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In view of the increasing interest in the modeling of complete plasma devices the influence of the spa-
tial inhomogeneity on the formation of the electron distribution function (EDF) is attracting growing at-
tention. In this paper the radial dependence of the EDF has been investigated experimentally in a cylin-
drical high frequency (hf) sustained plasma by means of Langmuir probe diagnostics. As a conclusion of
the experimental results the electron distribution function can be considered as a spatially homogeneous
function of the total energy (i.e., kinetic plus potential energy) of the electrons. The correspondence be-
tween the experimental result and the basic ideas of the so-called “nonlocal approach” for solving the
spatially inhomogeneous electron Boltzmann equation is pointed out. The main simplification achieved
by the nonlocal approach is that the EDF is obtained from a spatially averaged kinetic equation. Never-
theless no information about the spatial variation of the distribution of the kinetic energies of the elec-
trons is lost. A quantitative comparison between a self-consistent plasma model for the considered hf
surface wave sustained plasma, based on the nonlocal approach, and measured EDF’s is performed. For
sufficiently small pressures good quantitative agreement is found. The deviations at higher pressures are
attributed to the influence of stepwise ionization, which is only considered in a rough manner in the
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present investigation.

PACS number(s): 52.40.Hf, 52.70.Ds, 52.80.Pi, 51.50.+v

I. INTRODUCTION

As a recent development in the modeling of low pres-
sure discharges the influence of spatial inhomogeneities
on the formation of the electron distribution function
(EDF) has attracted increasing interest [1-18]. In partic-
ular, with a view on the modern trend of describing com-
plete plasma devices by models involving one or two spa-
tial dimensions (e.g., [19,20]) obviously the consideration
of the spatial dependence of the EDF is inevitable. From
various types of discharges it is well known that homo-
geneous plasma models, making use of the spatially
homogeneous Boltzmann equation and assuming an equi-
librium of the EDF with the local electric field strength,
may lead to erroneous results for the EDF. Thus, for in-
stance, the calculation of the EDF in the capacitively
coupled rf discharge requires an appropriate inclusion of
the nonlocal heating of electrons in the strongly inhomo-
geneous rf field and via the oscillating sheaths (see, e.g.,
[3,11]). These nonlocal effects can hardly be accounted
for in a homogeneous model.

Different techniques have been developed to include
the spatial inhomogeneity in the modeling of the electron
kinetics. The kinetic equations resulting from the spatial-
ly inhomogeneous Boltzmann equation have been solved
directly by different approaches in Refs. [1-3]. The solu-
tion of the Boltzmann equation has been performed in a
statistical way by the use of Monte Carlo [4-7] or parti-
cle in cell methods (combined with Monte Carlo) [8—13].
Direct solutions of the Boltzmann equation have been
performed using convective schemes [14-17] or flux
corrected transport algorithms [18]. However, with
respect to models involving two or even three spatial di-
mensions, all these techniques become computationally
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very intense.

A simple and very effective approach to the inhomo-
geneity problem has been proposed by Bernstein and Hol-
stein [21] and Tsendin [22]. This method presents a
significant simplification to the complete solution of the
spatially inhomogeneous Boltzmann equation in the re-
gime of low pressures, when the energy relaxation length
of electrons is large compared to the scale lengths of spa-
tial inhomogeneity. The main idea of this approach is the
description of the EDF of the whole spatially inhomo-
geneous system by a single distribution function of total
energy. Nevertheless, although obtained from a spatially
averaged kinetic equation, in this single function the spa-
tial information is still fully included, since the EDF of
total energy together with the space charge potential
unambiguously determines the distribution function of
kinetic energy for every spatial position [21-23]. Of
course the (dc) ambipolar space charge potential and the
high frequency (hf) electric field intensity (profile) have to
be calculated self-consistently within this approach.

In a recent publication [24] the nonlocal approach has
been applied to the situation of an overdense, microwave
sustained plasma in cylindrical geometry, such as, for ex-
ample, a surface wave produced plasma. It has been
demonstrated that measurements of the radial distribu-
tion of spectral line intensities [25] could be much better
described by a nonlocal than by a homogeneous, local
model (homogeneous Boltzmann equation and assump-
tion of equilibrium of the EDF with the local electric
field). However, a comparison with line intensity mea-
surements is only a more or less indirect indication on the
validity of the nonlocal model. A direct proof of this
model can only be obtained by the radially resolved mea-
surement of the EDF. This topic is addressed in the
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present investigation. Radially resolved probe measure-
ments of the EDF in a surface wave produced plasma at
190 MHz are performed in argon, neon, and helium. The
results are compared to the predictions of a nonlocal
model, which has been improved compared to the one
presented in Ref. [24].

This paper is organized as follows: in order to clarify
the correspondence between the experimental observa-
tions and the basic ideas of the nonlocal approach, in Sec.
II the experimental setup and the qualitative nature of
the experimental results are described. The physical
foundation of the nonlocal approach as well as the basic
equations of the model employed are discussed in Sec.
III. A quantitative comparison between experimental
and theoretical results is given in Sec. IV while in Sec. V
the conclusions are presented.

