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Phonons in liquids, Onsager's reciprocal relations, and the heats of transport
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We continue the study of liquids considered as composed by two interacting subsystems: a population
of particles, weakly bound to the sites of a disordered lattice, and a "gas" of phonons. The interactions
among the material particles and the wave packets are mediated by "thermal radiation forces, "a special
class of inertial effects. When the liquid system is a solution, the application of a temperature or a con-
centration gradient breaks the symmetry of one of the two subsystems, producing an excess of phonon-

solute collisions and performing work on the particles, at the expense of the thermal energy of the wave

packets. The heats of transport of thermal diffusion, isothermal diffusion, and Soret equilibrium may be
statistically calculated from the energy balance of these collisions. The expressions arrived at by this ap-
proach are coincident with the ones obtained by nonequilibrium thermodynamics, although for our
derivation Onsager reciprocal relations are not required. It is also argued that, within the frame of the
phonon theory, transport processes in liquids may be treated in general by means of the classical
Boltzmann transport equation, applied to phonon-particle interactions rather than to particle-particle
collisions.

PACS number(s): 47.10.+g, 05.70.Ln, 61.20.6y, 66.10.Cb

I. INTRODUCTION

Should a liquid be considered as a condensed gas or a
molten solid? On one hand, it is a system of particles
subject to random motions hindered by the close proximi-
ty of nearby neighbors, as a dense gas. On the other
hand, the average distances among particles in liquids are
practically the same as in solids, and therefore the force
field in which they move also has the same average inten-
sity, imposing similar constraints to their individual
motions. Therefore translational thermal motions in con-
densed fluids are collective oscillatory modes (phonons),
propagating with the velocity of sound.

The existence of phonons in liquids was Grst proposed
by Debye in 1912 [1]. Subsequently fundamental studies
on various aspects of the problem were contributed by
Brillouin [2,3], among others. It was shown that thermo-
dynamic equilibrium properties could be accounted for in
terms of the phonon theory. However, no way could be
devised to deal with nonequilibrium thermodynamic
properties within this frame, not even rather simple
transport phenomena such as diffusive and osmotic flow,
which are easily interpreted in terms of the gas-kinetic
approach. The difBculty resided at a fundamental level,

consisting in the lack of a mechanism by which phonons
could exchange momentum with material particles. Pho-
nons indeed were considered only to reversibly transfer
oscillatory energy, without developing forces on material
particles. Therefore there was no ground for a phonon
theory of matter transport in the condensed phases and
consequently processes such as difFusion and heat trans-
port could only be treated by means of Fick and Fourier
equations, using the continuum properties.

But is it conceivable that phonons carry and eventually
exchange momentum with material particles? The ex-
pression generally used to calculate the momentum car-
ried by electromagnetic waves cannot be applied to pho-
nons. Indeed the relation

derives from the notion that the velocity of light is the
maximum velocity of transmission of energy-carrying sig-
nals. Obviously the velocity of sound is not maximal in
the same sense, and no equivalent of Eq. (1) can be ob-
tained on the grounds of an analogy with the photon.
The notion of momentum carried by electromagnetic

1063-651X/94/49(1)/433(12)/$06. 00 49 433 1994 The American Physical Society



434 F. S. GAETA, C. ALBANESE, D. G. MITA, AND F. PELUSO

~aves, however, was developed independently from rela-
tivistic arguments, on the basis of Maxwell's equations,
and similar arguments may be used in the case of pho-
nons.

The existence of radiation pressure due to elastic waves
was demonstrated by Rayleigh [4,5] at the beginning of
the century. Many authors have investigated the prob-
lem [6—12]. The coupling between momentum and
acoustic energy fluxes was mentioned by Borgnis [8] and

by Johansen [10].
We have dealt with the problem of the coupling of

fluxes of thermal energy and momentum [13] and subse-

quently proposed a mechanism of mutual exchange of en-

ergy and momentum among individual phonons and rna-
terial particles in liquids [14].

The arguments used until now in relation to the prob-
lem of radiation pressure and momentum transport con-
nected with the propagation of elastic waves and of
thermal energy in liquids have never been reviewed in a
systematic way. It is useful to recall some relevant
points, for a clearer understanding of the following.

(1) When an acoustic beam propagates across the
boundary between two adjoining media, the energy densi-
ties E, and E2 are different and a pressure difference
b,P =E, E2 appe—ars across the boundary [4,5].

(2) In a harmonic perturbation the averages of the am-

plitudes of oscillation g and those of their time deriva-

tives g vanish, while the averages of the squares g and (
do not. Thus in wave propagation there is transport of
energy but not of momentum [15]. Whenever the proper-
ties of the medium change along the path of the perturba-
tion the harmonic character is disturbed and the effect of
the anharrnonic terms that appear is that of making the
averages of g and g nonvanishing. Momentum transport
therefore couples with transport of energy and radiation
pressure effects appear [15]. A temperature or a concen-
tration gradient may thus lead to anharmonicity and to
momentum transport coupled with wave propagation.

(3) It is also possible to derive the principle of inertia of
acoustic energy directly from Euler's equations, if atten-

tion is paid to the second-order terms of acoustics [16].
(4) The extension of these notions to heat flux has been

proposed on the basis of a physical argument [17], and

also derived from the principles of statistical mechanics

[13]. Compelling evidence has been found on the ex-

istence of phonons in dense fluids [18—23], heat flow con-

sisting in the diffusion of high-frequency wave packets
along the temperature gradient. This gradient constitutes
the driving force for phonon drift and, at the same time,
it also creates conditions for anharmonicity along the

path of the heat flux, owing to thermal expansion of the
liquid. Anharmonicity induces the coupling of energy
and momentum flow, as in the case of acoustic waves,

giving rise to a gradient of radiation pressure parallel to
the temperature gradient. In the case of heat flom two

approaches mere used that led to coincident analytical ex-

pressions for either momentum flux and radiation pres-
sure due to the nonisothermal state of the liquid. One
consisted in an extension of the Boltzmann-Ehrenfest
theorem, the other in the analysis, by the methods of
continuous-field hydrodynamics, of the changes of

momentum flux across the boundary between adjoining
media having different constitutive properties. Support-
ing experimental evidence is available and has been criti-
cally discussed [13].

