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A statistical-mechanical theory of the distribution of density fluctuations involved in homogeneous
vapor-phase nucleation is presented which improves on previous work. Specifically, a refined characteri-
zation of a physical cluster is developed. This cluster is known as an i/v cluster, since it is defined by
both a molecular number i and a volume v (i/v is the average density of molecules in the cluster). The
i /v cluster represents the density fluctuations that have the potential to serve as condensation centers for
the formation of liquid drops. The refinement involves a so-called shell molecule which defines the
volume v. The equilibrium distribution of the refined i/U clusters is derived, using an approach involv-

ing fluctuation theory. This method is as rigorous as prior approaches and, moreover, sheds light on the
nature of the cluster distribution and the cluster itself. Through an analysis of a cluster defined without a
shell molecule, it is shown that the shell molecule is necessary if the cluster characterization is to be con-
sistent with the fundamental statistical-mechanical description of the supersaturated vapor. Finally, as a
by-product of this work, it is shown that the awkwardness of the constant-pressure ensemble associated
with its expression as a sum over volume is automatically removed once the necessary presence of a shell

molecule is recognized.

PACS number(s): 64.60.Qb, 64.70.Fx, 64.60.My

I. INTRODUCTION

Density fluctuations are always occurring in any vapor
and are an integral part of its equilibrium character.
Indeed, they occur even in a noncondensable ideal gas.
The process of homogeneous vapor-phase nucleation in a
supersaturated vapor depends on the occurrence of cer-
tain fluctuations, called embryos, that serve as condensa-
tion centers for the formation of macroscopic liquid
drops. Ho~ever, in most vapor-phase nucleation mea-
surements the temperature is well below critical. Under
this condition, the supersaturated vapor is usually so at-
tenuated that it is, at the most, an imperfect gas that can
be regarded as ideal [1,2]. The vast majority of vapor
molecules are separated by distances so great that they do
not interact with each other. As a result, virtually all
density fiuctuations that form within the vapor are so
rarefied that they never develop into liquid drops. Never-
theless, if enough time passes, the random collisions be-
tween molecules will eventually lead to a group in which
the molecules are close enough to interact through their
intermolecular potentials. For this fluctuation to have
the potential to be involved in the dynamic process lead-

ing to nucleation and condensation, its molecules must
remain mutually close for a time appreciably longer than
say the duration of a bimolecular collision. This leads to
the intuitive notion of a density fluctuation as a physical
cluster, which persists in the vapor with a finite lifetime,
adopting a variety of configurations within a rapidly Auc-
tuating local domain of volume, before gaining or losing a
molecule.

Such clusters are dynamic in nature, developing into
liquid drops at different rates in a complex time-
dependent manner. These individual rates, one for every
possible fluctuation, should somehow be "incorporated"
into the true nucleation rate. Exactly how to do this
remains, at present, an unsolved and seemingly intract-
able problem. This is unfortunate, since a complete un-
derstanding of the molecular mechanism of nucleation
hinges on its solution. As an alternative, every viable
theory of nucleation has effected an "inversion of the or-
der of averaging" such that an average cluster is first
characterized and then the average rate of development
of this average cluster is evaluated in order to specify the
nucleation rate.

The first attempt at characterizing such an average
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physical cluster for use in a theory of vapor-phase nu-
cleation goes back to the 1920s and 1930s when Farkas
[3], Volmer and Weber [4], Becker and Doring [5],
Frenkel [6], and Zeldovich [7] developed what is now
called the "classical theory" of nucleation. In this ap-
proach, embryos for the formation of liquid drops are
modeled in accordance with the so-called "capillarity ap-
proximation" in which the embryos, although of molecu-
lar dimensions, are viewed as macroscopic drops, possess-
ing both the uniform density and surface tension of the
bulk liquid. Furthermore, the embryos are viewed as sta-
tionary objects lacking translational motion in the labora-
tory coordinate system.

For single-component vapors, the agreement between
measured supersaturations for the onset of condensation
(critical supersaturations) and those predicted by the clas-
sical theory has been remarkably good. Recently, howev-
er, reliable methods for measuring the rare of nucleation
have become available [8—15] and the predictions of the
classical theory concerning rate appear to difFer from the
measured rates by orders of magnitude.