II. EXPERIMENTAL SETUP AND OBSERVATIONS

The experimental setup, which has been used for the
present investigation, is depicted in Fig. 1. The plasma is
excited and sustained by a propagating surface wave at
190 MHz. The wave is launched via a surfatron [26].
For surface wave plasmas it is well known that usually
the hf component of the electric field is axially directed
inside the plasma. Only in a thin layer close to the wall
may the radial component contribute significantly in sus-
taining the plasma. The glass discharge tube (Duran,
€, =4.7) has an inner diameter of 28 mm and an outer di-
ameter of 32 mm. A radially movable probe is inserted
from the end of the discharge tube in axial direction. It
consists of a tungsten wire of 6 mm length and a radius of
50 um. The probe holder is a ceramic tube with an outer
radius of 200 pum. Close to the measuring probe a
second, floating potential reference probe is mounted,
which is moved simultaneously with the measuring
probe. The counter electrode for the probe circuit is
placed inside the surfatron. The described triple probe
setup is used to avoid the problems which may arise with
an asymmetrical double probe system (see, e.g., [27]):
namely, an insufficient area ratio between probe and
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FIG. 1. Experimental setup for the measurements of the
EDF and for the compensation of hf fluctuations of the plasma
potential.
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counter electrode [28,29] or a nonconstant voltage drop
over the plasma resistance or the sheath of the counter
electrode [30]. The hf fluctuation of the plasma potential
is compensated by the use of an active method [31]. A
compensating signal, which is adjustable in phase and
amplitude, is coupled to the probe capacitively. By driv-
ing the probe simultaneously with the hf fluctuations of
the plasma potential, the voltage drop across the probe
sheath is kept constant in time.

The EDF of kinetic energy f,(u ) can be obtained from
the second derivative of the Langmuir probe characteris-
tic in the range of the electron retardation current
(U < U,, with U the probe potential and U the plasma
potential) [32]:

2
d’l,
2
dU;

Solu)x (1)

Here I, is the probe current and U, =U; —U'is the probe
potential referenced to the plasma potential. Usually the
zero crossing of the second derivative is considered to be
the dc value of the plasma potential at the probe position
(e.g., [33,34]). The kinetic energy u (in volts) in Eq. (1) is
simply equal to U,. Thus measured electron kinetic ener-
gies increase when the probe voltage is getting more neg-
ative with respect to the plasma potential.

In the present investigation a pulsed probe technique
[33-35] is used, so that the primary experimental result
is the second derivative with respect to time d ZIP /dt?,
which is obtained by the use of an analog twofold
differentiating network. The voltage source is swept
linearly in time. Unfortunately this does not necessarily
imply that the voltage drop across the probe sheath U, is
also varying linearly. Many possible effects may disturb
the linearity of U,(z): for instance, low frequency fluc-
tuations, e.g., due to the electricity network, or a consid-
erable nonconstant voltage drop across the plasma resis-
tance and the sheath of the counter electrode. A possible
nonlinearity of the probe voltage U,(t) is accounted for
by the simultaneous measurement of the potential of the
measuring probe and the floating potential of the refer-
ence probe. The potential difference between the measur-
ing and the reference probe is assumed to be equal to U,
up to an additive constant, i.e., it is assumed that the
difference between the floating potential of the reference
probe and the plasma potential is constant. The second
derivative of the probe current with respect to the probe
voltage U, is then obtained by [35]
av, |’

dt

(2)

d’, |d’I, dU, _dl, d*U,
du; dr? dt dt  dr?

This equation reduces to d*I, /dU} = d*I, /dt* only when
the probe voltage U, is strictly linear in time. The volt-
age source is swept within a time of typically 10 ms syn-
chronized with the electricity net. The height of the volt-
age ramp is 60 V for helium and neon or about 40 V for
argon. The bandwidth of the differentiating network is
limited to 5 kHz, so that the effective energy resolution is
of the order of 1 V. For the measurement of low energy
electrons this resolution is insufficient [34] and should be
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increased for future investigations. The current is mea-
sured by the voltage drop over a resistor (50-200 ), the
signal is transferred by an isolation amplifier. All signals
are recorded by a storage oscilloscope. The second
derivatives are obtained as averages over 256 single mea-
surements each. The electron densities are evaluated by
integrating the measured EDF’s (see [34]).