(5) The macroscopic formulation of the theory of
thermal radiation forces holds that when a surface S in a
nonisothermal liquid is crossed by a heat flux J it is also
crossed by a flux of momentum J =J /u

q= —(K/u)(dT/dr) where K and u are thermal conduc-
tivity and sound velocity and (dT/dr) is the temperature
gradient normal to S. If S is a physical boundary, across
which the constitutive properties of the medium change,
then a thermal radiation force f'" develops on S, given by
[13]

K dT K dT
(

Q dr 9 dr

having indicated by (cis) the medium lying in front of S
and by (trans) the medium beyond S. The sense of f'" is

such that the media on the two sides of S are pressed one
against the other, or pulled apart, depending on whether
the "trans" medium has a higher, or respectively, lower
H*(K/u) than the other. The constant H' is a numeri-

cal proportionality factor dependent on the acoustical
impedances of the "cis" and "trans" media.

(6) This macroscopic formulation has been subsequent-

ly extended by us to the microscopic level, i.e., to indivi-

dual phonon-particle interactions in the fiuid [14]. These
interactions occur also in an isothermal fluid, in the
course of the propagation of the wave packets ceaselessly

moving with the velocity of sound. A phonon, sweeping

through a portion of the liquid having properties different

from its surroundings, may exchange energy and momen-

tum with an "obstacle. " For such an exchange to occur,
however, some conditions must be fulfilled, the most ob-

vious being relative to the dimensions of the obstacle.
When its diameter is smaller than the phonon's wave-

length, the interaction probability decreases, as also

occurs in the case of electromagnetic waves.
From this microscopic point of view S must be substi-

tuted by the phonon-particle cross section 0.~", account-

ing for the dimensions of the particle and also for the

probability that the wave packet interacts with the obsta-

cle. Accordingly, the temperature gradient is the one due

to the local fluctuation generated by the propagating pho-

non [14].
A large solute particle suspended in a liquid may re-

ceive energy and momentum from a phonon, or may

transfer these quantities to the phonon, through the pro-
cesses schematically represented in Fig. 1. A small solute

molecule or a solvated ion may also undergo the same

collisional events, but with a smaller a priori probability.
On the basis of this model, we have recently proposed a

unified theory of thermomechanical and mechanothermal
effects in liquid solutions [13,14], based on the considera-
tion of the conservation of momentum in the collisional
events mediated by thermal radiation forces. To com-

plete the description, the energy balance of events of
types 1(a) and 1(b) [shown, respectively, in Figs. 1(a) and

1(b)] should now enter into the analysis of diffusive phe-

nornena in isothermal and nonisothermal liquids.
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II. DIFFLJSION AND THERMAL DIFFUSION
IN A SYSTEM OF PHONONS
AND MATERIAL PARTICLES

FIG. 1. The event represented in (a), in which an energetic
phonon transfers energy and momentum to a particle, is com-
muted upon time reversal into the one represented in (b) where
a particle transfers energy and momentum to a phonon. The
particle of mass m~ changes velocity, and the phonon is fre-

quency shifted by the amount (v; —v~). Commuting (t) into

( —t) either of the two processes is transformed into the oppo-
site one.

where 0 is the Debye temperature of the substance and
m represents the fraction of the total heat content corre-
sponding to collective oscillatory molecular motions;
f [8/T) may be shown to range from 0.2 at T «O, to 1

at T»O [24,25].
The phonons "collide" with regions of the medium

where the intermolecular potential is altered, i.e., at the
boundary between two difFerent substances or on a solvat-
ed solute particle, or also at the limit between two
differently structured local domains in the liquid. Each
phonon propagates along an average distance (AI ), dur-

ing a time interval (r ), at the end of which it interacts
with an obstacle, exchanging with it energy and momen-
tum.

During free flight the wave packets may be considered
as local heat currents flowing through a section o ~", that
should be possible to determine on a phenomenological
basis. Phonon difFusivity causes the displacement in the
isothermal liquid of equal numbers of wave packets per
unit of time in each sense, across an arbitrarily oriented
surface S of unit area. From Eq. (3) it is possible to define
the intensity of each of the two opposite diffusive heat
fiuxes across S:

We will consider the energy exchanges among phonons
and particles, by which vibrational energy of the wave
packets is commuted into particle motion and vice versa.

In an event of type 1(a},an impinging phonon develops
a thermal radiation force f'h on a material particle. The
expression off'", defined in [14], represents a special case
of Eq. (2), applied to a molecule or ion (p), suspended in a
liquid (I). We consider the phonon as a wave packet, so
that it is necessary to specify the time interval ( r' ) taken

by the phonon-particle interaction. During it, momen-
tum (hp~")=f'"(r~) is transmitted to the particle,
which is displaced along a distance (A~). The energy
exchanged, (hP" ) =h (v; —v/) =f'"(A~ ), is eventually
dissipated against resistance to particle motion in the
liquid. The total duration of the process is (r ), during
which the particle travels along a total length (Az ) (see
Appendix}.

In an event of type 1(b) a material particle exerts a
force f'" on a phonon, transferring momentum and ener-

gy to the latter. The phonon is then shifted to a higher
frequency, the whole process being the opposite of the
one of type 1(a), from which, on the other hand, it be-
comes indistinguishable upon time reversal.

In an isothermal liquid the phonons move at random,
their wave vectors being isotropically oriented in space.
The total content of thermal energy per unit of volume of
the liquid is [14]

qf"=m 'pi(CV)I T, (3)

pi and (Cr )I being density and specific heat at constant
volume, and m' a constant, dependent on the nature of
the liquid, given by

(5T/5r ) being the "virtual" local temperature gradient,
normal to S, that, applied across a distance (A& ) to the
liquid of thermal conductivity KI, would produce the
heat flux ( J~"). This heat flux (J~") results from N "/6
individual phonons flowing through S in either sense per
second, each being a local heat current (j~") lasting a
short time ( r ) and flowing through a small fraction o ~"

of S.
If according to Onsager [26] we assume that the kinetic

and thermodynamic approaches must exactly agree in the
mean, we may use the macroscopic value of K& also when
dealing with local heat Quxes due to propagation of indi-
vidual phonons between two successive interactions.
Therefore each elementary heat current produces a tem-
perature gradient of the same average intensity (5T/5r )
through a small part of S, and during a short time inter-
val(r ).