One of the problems with the classical theory is that it
represents an average microscopic embryo as a stationary,
macroscopic liquid drop. In a departure from the classi-
cal theory, Ellerby, Weakliem, and Reiss [1] and Ellerby
and Reiss [2] defined an average physical cluster in
molecular terms to be used in a molecular theory of
vapor-phase nucleation. This cluster is known as an i/u
cluster, since it is defined by both a molecular number i
and a volume U (i lu is the average density of molecules in
the cluster). In Sec. II of this paper, we briefly review
this definition and discuss some important requirements
that any average cluster should fulfill. Then, in Sec. III,
we present a refined characterization of the i/U cluster,
also discussed by Weakliem and Reiss [17].

In developing a rate theory based on any average clus-
ter, the transition probability for loss of monomers from
the cluster, the "reverse" rate constant, must be deter-
mined. However, the physics behind this probability is so
poorly defined that the principle of detailed balance is
used so that reverse rate constants can be derived from
forward ones [1—6,16,17]. Application of detailed bal-
ance requires the determination of the so-called equilibri
um distribution of clusters. This distribution has there-
fore become a centerpiece in all viable nucleation
theories.

Thus, beginning in Sec. IV and continuing through
Sec. VI, the equilibrium distribution of i /U clusters is de-
rived from a new method based on Quctuation theory
[18,19]. While remaining as rigorous as earlier ap-
proaches, the method also avoids a physically ambiguous
approximation made previously [1]. Moreover, the
refined i /u cluster is considered in the derivation.

The characterization of the i/U cluster involves a so-
ca11ed shel/ molecule. This molecule defines the cluster
volume U (which contains i cluster molecules) by occupy-
ing the volume shell dU, between v and U+dv. This
(i+1)st shell molecule can, at first glance, appear some-
what restrictive, and even artificial, as part of a cluster
definition. En this regard, in Secs. VII and VIII, we define
an average cluster without a shell molecule and derive the

corresponding equilibrium distribution. The result is
only slightly different from that derived for the original
i /U cluster.

Since an average physical cluster can be defined
without a shell molecule, it is tempting to do away with it
altogether. However, in Sec. IX, we demonstrate that it
is required in the definition of an average cluster if that
cluster is to be consistent with the fundamental
statistical-mechanical description of the total supersa-
turated vapor. Moreover, it is shown that the shell mole-
cule must be implicitly included as part of any cluster
characterization that includes volume as an independent
variable. Thus the shell molecule's role in the theory is
clarified and solidified.

As a by-product of the work in Sec. VIII, the awk-
wardness of the constant pressure ensemble [20] associat-
ed with its expression as a sum over volume is shown to
be automatically removed once the necessary presence of
the shell molecule is recognized.

Finally, in Sec. X, we discuss, among other topics, the
inherent diSculties in characterizing a physical cluster
with the i property alone and show how the theory pro-
vides a framework for a modern molecular theory of
vapor-phase nucleation, independent of what method is
used to calculate the free energy of cluster formation, so
long as that method is in basic accordance with the i/U
cluster characterization.

II. CHARAt."j.'ERIZATION OF THE i /v CI USTKR

The development of the i /v cluster was guided by the
following physical picture, of the supersaturated vapor.
Since, as discussed in Sec. I, the vapor is essentially ideal,
its major component is an effectively infinite reservoir of
monomers, separated from each other by distances so
great that they do not interact. Within this reservoir, the
molecules that are close enough to interact with each oth-
er form physical c1usters of various "sizes." Since the
density Quctuations that do serve as embryos are ex-
tremely rare [1,2], the physical clusters are, in essence,
separated from each other by large distances, such that
they do not interact. Viewed in this way, the clusters are
"decoupled" from each other and from the surrounding
vapor.

As discussed in Sec. I, the molecules in a cluster pass
through a variety of configurations between the time it
gains or loses a molecule. We just do not know how
many configurations or which ones are involved. There-
fore, even though we cannot follow the complicated tra-
jectories traced out by such configurations, the fact that
some will express themselves, between the time of cluster
growth or decay, leads to the idea of an average cluster
whose molecules are allowed to assume some well-defined
set of configurations within some locally defined volume.