In the following typical characteristics of the experi-
mental results should be pointed out. In Fig. 2 some typ-
ical measured second derivatives (i.e., EDF’s of kinetic
energy) at radial positions between 0 and 13 mm in argon
are depicted. As explained above, the kinetic energy in-
creases from the right limit of each curve, which corre-
sponds to the zero crossing of the second derivative and
thus to the zero of kinetic energy, to left. When moving
from the axis towards the wall, the zero crossing shifts
towards smaller values of the probe potential. Thus the
potential difference related to the potential of the zero
crossing on the axis is negative. This behavior, of course,
mirrors nothing else than the variation of the dc ambipo-
lar potential. The important experimental observation is
that in spite of the shifts of the zero crossings of the indi-
vidual curves, the high energy parts of all curves coin-
cide, at least within the experimental accuracy. This
behavior is best interpreted in terms of the total energy.
At a distinct radial position the kinetic energy scale of
the EDF is shifted exactly by the value of the ambipolar
potential and thus by the value of potential energy of
electrons (in volts) in this position as compared to the po-
tential on the axis. Thus all curves can be considered as
being plotted against one unique total energy scale (see
Fig. 2). Following this idea, the coincidence of the mea-
sured EDF’s implies that for some (sufficiently high)
value of total energy the same amount of electrons is
found in every radial position. In other words: the EDF
of total energy is independent of the radial coordinate.
However, at a radial position remote from the axis not
the whole EDF of total energy is observable, but only
that part with a total energy higher than the potential en-
ergy in this position. Electrons with a total energy less
than this threshold value are not able to overcome the
space charge potential. Thus the low energy part of the
EDF is cut. In fact this cutting of the EDF is only quali-
tatively seen in Fig. 2, some depletion of the measured
EDF’s in comparison to the ideal shape is observed at
low (kinetic) energies. However, it is well known that the
experimental determination of the EDF is particularly
sensitive to distortions in the vicinity of the zero crossing
of the second derivative [34,36]. Possible sources of error
may be the limited bandwidth of the differentiating net-
work and some remaining miscompensation of the hf
fluctuations of the plasma potential. In particular, the
compensation of the radial component of the surface
wave field, which is by 7 /2 out of phase with the axial
|

2 e u? |, dF, 2 e 3 |u? w3 ,, ElP v, aF,
£ ~Vo B ||+ —E,-V,)F,+ E, [+
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FIG. 2. Typical second derivatives measured at different ra-
dial positions: 0, 2, 4, 6, 8, 10, 11, 12, 13 mm (from right to left).
u,; exemplifies the kinetic energy scale for the EDF (second
derivative) at 13 mm, ¢ denotes the unique total energy scale for
all measurements.

component, is not possible by the employed active com-
pensation method. Similar observations as in Fig. 2 have
recently been reported by Godyak and Piejak in a capaci-
tively coupled rf discharge [37], with a much better reso-
lution of the low energy part of the EDF and an even
more obvious demonstration of the cutting effect. Mea-
surements with similar results have also been reported in
[38,39].

III. THE NONLOCAL KINETIC MODEL

A. Description of the model

Since the “nonlocal approach” is not very widely es-
tablished up to now, a short review on the basic ideas
should be given, in particular, in order to demonstrate
the direct correspondence between the physical back-
ground of this approach and the experimental results dis-
cussed above. For a more detailed and exact discussion
on the foundation of the nonlocal approach the reader is
referred to the publications of Bernstein and Holstein
[21] and Tsendin [22].

The starting point in the determination of the (isotro-
pic part of the) EDF is the kinetic equation resulting
from the spatially inhomogeneous Boltzmann equation
after employing the Lorentz approximation [40] and as-
suming the time independence of the isotropic part of the
EDF [40]. The Kkinetic equation is usually written in
terms of a spatial coordinate (here the radius for cylindri-
cal geometry) and the velocity or kinetic energy (e.g.,
[40)):

+a%(u3/2xvao)= S [vilu)VuFolu)—v(u+u )V u +uFolu+u)]+S,, . 3)
k
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The isotropic part of the EDF F, is normalized by
[Folu,r)Vudu=n,(r). m, is the electronic mass, E,
the dc space charge electric field, E, the amplitude of the
hf field, v,, is the momentum transfer collision frequency,
and v, the collision frequency of the kth inelastic process
with the threshold energy u,. The different terms in Eq.
(3) account for (in the order of their appearance) spatial
diffusion of electrons, the transport by the space charge
field (second and third terms), the heating by the space
charge and the hf electric field, the energy loss in elastic
collisions, and the action of inelastic collisions and of the
electron-electron collisions. The assumption of time in-
dependence of F, results in the inclusion of all frequency
dependences in the definition of the effective electric field
strength  [41] [see fifth term of Eq. Q)]
Elu)=(E,/V2)v,,(u)/V v} (u)+ 0.
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The situation addressed by the nonlocal approach
is that of a discharge at sufficiently low pressure, so
that the _energy relaxation length of the electrons
A=AV v, /(kv, +v*) [22] exceeds the discharge di-
mensions. Here A, is the electron mean free path,
k=2m,/M, the energy transfer coefficient in elastic col-
lisions with M, the atomic mass, and v* the total inelas-
tic collision frequency. This requirement is obviously
most stringent in the energy range where inelastic col-
lisions occur. Under these conditions electrons confined
in the space charge potential (see Fig. 3) perform a
diffusive motion with an (almost) constant total energy.
Thus the total energy e=mv?/2e —®(r) in volts [with
®(r)<0,9(r=0)=0] is a more suitable variable for the
description of the EDF than the velocity or kinetic ener-
gy. By substitution one obtains from Eq. (3)