The local heat currents generate forces on the obstacles
with which they interact at the end of the phonon free
paths. Observable efFects of these microscopic, random
events appear in the form of mass cruxes, when an anisot-
ropy is introduced in a liquid solution by applying to it a
concentration or a temperature gradient [13,14].

We will now explore the aspects of energy exchanges
among phonons and solute particles in dilute solutions.
The considerations developed in the following may be ap-
plied to very dilute ionic, molecular, and macromolecular
solutions, since only in this case may the values of ( A, ),
( r ), and ( 5T /5r ) be assumed practically coincident
with those of the pure solvent, independently calculated
[14]. The amount of energy lost by an impinging phonon,
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(b,E "), is subsequently dissipated through various mech-
anisms, which will be considered in detail later on.

%hen a temperature gradient is applied, for instance
along z, the solute thermodiffusive drift velocity is
(Ud") =D~"dT/dz. Let (v~ ) be the number of collisions
per second with phonons experienced by a solute particle
at T:—To in the isothermal liquid. In the presence of a
temperature gradient the particle shall experience
( v~ ) /6+ (d v~ ) interactions with wave packets coming
from +z, and (v )/6 —(dv ) from the opposite sense,
so that the total number of collisions per second and per
particle, within the linear range, remains the same as in
the isothermal condition. It may be assumed that, as
long as linear conditions are fulfilled,

d T/dz
&5T/5 )

The rationale of Eq. (6) is that macroscopic and micro-
scopic heat conduction obey the same phenomenological
relations, with identical coelcients. Accordingly, a tem-
perature gradient dT/dz is expected to generate a flux of
phonons that is the fraction dT/dz/(5T/5z ) of the one
corresponding to the local, microscopic heat currents
(j~") owing to phonon diffusivity. Equation (6) thus
gives the ratio of the number of phonons per second
sweeping past a solute particle owing to the applied gra-
dient to the one due to the random motions of collective
thermal excitations.

Solute particles therefore will experience 2(dv ) col-
lisions in excess in one of the two senses and execute as
many jumps per second of average length ( A ) in excess
in the same sense. The average drift velocity
(thermodiffusive drift) along z will be

(U„'")=D,'" =2&dv, ) (A, &
=,„dT &A, &&v, & dT/dz

dz 3 5T 5z

after introducing the value of (dv~ ) deduced from Eq.
(6). The coefficient of thermal diffusion D'" may thus be
expressed as

&A, )(v, )

3(STr5z)

in terms of microscopic parameters only.
%e now consider instead a dilute, isothermal solution,

in which a concentration gradient has been established.
%here solute concentration is higher, there will be more
phonon-solute collisions per unit of time, and the oppo-
site occurs where the concentration is lower. If dC/dz is
the concentration gradient, the excess of collisions per
unit of time, in the unit of volume within two layers nor-
mal to z, spaced (A ) one from the other, shall be given
by the change in the number density of particles along z
over a distance (A ), i.e., (dnrdz)(A ), multiplied by
( v~ ) /6, the frequency of phonon-particle collisions.
Diffusive Bow J results from the excess of collisions in
the sense of dC jdz. The extra number of these collisions
per second and per unit of volume is
((v )/6)(dn/dz)(A ). From this quantity the average

rate of solute motion may be easily obtained. Indeed,
since nm =C, from the usual definition of the diffusion
coefficient D one has

dC deJ =D —=Dm
(A, &'(v, )

6 ~dz

which gives D in terms of ( A ) and ( v~ ) as

D, =(A, )'(v, &/6.
On the other hand, in very dilute solutions the density

of the gas of phonons and its dynamics should be the
same as those of the pure solvent at the same tempera-
ture. Therefore the value of (5T/5z) to be introduced
in Eq. (8) can be approximated by the expression derived
for the pure solvent [14]:

muf

6Etp((C )t ( At )

1/2
Q~/T

pi«v)IdT (10)

where the suffix ( I ) stands for solvent. Values of the pho-
non mean free paths, given as m (AI ), and of the local
temperature gradients, as (5T/5z)/m', in some pure
liquids, are plotted against temperature in Figs. 2 and 3.
In water, m and m* may be evaluated with sufficient ap-
proximation (see Appendix of Ref. [14]) and we get
( AI ) —= 16X 10 ' cm at room temperature. In the liquids
included in Figs. 2 and 3, neither m nor m* should be
very diff'erent from those relative to water, and so (A, )
in each case is going to be of the order of 10 cm. Of
course, much shorter mean free paths would be difFicult
to reconcile with the very concept of a phonon, while
much longer paths would imply very infrequent phonon-
particle collisions and therefore negligible consequences
of the exchanges of energy and momentum.

The local temperature gradients may seem surprisingly
high. However, the products ( m /m *

) ( A& ) ( 5T /5z )
=(mrm')(hT) are of the order of 300 K, as can be
easily veri6ed, and increase linearly with absolute temper-
ature. Therefore, in the explored temperature range, and
for the various cases, the percent temperature variation
turns out to be in the range 0.3~(b, T/T) ~0.5; this
means that the local temperature fluctuations amount to
one-half or one-third of the absolute temperature, as ex-
pected.

It is now possible to proceed further with the deter-
mination of the values of the microscopic parameters of
the phonon theory of liquids. Equations (8) and (9),
indeed, give D'" and Dz as functions of (A ), ( v~ ), and

(5T/5z ). Assuming for this last quantity in dilute solu-

tions a value practically coincident with the one of the
pure solvent, and when suitable experimental values are
available for both D'" and D, it is possible to calculate
the respective (A ) and (v ).

