,and in

expanding F;d to second order in the inhomogeneity, so
that the density profile equations can be linearized
Denote

k, T
gz(T;n;0}=

neo

while for degenerate electrons

f(n)= a—n=3
5

(28}

(29)

gi(no)= —ano
2 gg3 2 Po

3 no
(30}

where the constant a is related to the chemical potential
by po=ano, so that

n;(r }=n; 0+hn;(r), (22}
The potential energy

where it assumed that hn, (r) «n, o, then expand the
solution to leading orders in the particles density devia-
tions from the uniform (average) densities hn, (r). De-
fine the functions g (iT;n)=B[nf(T;n)]IB ,ngz(T;n)
=B[g,(T;n )]IBn and the total electrostatic potential at
the point r in the system

n (r') p, (r' —R, )
@(W;r)=egz f, d3r'+&Z, f ', ' d3r'

J S

U, (T, [n;0];%)= f ~V„4(%;r)~ d r (31)

K,(T, [n;o];%)= f ~ 4 (A;r)d3r,1
(32)

now includes the (possibly infinite) electrostatic self-

energy of the heavy particles. The electrostatic contribu-
tion to the ideal, kinetic term, in the linearized TFDH
approximation is given by

(23)
so that

and recall the standard relation between the free energy
density and chemical potential for the uniform system at
the reservoir average density n; 0, namely, p; 0
=g, (T;n, o). To the leading order in the density devia-
tions, the solution for the density-profile equations is the
well-known linearized TFDH result

F,(T, [n; ]0;%)=U, (T, [n;0];%)+K,(T, [n;o];R) .

(33)

For the degenerate electrons considered above, K, (no % )

is the electrostatic contribution to the kinetic energy.

z;e
bn;(r) = 4(A;r),

g2 T;n;p
(24) IV. YUKA%A PAIR POTENTIAL

which is inconsistent with (22} near points of singularity
for the potential, where hn;(r) also diverges. Expand the
ideal free energy to second order in the density devia-
tions, and make use of the extremum property (21) of the
solution of the density profile equations, to obtain

F, ( T, [n; 0]pk ) =Q —QO=F —FO

f (V,e(S;r) ('

+a @(A;r) d r,

The Euler-Lagrange equation corresponding to the op-
timization of the electrostatic contribution to the free en-

ergy (i.e., the new form for the density profile equations)
subject to the appropriate boundary conditions, takes the
form

(V —a )4(%;r}= 4ne QZ, p,—(r —R, )+gn;Oz;
S

(34)

The Green's function for this Debye form for the
Poisson-Botzmann-Thomas-Fermi equation is the Yu-

kawa potential

(25)

e KP

P(r) =
k +K

+(k)= (35)

where

K
4m.z e

,. g, (T;n,-,)
(26}

Consider, at first, the case when the microions can in-
terpenetrate the macroions charge distributions, or when
the macroions are point charges. Then, the formal solu-
tion for the Fourier transform of 4 is
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C (&;k)=QZ, ep, (k)P(k)+, gn, ~, 5{k) .
S K

(36}
Z.

Z e8'

q„.(tt, R, )

The excess free energy {33}takes the form of the total po-
tential energy of a collection of Yukawa charges:

F,(T, [n;o];A)= —gu„(R, —R, )+gu«(0), (37)
1

sWt t

so that the effective interaction between the macroions is
pairtvise additive where the pair potential

1

q, (tt, R, )

sinh(tcR, )

KR,

and the pair potential takes the form
r

sinh( ttR, )
u„(r &R, +R, )= Z, e

KR,

In particular, for a uniform surface distribution

(43)

with Fourier transform

(38) sinh(ttR, )
X Z, e

KR, I"
{44)

u„(k) =Z, Z, e'tt(k )p, (k)p, (k) (39)

tp(r &R, )=

where

e Kr
1

q, (tt, R, ) r
(40)

1

q, (a', R, )

4~
p, (x)x sinh(tcx )dx, (41)

so that the effective point-Yukawa charge for each ma-
croion is

is the interaction between two Yukawa charge distribu-
tions Z,p, (x), Z,p, (x) of total charge Z„Z„respectively,
and separation r. The zero-separation value u«(0} is the
self-energy of the Yukawa-charge distribution Z,p, (x) of
Fourier transform Z,p, (k).

Thus within linear-screening theory, when the mi-
croions are treated in the semiclassical linearized
Thomas-Fermi approximation (as, e.g., in a plasma of
electrons and ions), or the classical linearized Poisson-
Boltzmann-Debye-Huckel approximation (as, e.g., in
charged colloidal suspensions}, and the microions are al-
lowed to interpenetrate the macroions (or for point ma-
croions) the adiabatic approximation amounts exactly to
transforming the Coulomb charges on the particulates
(macroions) into Yukawa charges. The Yukawa inter-
molecular potential [15] has the special property that it
gives rise to the same functional form for the potential
outside a spherically symmetric distribution of Yukawa
charge, which thus appears as a renormalized point
charge [16]. Specifically, the potential outside a single
confined Yukawa-charge distribution, p, (x & R, ) =0, at
the origin of coordinates, is given by

Finally, consider the case where the microions are ex-
cluded from the interior of the microions s charge distri-
bution. This applies, for example, to colloidal suspen-
sions, with the macroions assumed to behave like hard
spheres with a uniform surface charge density
tr, = Ze /4mR, . The solution of Eq. (34) subject to the
charge exclusion condition, now leads to the following re-
sult fo; the electrostatic potential outside a single sphere
at the origin of coordinates [17]:

—Kr

tp( r & R, ) =Z, e
1+KR, r

(45)

so that, up to an additive constant, the effective pair po-
tential between the macroions takes the form

KR,

u„(r &R, +R, )= Z, e
1+KR,

KR
e

t 1+KRt
e Kl'

(46)
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This effective pair potential but with renormalized
charges Z; and screening factors tt' can still be used [18]
for colloidal suspensions even when the linearization of
the Poisson-Boltzmann equation is not strictly valid.
Equations (44) and (46) become identical, of course, for
point macroions (R, =0), but in that case, however, the
self-consistency condition for the validity of the lineariza-
tion, namely ~qKR, )z;e

~
(ke T, cannot be satisfied.
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