2 |13 | u¥r)d L2 (u¥r)
S—m_ —r——a‘; rT_a—FO(E ,7) aE i Ezﬂ'(r u r)) FO(E r)| | =S, TS, - 4)
f
) . . . _ «
The.electrf)n ato‘n} collision term S,, comprises elastic 7= 2m pr () 3 Pryy, (u)rdr (6b)
and inelastic collisions. M,
In particular, for the idealized case of collisionless ko)
motion of electrons in a confining space charge potential vi(e)= f o villu(r))WVu(r)rdr . (6¢)

without accelerating electric field the EDF of total energy
is obviously independent of the spatial coordinate [21].
Thus it is assumed that the EDF in the case of a
sufficiently long energy relaxation length is spatially
dependent only up to a small first order correction:
Fyle,r)=F (e)+F{(e,7). The main simplification in
the nonlocal approach is achieved by the consideration of
the different time scales of spatial diffusion and diffusion
in energy space. In cases where the energy relaxation
length is sufficiently large and the electric field is not too
strong, the spatial diffusion is a much faster process than
the diffusion in energy space. This fact justifies an averag-
ing of the kinetic Eq. (4) over the cross section, which is
accessible for the electrons with a certain total energy
(see Fig. 3). The physical interpretation of this averaging
procedure is that information acquired by the electrons,
such as, for instance, heating, is distributed over the
whole (accessible) cross section or in other words that
every point of the cross section contributes to the forma-
tion of the EDF. The equation obtained by this averag-
ing procedure is an ordinary differential equation for the
EDF F{(¢):

d |- dF®(e) _ ©)
de DE de +VEF0 (g)
= %[vk(s)Fg‘”(e)—v;(eﬂk)F{{”(s+uk)]+§ee ,

(5)
with the radially averaged quantities

= _ 2e r*

= (e) 232(r) p(r) Vo

3m 2 (VL +o?)

rdr , (6a)

r*(g) is the turning point radius (Fig. 3), 7*(¢) is the max-
imum radlus, for which the kth inelastic process is possi-
ble: u(rk(e))=u,. See is the radially averaged electron-
electron collision integral (see Ref. [24]).

The important point is, that although obtained from
the spatially averaged kinetic Eq. (5), the spatial informa-
tion is fully included in the unique EDF of total energy
F{®(¢) in combination with the dc space charge poten-
tial. In fact, the distribution function of kinetic energy at
a distinct radial position can be easily found from F{"'(¢)

excitation region

0 () R r

FIG. 3. Energetic conditions for confined electrons in the
total-energy coordinate space according to the nonlocal model.
The shaded “excitation” region marks the region where the
kinetic energy is sufficient to perform exciting collisions.
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by backsubstitution:
Folu,r)=F(e=u—&(r)) . )

The meaning of this relation can be clarified by Fig. 4.
At the radial position r;, the potential energy —®(r,)
constitutes a threshold for the electrons. Electrons with
a total energy less than this value are reflected by the
space potential before reaching ry. Electrons with a
higher total energy can reach this position with their
kinetic energy being u(ry)=e+®(ry) <u(r=0). Thus
Fy(u,ry) is obtained from F{"(¢) by cutting the low en-
ergy part with e < —®(r;) and using the value —®(r,) as
the new zero of the kinetic energy scale. It is obvious
that this procedure is the direct correspondence to the
experimental results discussed in Sec. 11, at least qualita-
tively. Thus the main assumptions of the nonlocal ap-
proach are qualitatively supported by the presented ex-
perimental results.

Additional equations are needed to complete the mod-
el. Thus the simultaneous determination of the dc space
charge potential is obligatory. It can be found from a
fluid approach for the ion dynamics [42] and the normali-
zation condition for the EDF, which defines a relation be-

tween the electron density and the space charge potential
[23,43]:

n(@(r)= [ “Fo(u,r)Vu du
=f_°°¢( )F{,°’(e)1/e+<l>(r)de . ®)

For the ions the continuity and momentum transport
equation are used. Assuming  quasineutrality
(n=n,=n;) and neglecting the ion temperature in com-
parison to the electron ‘“‘temperature,” these equations

FSe) E\

total energy

radius

total energy

FIG. 4. Scheme for finding the EDF of kinetic energy (bold
part of the curve in upper diagram) at a position r, from the
EDF of total energy (whole curve in upper diagram) and the dc
space charge potential (lower diagram).

read
14 Gny)=nv,, ©)
r dr
v o __ £ 42 o v | (10)
r dr Ml dr in 1 r

Here v, is the drift velocity of the ions and M; is the ionic
mass. The ionization frequency v; =v;(r) is calculated as
an average over the distribution of kinetic energy at the
radial position r with the help of Eq. (7). v;, is the ion-
neutral collision frequency, which is velocity dependent
for rare gases due to the dominating symmetric charge
exchange collision [44]:

172

M.v?
s , (11

1+a
kT,

Vin ( v, )= Vino

with @ =0.183 a numeric constant. The method of solu-
tion of Egs. (9) and (10) in combination with Eq. (8) is
very similar to that described by Franklin [45]. As a
boundary condition the Bohm criterion, that the ion drift
velocity v, has to be equal to the ion sound speed at the
plasma sheath edge, has been used. For simplicity a zero
sheath thickness has been assumed so that this condition
has to be fulfilled exactly at the wall. The error imposed
by this assumption for the value of the maintaining hf
electric field is negligible. The error for the potential dis-
tribution may be important only in close vicinity of the
wall.