There is, however, a difficulty concerning Eq. (8), since
in its derivation the effects of thermal radiation pressure
on the dispersing phase have not been accounted for.
The collisions with the solvent of phonons drifting down
the temperature gradient lead to transfer of energy and
momentum also to the dispersing phase, so that thermal
radiation forces will act (in the same sense) on solute and
On solvent. Depending on the condition
[(EC /u )~

—(K /u ) ]~~0 the solute shall be observed to mi-
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grate in the sense of heat ffux or against it. This has been
experimentally demonstrated to occur both with macro-
scopic and with microscopic objects suspended in a non-
isothermal liquid [13]. Cases where in concentrated solu-
tions thermal diffusion vanishes have also been experi-
mentally studied [27,28]. We attributed this behavior to
modi6cations induced by the solute in the dispersing
phase that lead to the condition (K/u)I = (K—/u)~ E.qua-
tion (8) is unable to justify a vanishingly small coefficient
of thermal diffusion, owing to the fact that the effect of
drifting phonons on the solvent has not been included in
its derivation Th. e consequence is that the experimental

7

values of D'" introduced in Eq. (8) wBl give (A )'s and
( v ) 's smaller than the true ones, except at extreme dilu-
tion. In dilute solutions the error is probably small, and
the right order of magnitude may be obtained for either
(vz) or (Az). The problem of the radiation pressure
developed by phonons on the dispersing phase mi11 be
treated elsewhere. Some values of (v ) and of (A» ) are
given in Table I, calculated from Eqs. (8) and (9) and
from some of the best experimental values of D'" and D
found in the literature for dilute ionic solutions. Reliable
measurements of thermodiff'usive coefftcients in very di-
lute solutions are quite scarce. Even less common are
cases in which groups of values of D'" and D are avail-
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FICi. 2. Plot of the product m (A, ) against temperature for
some liquids, calculated from the expression
m (A&) =6K /p&(IC~), uf, discussed in Ref. [14]. In water, the
ratio m of translational to total number of degrees of freedom
may be evaluated, decreasing from 0.42 to 0.37 in the range
4-90'C. Accordingly, for HzO (AI) turns out to be about
16X 10 cm at room temperature.

Temperature { C)

FIG. 3. Plot of the values of the local temperature gradients,
divided by m, calculated from Eq. (10) for the same liquids of
Fig. 2 (with the exception of glycerol, owing to the lack of some
data). In the case of water, where m may be independently
calculated, one gets (5T/dz) =—9.3X io~'C/cm at room tern

perature.
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TABLE I. Values of (A~ ) and ( v~ ) at 25 'C in some electrolytic 0.01M aqueous solutions, calculat-
ed by means of Eqs. (8)and (9), from literature data for D, and D,'" [29—31].

Solute

NaF
NaC1
NaBr
NaI
NaC1
KC1
RbC1
CsC1
LiF
NaF
KF
AgNO3
CdSO4
KqSO4'

'C =0 045M

10'Dp
(cm s ')

1.345
1.545
1.562
1.552
1.545
1.914
1.971
1.954
1.164
1.345
1.614
1.69
0.62
1.35

1080th
P

(cm2 s
—

1 oC--1)

5.044
2.518
2.734
0.714
2.518
2.182
4.119
4.514
1.804
5.044
5.246
5.577
4.594
7.601

10'(A, )
(cm)

5.73
13.19
12.29
46.74
13.19
18.86
10.29
9.31

13.87
5.73
6.62
6.52
2.90
3.82

10-'& v, )
(s ')

25.00
5 ~ 30
6.20
0.43
5.30
3.20

11.00
14.00
3.60

25.00
22.00
24.00
44.00
55.00

able for the same solutions.
In Table I some data relative to dilute aqueous solu-

tions of electrolytes were used [29—31]. Unfortunately
these solutions cannot be considered sufficiently dilute for
our purposes since it is known that diffusion coefficients
are concentration dependent between 0.01M and 0.001M
and also thermodiffusive coefficients generally evidence
concentration dependence. In the frame of the phonon
theory this shows that in electrolytic solutions the local
instantaneous temperature gradients cannot be assumed
to be the same as those of the pure solvent, even in cen-
timolal mixtures. Accordingly, our tabulated values of
( v ) and ( A ) are indicative only of the respective or-
ders of magnitude. In Table II (v ) and (Az) have been

calculated for very dilute aqueous solutions of polyvinyl-
pyrrolidone of various molecular weights [32]. It may be
seen that in these solutions the mean free paths decrease
and the number of phonon-particle collisions increase
with molecular mass, as is to be expected.

III. ENERGY BALANCE
AND HEAT OF TRANSPORT IN A SYSTEM

OF INTERACTING PHONONS AND PARTICLES

We want now to investigate more closely the amount
of energy exchanged on the average by an impinging pho-
non, in dependence on both the characteristics of the gas

of thermal excitations and of the properties of the obsta-
cle. During an interaction work will be done by thermal
radiation forces. The resulting energy exchange, from
the point of view of the phonon, is a frequency shift given
by

( b, e'") =h ( v —v ) =Irh v =x.—
i f D

at

where vD, uI, and at are, respectively, the limit Debye
frequency, the phase propagation velocity of high-
frequency elastic waves in the liquid, and nearest-
neighbor distance in the solvent, and ~ is a number small-
er than 1 (in a Debye spectrum Ir= 2 ' ).

We consider a surface 0 lying in the (x,y) plane in a
homogeneous liquid medium, subject to a temperature
gradient dT/dz applied along z. In this condition, during
b, t seconds an amount b,g " of thermal energy carried by
phonons is transported across 0.. We distinguish between
the total heat transport and the fraction carried by pho-
nons, since some propagation of molecular rotations and
intramolecular vibrations from one molecule directly to
the next also occurs without transformation in transla-
tional modes.

The phonons are involved in elastic and anelastic col-
lisions with the lattice that occur wherever the inter-
molecular harmonic potential is disturbed. Therefore it

TABLE II. Values of ( A~ ) and ( v ) for various molecular "cuts" of polyvinylpyrrolidone in aque-

ous solutions, calculated as in Table I, employing data for Dp and Dp" from Ref. [32].

Polyvinylpyrrolidone
molecular weight

(amu)

10000
24000
40000
80 000

360000

Concentration
(molal)

3.00 X 10
1.25 X 10-'
7.50 X 10
3.75 X 10
8.33 X 10

D~
(cm's ')

1.26 X 10-'
9.40 X 10
7.70 X 10-'
6.10X 10-'
3.05 X 10-'

Dth

(10 cm s ''C ')

5.13
4.87
5.76
6.08
6.05

10'(A, )
(cm)

5.28
4.15
2.87
2.16
1.08

10-'(v, )
(s ')

2.7
3.3
5.6
7.8

16.0
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is appropriate to deal with the motion of these thermal
excitations through o. on the basis of a diffusive model,
both in the absence and in the presence of a temperature
gradient. We shall no longer consider o. as a purely
geometrical entity, but will materialize it in the form of
an obstacle, mobile or motionless along z, capable of ab-
sorbing or reflecting the impinging phonons. In this way
it will be possible to evaluate the energy transformations
occurring when thermal excitations collide with the sur-
face. If o is an integral absorber, the amount (he~" ) of
thermal energy given by Eq. (11) will be lost by the gas of
phonons that shall be "cooled" in proportion. A force
must be applied to keep cr immobile, to balance the
thermal radiation force exerted by the impinging pho-
nons. %'hen the surface 0. is perfectly reflecting and in a
state of motion in the sense of dT/dz, i.e., opposite to
that of heat flux, the impinging phonons will be reflected
back, shifted to higher frequencies, at the expense of
work done by the advancing surface on the thermal exci-
tations, through the intermediation of thermal radiation
forces. The phonon gas therefore is "heated" during this
process, the individual phonons involved being brought
to higher-energy states.

We now apply these concepts to diffusion and thermal
diffusion of a solute, to derive the energy balance of
phonon-particle collisions occurring when either the par-
ticles drift down a concentration gradient, or the pho-
nons drift down a temperature gradient externally ap-
plied to the liquid. In both cases heat will be transferred
from the thermal excitations to the particles. In either
process the phonon gas loses amounts of heat equivalent
to the mechanical work done on the solute. We assume
here that thermal energy exchanged in this way per gram
(or per mole) of solute transported, constitutes the "heat
of transport" Q' of the corresponding process. Within
the frame of thermodynamics the heat of transport
represents the amount of thermal energy that must be
supplied at the point from which the moving solute parti-
cle is removed, if the temperature at this point has to be
kept constant. The thermodynamic theory does not sug-
gest any functional relationship of this quantity with oth-
er molecular characteristics of the system, even if a con-
nection with evaporation jumps to the eye.

Various kinetic theories of the heat of transport have
been suggested, all based on special assumptions concern-
ing the physical mechanism of the transport process
[33,34]. The most fruitful approaches are the ones stem-
ming from adaptations of the view that diffusive process-
es proceed by a series of activated transitions [35]. No
use was made in any of these approaches of the concept
of phonon-particle interaction or of the existence of
thermal radiation forces. At present, with this notion in
our hands, it is evident that the energy ( b,P") lost by an
impinging phonon in a process of type 1(a) may supply
the "Hemmungsenergie" required by the solute particle
ta break loose from the attraction of the surrounding
malecules. Similarly, the "Lachbildungsenergie, " i.e., the
energy spent ta form the hole into which the diffusing
particle must be accommodated, would be supplied in the
course of a process of type 1(b), the hole being formed in
the initial phase of (forward) oscillation of the new excita-

(12)

after introducing expression (8) for D'".
A fraction of the flux of phonons across o. is substitut-

ed by the flux of particles produced by collisions of type
l(a) that give rise to thermodifl'usive flux J'". If we call
J'" the fraction of heat flux that disappears during the
process of generation of solute drift, we have

Jq"= —2(de &n(bs "&(A& &

T 5z
(13)

From Eqs. (12) and (13) the amount of heat transferred
from the gas of thermal excitations to the solute particles
per unit mass of solute transported turns out to be given
by the ratio

gth

Jth
P

(14)

This expression therefore is the analytical form of our
definition of the heat of transport in thermal diffusion.
Drifting phonons that collide with a solute particle
transfer to it a fraction (hP") of their energy through
the intermediation of thermal radiation forces. This en-

ergy disappears from the heat flux and at the same time
induces a forward jump of average length (A ) of a par-
ticle of mass m . Thus we may say that, for each elemen-

tary heat current (j~") that is suppressed, an energetical-
ly equivalent elementary process of mass transport ap-
pears; (dv ) collisional events of this kind lead to the
disappearance of a heat flux J'" and to the appearance in
its place of a salute flux J,'". The ratio of these two quan-
tities then represents the amount of heat spent ta trans-
port one gram of solute.

If we now proceed to consider the case of an iso-
thermal solution in which there is a concentration gra-
dient, it is easy to see that more phonan-particle cal-
lisions per unit of volume and of time will occur in the
more concentrated region. Thus the power extracted
fram the gas of phanans and transmitted to the salute per
unit of volume is higher in the concentrated than in the
dilute solution. Thermal energy is transfarmed, through
the intermediatian of thermal radiation forces, in the dis-
placements of solute particles dawn the concentration

tion generated by this event.
Our hypothesis on the heat of transport is not in con-

trast with either thermodynamic or kinetic theories; it
merely specifies, in an unconventional way, the mecha-
nism responsible for solute transport. If this hypothesis
is soundly based, it should be possible to derive from the
phonon theory of liquids expressions analogous to the
classical thermodynamical ones for Q '. On these
grounds it is easy to obtain simple analytical expressions
for the heats of transport. In thermal diffusion the flux of
solute particles due to collisions with the drifting pho-
nons is

,„dT,„dT nm (A~&(v~& dT
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JD (Qe )DID {17)

where the quantity (Q") is thermal energy "transport-
ed" per unit of solute mass in isothermal diffusion.
Analogous considerations apply to (Q")'" of Eq. (14).
Dimensionally these heats of transport are a kinetic ener-

gy per unit of mass, either in our treatment or in the usu-
al thermodynamic approach.

We thus see that, at least within the linear range of
force-flux relationships, the breaking of the system's sym-
metry by means of a temperature or of a concentration
gradient produces quite comparable effects. The anisot-
ropy introduced in the gas of thermal excitations by the
temperature gradient produces the radiation pressure
that causes thermodiffusive matter flux, resulting in an-
isotropy of solute distribution. An imposed anisotropic
solute distribution in an isothermal solution, on the other
hand, also results in an excess of collisions between
thermal excitations and particles along the concentration
gradient, causing diffusive matter flux and inducing by re-
action an anisotropy in the phonon gas. In view of the
symmetry of these two processes, it is natural enough
that the ratio of heat to particle fluxes in the two cases
should turn out to be analogous.

IV. HEAT OF TRANSPORT
AND SORET EQUILIBRIUM

We want to calculate now the rate of energy exchange
among phonons and solute particles in the nonisothermal
steady-state situation known as Soret equilibrium. This
corresponds to an exact balance of therrnodiffusive solute
flux and diffusive backflow. Within the frame of the pho-
non theory of liquids, outlined above, this calculation
may be easily carried out.