With the density profile obtained from Egs. (8)-(10)
the hf electric field profile can also be evaluated. The
method of finding the field profile has been discussed in
detail elsewhere [46,47] and should therefore be sketched
here only very roughly. The plasma is described by a ra-
dially dependent dielectric constant:
ok(r)

g, (r)=1— (12)

olo—iv,) "’
with 0, =w,(r)=[n,(r)e?/m,ey]'"* the radially depen-
dent electron plasma angular frequency and v, the
effective collision frequency for momentum transfer [48].
For simplicity v, has been considered as radially con-
stant. For the case of the azimuthally symmetric surface
wave mode the electromagnetic field consists of the three
components E,, E,, and H (z direction along the plasma
axis) only. The radial profile of the E, component is ob-
tained from the following equation, which can be derived
from the wave equation (e.g., [49,50]):

d’E, de,,(r)/dr | dE

1 ’}’2 z 2
<+ +k2(r)E,=0 .
dr? rooki(r)  En(r) dr o (P)E; =0

(13)

€,, is the dielectric permittivity of the medium, i.e., plas-
ma, glass, or vacuum. ¥ is the complex axial propagation
constant of the wave. k,(r), defined by
kl(r)=k3e,(r)+y? with ky=w/c the vacuum wave
number, may be considered as the radial propagation
constant. y has to be found to fulfill the continuity of E,
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and H @ which defines the dispersion relation of the sur-
face wave (see, e.g., [46,47]). Having found the relative
profile of E, from Eq. (13) and the radial component from

JE
E(r)=——L -~ 14
r kpz(r) or (14)

the surface wave electric field profile in the plasma is
found up to a factor E,. The value of E, is found as an
eigenvalue of the combination of Egs. (9) and (10).

As will become evident below, the experimental studies
are performed in a pressure range where the effects of
stepwise ionization may already become important. The
correct treatment of the effects of excited atoms requires
the use of more or less complex collisional-radiative mod-
els. However, since it is not the aim of this paper to in-
vestigate the kinetics of a specific gas, excited atoms are
only taken into account in a very rough and qualitative
manner in order to clarify the trends caused by their
influence. Thus for all gases only the most populated
metastable level is considered: the 23S level in helium
and the *P, levels in argon and neon. As the only popu-
lation mechanism the direct excitation from the ground
state is assumed. The collisional loss processes are es-
timated by the excitation rate to the levels of the next
higher main quantum number or as simply the ionization
from this level for the case of helium [51]. Furthermore,
diffusion losses are accounted for, which may be impor-
tant at low electron densities. The resulting population
densities of these states are found by

n = Nonovo
ex n +D /(R /2 4)2 b (15)
Pdi ex .

where v is the ground state excitation rate, v, the loss
rate by excitation to higher levels or by ionization. D, is
the diffusion coefficient of the metastable, and n,, the
electron density in the center. For predominant excita-
tion losses a flat profile of the metastable atoms’ density
has been assumed, in the case of predominating diffusion
J

9 9 po
+ 3 lDE(s,r) 3e Fy

r or

9
rD,(s,r)arFO (g,r)

(Remember that v* denotes the total inelastic collision
frequency.) The spatial and the energy diffusion
coefficients are defined by

372
D,(e,r)=32—;l—v—(’-)- , an
372
De<e,r)=?2r%ﬂ——(’—’Eﬁﬁ(r,u(r)) : (18)

respectively. From Eq. (16) it is obvious that deviations
from the nonlocality of the EDF may be caused by two
different effects: by the heating due to the hf electric field
and by energy loss due to inelastic collisions. Thus in
contrast to the ideas of a local model, where a spatially

(e)]
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losses a Bessel profile has been used. With these values of
the excited atom densities, their contribution to the ion-
ization can be evaluated. For v;(r) the sum of ground
state ionization and ionization from the excited states is
considered in Egs. (9) and (10). The excited atoms are not
taken into account in the collision term of the Boltzmann
equation, i.e., the effect of excitation from these levels as
well as the superelastic collisions are neglected in this ap-
proach. All ionization and excitation frequencies have
been calculated using the cross-section material presented
in [52].

Due to the great simplicity of the nonlocal model used
for the electron kinetics, the whole model is easily solved
on a personal computer within a few minutes of computa-
tion time. Since the profiles of the dc space charge poten-
tial and the surface wave electric field appear only in in-
tegral expressions, their exact shapes possess only minor
influence on the EDF. Thus an iterative method has of
the surface wave field been used to fulfill all equations
simultaneously. At first, assuming some starting dc space
charge potential distribution and, for instance, a flat
profile of the surface wave field, the kinetic Eq. (5) is
solved. The resulting dc space charge potential profile is
obtained from the integration of Egs. (8)-(10) (with or
without contribution of stepwise ionization) and the elec-
tric field amplitude E, is varied to fulfill the Bohm cri-
terion at the position of the wall. The same procedure is
repeated with the new dc space charge potential profile
until a self-consistent set of EDF and potential is found.
The calculation of the hf electric field profile represents
the outer iteration of the algorithm.

B. Range of applicability

The range of applicability of the nonlocal approach
can be found by comparing the spatially dependent first
order correction F{'(g,r) to the spatially homogeneous
main part of the EDF F{"’(¢). By inserting the expansion
Fole,r)=F(e)+F{(e,r) (with F{'' <<FY’) into Eq.
(4) and by accounting for the most important terms only,
one obtains

=v*(e,r W u(rFY (e) . (16)

f

constant electric field implies a spatially homogeneous
EDF, even a spatially homogeneous electric field may
lead to deviations from the nonlocality of the EDF. In
principle the first order correction F{"’ can be determined
from Eq. (16) in order to verify the applicability of the
nonlocal approach, i.e., that F{!) <<F{. However, the
range of applicability should be estimated by some
simpler considerations. In the spatially averaged repre-
sentation [see Eq. (5)] the heating and the inelastic loss
term are essentially equal. Thus in the excitation region
(the shaded region in Fig. 3), which is limited by a bound-
ary radius r**(g) <R, the inelastic loss term dominates.
Neglecting the heating term, Eq. (16) reduces to a one-
dimensional diffusion equation. In order to obtain a sim-
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ple estimate, the radial variation of u(r) for a distinct € is
neglected, which is a reasonable approximation for the
high total energies € in the inelastic range of the EDF.
Thus the following relation is obtained:

FO o (rNe) /2.47
Fo = (e)Ve Do <! (19)
Here ¥*(¢) is some typical value of the total inelastic col-
lision frequency, which can be approximated by a cross-
section averaged collision frequency. Since this criterion
is particularly interesting for energies somewhat higher
than the ionization threshold, where r**(¢)~R holds, re-
lation (19) can also be formulated as

1
30*%(e)Q,,(e)

where Q,, is the momentum transfer cross section and
Q* is an effective total inelastic cross section, which ac-
counts for the fact that ¥*(¢) is considerably smaller than
v*(g,r=0). In the following it will be approximated by
0*(e)=Q*(e,r=0)/2.

In the discharge regions, where the inelastic collisions
are unimportant, i.e., close to the wall or in regions of a
high hf field strength, the spatial diffusion has to be com-
pared to the energy diffusion. In the same way as above,
from Eq. (16) the following estimate may be derived:

Ni(R /2.4) < (20)

D,(g) D (g)
E)l)..,. 52 F

(R/2.42°° &

o @1

Using the requirement F{! /F{?) << 1 one obtains
2

£
2.4—

Ele(r,u(r)) << F:

(22)

€, is a typical energy scale for the decrease of the EDF.
It may, for example, be defined as the local (in energy
space) temperature of the EDF: ¢,=—(3F( /3¢)/FY.
Criterion (22) is obviously also most severe in the tail of
the EDF, where the local temperature is smaller than in
the elastic range of the EDF. In fact, in the tail region
relations (20) and (22) coincide, since €, may be approxi-
mated by €,~[D,(e)/¥*(e)V'e]'”?, as can be seen from
Eq. (5).

From the above considerations the range of applicabili-
ty of the nonlocal approach can be estimated. From rela-
tion (20) the following (approximate) values for the upper
limit of the pressure are evaluated: for argon at e=18 eV
one obtains (pR )* << (0.2 Torr cm)?, for neon and helium
at €=30 eV (pR)*<<(1.0 Torrcm)? and (pR )*<<(1.4
Torrcm)? are derived, respectively. From relation (22)
the following estimates for an upper boundary of the
effective field strength are obtained: 150 V/m for argon at
600 mTorr and 18 eV, 230 V/m for neon at 2 Torr and 25
eV, and 300 V/m for helium also at 2 Torr and 25 eV.
For the determination of €, the theoretical EDF’s
presented below have been used. It has to be mentioned
that these are only rough estimates. In particular, the
separate consideration of the inelastic losses and the ener-
gy diffusion by heating may yield too pessimistic esti-

mates, since both effects are somewhat counterbalancing
as may be seen from Eq. (16) or (5).

When the relations (19) and/or (21) are significantly
violated, deviations of the nonlocality have to be expect-
ed. From the above considerations it follows that these
deviations from the spatial homogeneity of the EDF
should at first appear in the inelastic tail of the EDF.
The EDF should transit from the nonlocal limit to the lo-
cal limiting case, where the EDF is in equilibrium with
the local hf electric field. For medium pressures some in-
termediate behavior has to be expected: a nonlocal char-
acter in the elastic range of the EDF, where the energy
relaxation length is still large compared to the inhomo-
geneity scale, and a local character in the inelastic range,
where the energy relaxation length is small. This transi-
tion from the nonlocal to the intermediate regime has
been experimentally demonstrated by Godyak and Piejak
[37] in a capacitively coupled rf discharge. It may be
suspected, that this transition is favored by the strongly
inhomogeneous rf field in this discharge.