We have seen that a phonon of energy ( Ei'"), colliding
with a solute particle, loses on the average an amount

gradient; i.e., thermal energy of the phonon gas is spent
to produce diffusive solute flux.

The case of isothermal diffusion may be treated there-
fore in a way closely analogous to that of thermal
diffusion; diffusive solute flux J is given by Eq. (9). The
excess phonon-particle collisions, occurring in the sense
from high to low concentration per unit section and per
second, give rise to J . These are equivalent to a "lost"
heat flux —J, directed in the opposite sense, amounting
to

«)«"")(A,),(v, & dn

dz

( ( v~ ) /6)(dn /dz) ( Az ) being the excess of collisions per
cubic centimeter and per second, over the distance ( A ) .

From Eqs. (9) and (15) one has

(sE&")(A, )

m, (A, )D
= —2 =(Q') (16)

Nonequilibrium thermodynamics associates solute
transport to a heat of transport. For instance, in iso-
thermal diffusion, the diffusion current density J of the
solute is associated to a heat flux J given by

(b,E ") of vibrational (thermal) energy, and is frequency
shifted from v,- to v&. This amount of energy is
transferred to the particle, through work done by thermal
radiation force f'", dependent on the relevant constitu-
tive properties of solute and solvent. During the interac-
tion the particle is displaced by an amount (A~ ), the
duration of the event being (r' ). The rate at which the
phonon loses its energy then is

(18)

The rate of working of thermal radiation force f~" during
(r' ) in turn will be given by

(w, ) = —(w'")

=mr H*
P u, u

5T (A,')
5z (r' )

(19)

When a temperature gradient d T/dz is applied to a (di-
lute) solution, a solute particle experiences, on the aver-

age, 2(dv ) collisions per second in excess along z that
push it in the sense of heat propagation. Therefore the
average net power spent by the gas of phonons on each
solute particle, pushing it along z, is 2 ( d vp ) ( w~ ). From
Eqs. (18) and (19), upon multiplication by 2(d v~ ) and in-

troducing the expression (6) for (d v ), we get

1

mr H (20
(A, ) (5T/5z )

'

T-
( b,P"),(21)

(A,') (5T/5z )

where the quantity in square brackets on the right-hand
side is dimensionless.

Both members of Eq. (21) are equidimensional with
(Q*)'" and (Q*), as is to be expected, since the process
concerned is one of simultaneous thermal and isothermal
diffusion balancing each other. The differences of the two
expressions figuring in the left- and right-hand sides of
Eq. (21) will now be discussed.

Soret equilibrium is determined by the balance of the
opposite matter fluxes due to thermal and ordinary
diffusion. Equations (14) and (16) show that the latter re-
quires twice as much transfer of energy from phonons to
particles to get equal fluxes, as required to keep constant
the concentration distribution at Soret equilibrium. Ac-
cordingly the total amount of heat lost by the phonon gas
per second in the course of collisions of type 1(a) with one

both members being now energies per degree Kelvin.
Multiplying both sides of Eq. (20) by the (average) Kelvin
temperature in the Soret cell, we obtain the energy bal-
ance per therrnodiffusing solute particle. With reference
to one gram of the solute, i.e., to a number of particles
N/mz (N being Avogadro's number and m molecular
mass of solvated solute particle) we finally have

XT„
-mr H*

mp
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gram of solute particles is three times greater than ex-
pressed by the right-hand side of Eq. (21). Also the rate
of working of thermal radiation forces on one gram of
solute is three times that expressed by the left-hand side
of the same equation.

Let us concisely discuss this result starting from the
left-hand side of Eq. (21), which defines the heat of trans-
port for Soret equilibrium (Q')' as

sc sc
nr H' — — — . (22)

m P Q I

(Q*)'=—

Equation (22) represents solute heat of transport in terms
of thermal radiation forces developed in the course of
phonon-particle collisions.

Soret heat of transport is also calculated through the
classical expression [29]

RT,„B1ny
(Q 0 }s— 1+

rn ~ 8 lnm
(23)

where s is the Soret coefficient, m is the (solvated)
molecular mass of solute, y and mz are, respectively, the
activity coeScient and the molality of the solution, and R
is the gas constant. Equation (23) applies best to noniso-
thermal binary solutions and is obtained on the basis of
the assumption of the validity of Onsager's reciprocal re-
lations [26].

We proceed now to consider the right-hand side of Eq.
(21), which will be written as

(Q')'=—
m,

'
(A,')&ST/fiz)

(24)

after introducing the value of (b,s~") given by Eq. (11).
The relation between Ii vD and the average kinetic energy
of a particle is expressed in terms of the Debye tempera-
ture 8 of the solution 8=h vD /Ez, where Ez is
Boltzmann's constant. Therefore we may rewrite Eq. (24)
as

(Q')'=—RT,'„3 &A, )
rn ~ 2 (A') T,„

(25)

having introduced the value of the Soret coeScient:

2

&A, ) &ST/Sz)
(26)

derived with some slight remanipulation from Eqs. (8)
and (9).

At this point two observations are in order.
(1) From Eq. (26} the Soret coefficient may be calculat-

ed using the (5T/5z) /m* of Fig. 2 and the (A )'s of
Tables I and II. Interestingly, calculated and experimen-
tal values are proportional, their constant ratio being
0.18, i.e., just what may be expected for m * in 820.

(2} Equation (25) is very similar to the classical expres-
sion (23); to become identical, the two numerical quanti-
ties in square brackets in the right-hand sides should be
equal. These points will be further discussed elsewhere.

V. DISCUSSION AND CONCLUSIONS

We now discuss how the analysis of the energy balance
developed above is part of the project to construct a
theory of liquids based on the notion of energy and
momentum exchange among material particles and pho-
nons mediated by thermal radiation forces. In a previous
article [14] we dealt with the problem of the exchange of
momentum; here, instead, we concentrated on the com-
plementary aspect of the exchange of energy between the
two subsystems, phonons and particles, constituting the
liquid.

The points that we shall discuss concern the values
found for (A~ ) and (v ) and the derivation of the ex-
pressions for the heats of transport of isothermal and
nonisothermal diffusion and of Soret equilibrium. One
surprising aspect emerging from the examination of
Tables I and II consists in the relatively small value of the
frequency of phonon-particle collisions in comparison
with the much higher number estimated by the conven-
tional kinetic approach for particle-particle collisions.
This fact opens the interesting perspective of fruitfully
revising the hitherto intractable problems of transport in
liquids. The derivation of the heats of transport in turn
has to do with the fundamental issue of the operative
equivalence of Onsager's assumption of time reversibility
with the reversibility of the processes of phonon-particle
interactions.