IV. EXPERIMENTAL AND THEORETICAL RESULTS

After the more qualitative coincidence pointed out in
the discussion above, a quantitative comparison between
experimental and numerical results of the above model
are presented in the following. In Fig. 5 experimentally
determined EDF’s, which have been measured at
different radial positions in an argon discharge, are plot-
ted against the total energy. It should be stressed again
that the experimental EDF’s are functions of the kinetic
energy, but their origin is shifted according to the value
of the potential energy at the corresponding position. As
already discussed in connection with Fig. 2 an important
experimental result, which is supported by all measure-
ments, is that the high energy parts of the EDF’s at
different radial positions coincide. This is particularly
evident in the energy range, in which inelastic collisions
take place, for argon at energies higher than 11.55 eV.
The cutting of the low energy part of the EDF when
moving from the center towards the boundary is obvious
for all measurements. As explained above, this observa-
tion gives strong evidence on the hypothesis that the
EDF is a spatially homogeneous function of the total en-
ergy of electrons or simply on the nonlocal character of
the EDF.

Moreover, also the quantitative agreement between
measurements and theoretical results is convincing. The
bold curves represent the theoretical results for the EDF
of total energy, which corresponds to the EDF of kinetic
energy in the center of the discharge, with (solid lines)
and without (dashed lines) additional stepwise ionization.
In comparison to the EDF’s without stepwise ionization
its inclusion leads to a better agreement in particular in
the inelastic range of the EDF, thus giving a correction in
the right direction. This behavior mirrors the well-
known fact that the maintaining (hf) field strength is di-
minished due to the additional source of ionization. The
arrows at the theoretical curves correspond to the
theoretical values of the (negative) space charge potential
at the corresponding radial positions, i.e., the position
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where the theoretical curves have to be cut in order to
find the EDF of kinetic energy. Obviously the theoretical
variation of the (dc) space charge potential is slightly
stronger than the one experimentally observed. Howev-
er, since the EDF is only weakly dependent on the exact
shape of the potential, as explained above, this deviation
does not cause a strong disagreement between experimen-
tal and theoretical EDF’s. The problem thus seems to be
more a question of the correct calculation of the space
charge potential than of the theoretical determination of
the EDF. It should be remembered that the reasons for
the bad coincidence of the different measured EDF’s at
low energies near their zeros of kinetic energy may be in-
terpreted as experimental deficits: the limited bandwidth
of the differentiating network and/or the incomplete
compensation of the hf electric field. In particular, for
the highest pressure of 600 mTorr the criteria (20) and
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(22) are slightly violated. Nevertheless, no serious devia-
tion from the nonlocality is observed. This fact gives
some indication that the rough approximations made in
the deviation of relations (20) and (22) yield too severe
formulations. A fact which probably favors the nonlocal-
ity of the EDF is the radially almost homogeneous hf
electric field due to the relatively low frequency and elec-
tron density [47].

Figure 6 presents similar measurements for neon. Here
a stable operation of the discharge is possible only for
higher pressures as compared to argon. The nonlocal
character of the EDF is in the same way obvious as for
argon. Even for the highest pressure of 2 Torr no obvi-
ous deviation from the nonlocality arises, although this
pressure is about a factor 2 higher than the maximum
pressure estimated from relation (20). The comparison to
the theoretical results is good only for the lowest pressure
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FIG. 5. Comparison between measured EDF’s (of kinetic energy) at different radial positions (0, 6, 8, 10, 11, 12 mm from left to
right) and theoretical results for argon. The bold solid curve represents the calculation with stepwise ionization, the bold dashed
curve the one without stepwise ionization taken into account. The arrows at the theoretical curves mark the theoretical values of the
potential energy at the positions 6, 8, 10, 11, and 12 mm (from left to right), i.e., the positions which correspond to the zeros of the

theoretical EDF’s of kinetic energy.
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of 600 mTorr [Fig. 6(a)]. For higher pressures the experi-
mental EDF’s show a stronger decrease in the inelastic
range than the theoretical EDF’s. The calculations with
the estimated inclusion of stepwise ionization yield a
correction in the right direction. However, it is not as-
tonishing, that the simple estimate for the population
density does not yield the correct amount of additional
stepwise ionization. The coincidence between experimen-
tal and theoretical values of the space charge potential is
better than for argon.

Figure 7 depicts the same measurements in helium.
These measurements show qualitatively the same
behavior as for neon. The nonlocal character of the EDF
is evident as for the other gases before. The deviation
from theory at the higher pressure (2000 mTorr) may
again be attributed to the effect of stepwise ionization.
Again no obvious deviation from the nonlocality occurs
even for the highest pressure.

Figure 8 exemplifies the radial variation of the dc space
charge potential obtained from the probe measurements
and the above model in a more illustrative manner than

1 ...r....,,.,.,,.......r.'.n.i
r neon
\ p=600mTorr
10 7' 3
e F 4
& 3
T ]
> -2
2 10 %
] ]
¢ ]
\ - B
L 10k -
= E
g E 3
[ [ ]
10 “k 3
t (o) \,
- \
[ \
T I A A At

10-5 I I S

0 5 10 15 20 25 30

e (eV)

1 pr e

£ E

r neon :

p=1500mTorr
10~ 3
>

2 10 %t E
- %
& ]
~ I 1
L 10 E
g E ]
[he E ]
10 F E

= () E

r v

[ v A

10-5 N I | 1 1 a4y Al
(o} 5 10 15 20 25 30

e (eV)

4377

in Figs. 5-7. While for neon [Fig. 8(b)] (and helium, not
shown here) usually good agreement is obtained, the devi-
ations for argon [Fig. 8(a)] are more pronounced. The in-
clusion of the stepwise ionization tends to flatten the
theoretical potential profile, thus giving the trend in the
correct direction.

The mean energies determined from measured EDF’s
(of kinetic energy) are shown in Fig. 9. The error bars are
estimated by extrapolating the measured EDF’s towards
zero kinetic energy in order to tentatively correct the low
energy deviations of the EDF’s. The general trend of a
decrease of the mean energy corresponds to the fact that
the EDF of kinetic energy is found from that of total en-
ergy by cutting the low energy part. Thus on the scale of
kinetic energy the inelastic range of the EDF, which
possesses a steeper slope [or lower “local” (in energy
space) temperature] is shifted to lower values on the
kinetic energy scale. Hence the decrease of the mean en-
ergy is also a direct consequence of the nonlocality of the
EDF. For the mean energies in argon at first a slight in-
crease is observed. The reason for this effect may be seen
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in the specific shape of the EDF due to the Ramsauer
effect of argon and the heating by a hf electric field. As
discussed elsewhere [27] the reduced collision frequency
in the range near the Ramsauer minimum leads to a weak
energy transfer to the electrons and thereby to a region of
low “local” temperature of the EDF. Due to the cutting
of the low energy part in the space charge potential this
“low temperature region” of the EDF is removed, yield-
ing the initial increase of the mean energy.

V. SUMMARY AND CONCLUSION

In the present investigation the radial dependence on
the EDF in a hf plasma, sustained by a propagating sur-
face wave, has been studied by means of a Langmuir
probe diagnostic. As a result of the experimental data it
has been found that the EDF can be considered as a func-
tion of the total energy (kinetic plus potential energy),
which is independent of the radial position. The radial
changes of the EDF of kinetic energy can be interpreted
as a simple removal of low energy electrons, which do not
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possess a sufficiently high total energy to overcome the
space charge potential. It has been shown that the exper-
imental results are in close correspondence to the main
ideas and assumptions of the “nonlocal approach” by
Bernstein and Holstein [21] and Tsendin [22]. This ap-
proach is a significant simplification in comparison to the
solution of the complete spatially inhomogeneous
Boltzmann equation, since the equation is reduced by
means of a spatial averaging procedure to an ordinary
differential equation for the unique EDF of total energy.
It has been demonstrated that the procedure of finding
the EDF of kinetic energy at a spatial position from the
EDF of total energy and the space charge potential is in
close analogy to the experimental results. Furthermore, a
quantitative comparison between the experimental results
and the predictions of a (one-dimensional) discharge
model, based on the nonlocal approach, has been present-
ed. Considerable agreement has been found for argon,
neon, and helium for lower pressures. The deviations at
higher pressures have been attributed to the effect of step-
wise ionization, which has been included in a rough
manner only. Even for the highest pressures, where a
stable discharge operation was possible (600 mTorr for
argon, 2000 mTorr for helium and neon), no obvious de-
viations from the nonlocality of the EDF have been ob-
served. In these cases the applied pressures and the
theoretical values of the effective field strength exceeded
the estimated upper limits for the validity of the nonlocal
about a factor 2. Obviously the consideration of the ap-
plicability range deserves a more rigorous discussion.
Furthermore, it has been pointed out that the nonlocality
of the EDF leads to the general trend of a decrease of the
mean electron energy close to the wall, where the space
charge potential falls off steeply. Nevertheless, the slight
increase of the mean energy observed for argon when
starting from the axis of the discharge is also consistent
with the nonlocal model, since the low energy part with
low “local” temperature, due to the Ramsauer effect and
the hf field heating, is removed by the space charge po-

tential. Thus in fact the low energy electrons are not only
localized in energy but also in coordinate space close to
the discharge axis, as has also been demonstrated in [37].

The nonlocal approach must certainly be considered as
an approximation, which finds its range of validity under
conditions when the energy relaxation length is large
compared to the discharge dimensions. Thus for higher
pressures a transition to the local regime or some hybrid
regime (nonlocal in the elastic energy range and local in
the inelastic range) has to be expected. Exactly this tran-
sition has been observed in [37]. However, inside its
range of applicability the nonlocal approach should con-
stitute a great simplification in the description of the elec-
tron kinetics. This aspect deserves attention with respect
to the modern development in the discharge modeling, in
particular for models involving more than one spatial di-
mension. The great advantage of the nonlocal approach
is that regardless of the number of spatial dimensions, the
EDF is determined by a simple ordinary differential equa-
tion. Its solution can be performed with high accuracy
and very limited computational efforts compared to other
techniques. Of course, lots of work remains to be done.
In particular, the validity of the nonlocal approach
should be checked by rigorous comparison to the solution
of the complete spatially inhomogeneous Boltzmann
equation by different techniques and the ranges of appli-
cability should be worked out in detail for different gases
and also for electric field configurations with strong spa-
tial inhomogeneity. These points should be left for future
work.
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FIG. 3. Energetic conditions for confined electrons in the
total-energy coordinate space according to the nonlocal model.
The shaded “excitation” region marks the region where the
kinetic energy is sufficient to perform exciting collisions.