The values obtained for the mean free path (A~) of
ionic and molecular solutes in dilute solutions correlate
well with those deduced in the same cases from the classi-
cal kinetic theory of liquids. This is not surprising since
the average length of the path traveled by a particle after
receiving a given amount of translational energy is in-
dependent from the nature of the energy source. Thus it
is immaterial for the result whether the collisional event
that caused the input of energy occurred with a phonon
or with a material particle.

As for the number of collisions with phonons per
solute particle and per second, (v ), it is much lower
than the frequency of collisions among molecules of the
solvent that would be expected on the grounds of the
kinetic theory of liquids. On the other hand, it is also
substantially inferior to what could be expected for
phonon-particle interactions in view of the density of the
phonon gas in ordinary liquids [14]. Let us try to calcu-
late directly the expected values of ( v ) in a dilute solu-
tion for a solvent in which the number W"" of phonons is
known. For simplicity of calculation the phonon popula-
tion is considered, as already done above, to be constitut-
ed by wave packets all of the same energy ~hvar. Fur-
ther, phonon density in a dilute solution is assumed to be
practically the same as in the pure solvent. If we call o "
the phonon-particle cross section this quantity represents
the probability that a phonon, sweeping through the
space occupied by a solute particle, exchanges with the
latter energy and Inomentum. The "efFective volume"
swept by a phonon per second therefore is a&"u f, since uI'
is the velocity at which the section advances. If n~ is the
number of solute particles per unit of volume the frequen-
cy of collisions ( vi'" ) experienced by the phonon will be
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NPh(vP" &

(v, &= =oP"NP"uf . (29)

Substituting the values of ( v ) calculated from diffusive
data in dilute solutions and the values of NP" and u f rela-
tive to the pure solvent, one gets "e6'ective" cross sec-
tions o. " some 10 times smaller than the geometrical
cross sections of the respective solutes.

A solvated ion or a small molecule (such as glucose,
fructose, or an amino acid} clearly constitutes a fairly
small "obstacle" when it interacts with a phonon. Ac-
cordingly, in the large majority of cases the hyperacous-
tic waves sweeping past solute particles will travel on
una6'ected and there will be no net transfer of energy and
momentum to the solute. At the same time the phonons
shall not be frequency shifted either. This is a familiar
situation in the propagation of waves, elastic or elec-
tromagnetic, past obstacles having cross sections smaller
than the wavelength of the impinging perturbation. So
the low value of the frequency of collisions ( v ) leading
to exchange of energy and momentum among phonons
and solute molecules or ions is not surprising.

There is, however, a very important consequence of
such a low value of ( v ) that should not be overlooked.
A solute particle "collides" with phonons less than one
time per nanosecond. On the other hand, the average
duration of the interaction with a phonon, moving at the
speed of sound, is of the order of the picosecond. The
same also applies to the case of particle-phonon collisions
[event of type 1(b}] where energy is transferred from a
solute particle to the gas of phonons. This means that
the probability of multiple simultaneous interactions is so
low in either case that only single phonon-particle col-
lisions need to be considered. The great simplification for
the treatment of all problems of nonequilibrium statisti-
cal mechanics of the two-fluid system (gas of phonons
and population of particles) that follows from the ex-
clusion of multiple events is evident.

The response of dense Auids to external forces is gen-
erally studied by means of the Boltzmann transport equa-
tion, relating the derivatives of the one-particle velocity
distribution with the collision operator. The collisions
themselves are described in this equation as events local-
ized at a point in space and instantaneous in time. This
picture, valid in dilute gases, is no longer valid whenever
the ratio of the duration of the collision and that of the
relaxation period for the approach to equilibrium is
strongly affected by the concentration of the colliding ob-
jects. The case of multiple simultaneous events is partic-
ularly far from the basic assumptions of Boltzmann's ap-
proach. In a dense Quid of material particles colliding

(vP") =oP"n uf .

Let us consider now NP" phonons contained in a box of
unit volume filled with the solution; they will collide with
the n particles of solute A " times per second,

~h NPh( Ph ) (28)

Each solute particle accordingly experiences on the
average ( vp ) collisions per second, where

among themselves, as assumed by the classic kinetic
theory of liquids, such multiparticle simultaneous col-
lisions necessarily are quite common. It is very
significant that in the phonon-particle two-Quid system
the mutual interactions are sufficiently rare so that sta-
tistically one only needs to consider single events, local-
ized in space and time.

Equally interesting is the circumstance that an external
force field (such as a temperature or a concentration gra-
dient) does not affect the amount of energy and momen-
tum transferred either way in phonon-particle collisions,
nor the duration of the event. In Boltzmann's equation
the external force field is accounted for only in the free
Row term, and does not figure in the collision operator.
This may be plausible only as long as the time interval be-
tween collisions is much longer than the duration of the
collision itself. This condition, that certainly would not
be fulfilled by a population of colliding material particles
in a dense Quid, is fulfilled instead, as we have seen, by
the collisions among phonons and particles.

It seems reasonable therefore that the application of
the methods of nonequilibrium statistical mechanics to
the two-fluid model of liquids we proposed may make the
treatment of transport processes in liquids feasible. Par-
ticularly interesting in this context will be the evaluation
of the exchanges of energy and momentum among pho-
nons and particles of a pure liquid, rather than with the
solute. When that is done, the means of quantitatively
dealing with the interactions of heat How with the medi-
um, apart from component separation, will be in our
hands. This is needed to introduce a mechanical resis-
tance to heat How and accordingly modify the Fourier
equation. The above discussion gives reason to hope that
the problem may be treated on the basis of Boltzmann's
equation, if it is also found that the interactions of pho-
nons with the pure solvent do not give rise to multiple
events.

We shall proceed now to discuss the derivation of the
expressions for the heats of transport of difFusive and
thermodi6'usive processes as well as of the one of Soret
equilibrium. The connection of the transfer of energy be-
tween phonons and particles with the heats of transport
is quite straightforward. The underlying logic constitutes
the second argument of this discussion.

We have considered phonons as local, instantaneous
heat fluxes [Eq. (5)] that disappear as such, wholly or in

part, in the course of a collision of type l(a). Conversely,
a material particle may interact with a phonon doing
work on it at the expense of its own kinetic energy [case
1(b)]. In either case one of the two subsystems constitut-
ing the liquid —the population of material particles—
acquires or loses mechanical energy; the other
subsystem —the gas of phonons —in correspondence
loses or acquires heat, in the form of frequency shifts of
the individual wave packets. Thus any thermomechani-
cal or mechanothermal effect involves transport of heat
from or to the gas of phonons.

The expressions we derived on the basis of the e1emen-
tary phonon-particle interactions are coincident with the
classical ones derived by the usual thermodynamic
methods that assume, as a necessary condition, the validi-
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ty of Onsager's reciprocal relations [26].
These relations require the existence of universal linear

laws for molecular fluctuations, i.e., that the regression of
fluctuations obeys the corresponding macroscopic trans-
port equations.

We did not use Onsager's reciprocity principle in our
treatment. Since strictly analogous conclusions and coin-
cident formal expressions for the heats of transport are
reached by classical nonequilibrium thermodynamics and
by nonequilibrium statistics of phonon-particle interac-
tions, we must conclude that the latter method contains,
at a deeper level, the exact equivalent of Onsager's rela-
tions. This equivalence obviously resides in the symme-
try of the elementary interactions of types 1(a) and 1(b},
that commute each into the opposite by the operation of
time reversal.

If this interpretation is sound, it is reasonable to as-
sume phonon-particle interactions as a basis for a refor-
mulation of nonequilibrium thermodynamics. The none-
quilibrium statistical treatment of these elementary
events could allow a coherent general treatment of trans-
port processes in dense fluids.

Experiments designed to validate the proposed theory
are possible and desirable. A quantitative study of the
action of phonon pressure on liquid droplets suspended in
an immiscible nonisothermal fluid is now in an advanced
phase of preparation. Gravitational forces are easily
compensated by density matching, but thermocapillary
forces and differential thermal expansion complicate the
measurements. The second effect is dominant in Earth-
based laboratories, so that our test will be performed in
conditions of weightlessness, in future European Space
Agency experiments (Spacelab).

A different kind of test may consist in the investigation
of thermal diffusion in solutions difFering only in solute
molecular mass. As is well known, thermal diffusion and
Soret equilibrium are very sensitive to molecular mass of
the dispersed phase. According to the phonon theory of
liquids, such an investigation carried out with spherical
molecules of diameters ranging from 3X10 to 3X10
cm should yield valuable information on phonon-particle
interactions and on the phonon spectrum of liquids.
Molecules having the required prerequisites may be
prepared from Poly A-, Poly T-, Poly C-, and Poly
G-single strand DNA and a good Soret apparatus
should have sufficient resolving power.

(Al)

If we suppose the whole process of energy exchange to
be ergodic, (E, ) may be considered as the average
translational energy of the solute molecule and the above
definition may also be used to implicitly define the aver-
age interaction time (rz). The momentum transferred
to the molecule during ( r' ) will be

(A2)

f'" being the thermal radiation force acting on the mole-
cule. Having defined (E, ) as the average kinetic energy
transferred by the phonon to the molecule, it results that

(depth) =+2nt, (E, ) .

From (A2) and (A3) we deduce

+2m (E, )
P fth

(A3)

(A4)

This expression puts in correspondence the interaction
time (r' ) with (hsu") and f'". We now apply the kinet-
ic energy theorem to evaluate (A ). Since the molecule
along the path (A ) spends all the kinetic translational
energy received from the phonon, the total work done on
the molecule will be equal to zero, so we can write

f' (A' )+f"(A ) =0 (A5)

where f" is a coefficient, with the dimensions of a force,
related to the average "viscous" dissipation of the mole-
cule by process of type 1(b). The work done on the mole-
cule by the thermal radiation force is f~ (A~ )= (E, ), so
from Eq. (AS) we finally obtain

(&p ) =
&

' )(f'"+f") . (A7)

From the above expression it also follows that the veloci-
ty change is

(A6)P f U

P

Having thus calculated (Az ) we can now derive an ex-
pression for (A' ). The average momentum variation of
the molecule during ( r' ) will be

APPENDIX

We shall discuss here the process of phonon-molecule
interaction to deduce some important relations among
the quantities ( A ), ( A' ), ( r ), ( w' ), and the energy
of the impinging phonon. Since we are concerned only
with forces and displacements in the direction of the gra-
dients (of temperature or of concentration), our treatment
of the problem shall be unidirectional.

We define a probability per unit of time P„ for the pho-
non energy to excite the translational degrees of freedom
of the solute molecule. So the average translational ener-
gy transferred to the molecule during the time of interac-
tion ( r~ ) will be

(A8}

The average translational velocity v of the particle dur-
ing the interaction time is given by

= ( vp' ) +— (fp +f~ ), (A9}

where ( v ) is the average equilibrium velocity of a parti-
cle at temperature T: (u') =+3KsTlrn . We finally
have
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K TB
Vp= 3

m

1 &r,')+ t (ftll+f U)

2 m
P

(A10)

It is now possible to calculate & A~ &:

E~T
(A,')=&r,'&U, =&r,'&

m

1 &r,') (fth+f v
)

2 m
(A 1 1)

After the interaction time (ry), there is a relaxation
period in which the molecule loses its excess energy, the
momentum of the molecule undergoing a change
—(bp ). The average time spent by the molecule in this
process of dissipation of the energy received by the im-

pinging phonon is

(A13)

f'"(A' ) +f"((A ) —(A,') )=0 .

If we define ( A' ) = ( A ) —( A' ), it results that

(A,')
(Ae ) fth

P

(A14)

(A15)

In a different approach to the problem it could be as-
sumed that the acceleration of the particle and its subse-
quent viscous deceleration are phenomena distinct in
time; i.e., the deceleration of the molecule starts only
after the time interval (r' ). Equation (A5) should ac-
cordingly be rewritten as follows:

So we can finally deduce the expression for ( r~ ):
(A12)

which gives us a relation between the distances covered
by the molecule during the time ( r' ) and ( ry ) and the
intensities of the thermal radiation force and the
"viscous" one.
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