The usual assumption is that when an average physical
cluster is characterized properly, one can still use it
without generating much error, relative to the result that
would be obtained if the true dynamical process could be
treated by theory. Thus, instead of being drawn into the
overwhelmingly detailed kinetics of individual
configurations, we concentrate on the kinetics involved in
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the evolution of this average cluster. A significant advan-
tage of this approach is that once such an average cluster
has been characterized, conventional rate expressions
[21—23], or variants thereof [16,17], can be used to find
the nucleation rate.

Density fiuctuations, some of which constitute em-
bryos, are an integral part of the equilibrium aspects of
the supersaturated vapor. A physically consistent
definition of an average cluster must be in accordance
with this fact. In spite of this, most current theories have
paid little attention to this requirement in fashioning a
cluster definition, opting instead (as far as the require-
ment is concerned) for an ad hoc definition [24]. The
easiest way to satisfy the requirement is to define physical
clusters that can be used rigorously as tools for the evalu-
ation of the partition function of the supersaturated va-
por within which they reside or such that any approxima-
tions that are necessary represent well-defined minimal
departures from this goal. Thus the physical clusters
should be usable in the same way that mathematical clus-
ters [25] have been used in the evaluation of the partition
function of a vapor.

The importance of this requirement cannot be overstat-
ed. For when a cluster can be used in the rigorous evalu-
ation of the partition function, then we are assured that
the corresponding equilibrium distribution (required for
the development of the rate theory) is correct.

The above requirement is satisfied by choosing a physi-
cal cluster with characteristics summarized as follows
(Fig. 1).

(1) The cluster is composed of i molecules.
(2) These molecules alone determine the center of mass

(c.m. ) R of the cluster.
(3) The cluster molecules occupy a volume v, centered

on R.
(4) For a given R, cluster molecules assume only those

configurations that keep R fixed.
(5) One ideal gas molecule, the she/I molecule, must oc-

cupy a volume shell dv, about R.
(6) Only molecules within the same cluster interact

with one another.

A physical cluster with these characteristics is called an
i/v cluster. Since this cluster represents a density fiuc-
tuation, it makes sense to attribute the property of
volume to it such that an i /v cluster has an average den-
sity i /u

In addition to the rigorous requirement enunciated
above, it is convenient to be able to compute the physical
properties of the cluster by means of computer simula-
tion. The i/u cluster lends itself well to this purpose in
that it is closely related to the so-called Lee-Barker-
Abraham (LBA) cluster elaborated by Lee, Barker, and
Abraham, in a now classic paper [26]. Weakliem and
Reiss [16],used the LBA method to calculate the reversi-
ble work of formation of an i /u cluster, 8, (u), for argon,
thus demonstrating the convenience of the i/v cluster
with regard to computer simulation.

Because model potentials are not generally available
for more complex molecules, it is also useful to have a
heuristic model of the cluster that can be employed at the

shell molecule

dv

FIG. 1. An illustration of the i/v cluster characterization.
The solid dots are the i interacting cluster molecules each
shown relative to the position R of the center of mass (c.m. ).
The solid dot on the surface of v is the shell molecule, which lies

somewhere in dv and defines v. The ideal gas molecules outside

of v are represented by open dots. The c.m. (the vector R) of
the cluster must always correspond to the center of v. For a
cluster defined without a shell molecule the picture remains the
same except that there is no shell molecule and no dv.

stage where simulation is required. Weakliem and Reiss
[16] developed such a model, called the "modified liquid-
drop model" (MLDM), guided by properties of the more
rigorous molecular i/v cluster. They found that, at least
for argon, the values of 8;(v) derived both from the
molecular theory via Monte Carlo simulation and the
MLDM agree quite well. Then, they used the MLDM
together with the cluster distribution derived previously
[1,2] and variants of the conventional rate equations
[1,17] to calculate rates of nucleation for argon [17].

Unfortunately, experimental data on nucleation rates
in argon vapor that would allow a comparison between
theory and experiment do not exist, although there are
some sparse data on critical supersaturation. Applica-
tions of the MLDM to vapors other than argon (for
which experimental data do exist), as well as work on the
development of a truly molecular theory of rates using
the i /v cluster, are presently underway.

Currently, as far as agreement between theory and ex-
periment for the nucleation rate is concerned, the most
successful theory seems to be that due to Dillmann and
Meier [24). This theory does not define the relevant phys-
ical clusters in molecular terms but rather models the
average cluster as a Fisher droplet [27]. The theory is
phenomenological but contains no adjustable parameters.
Only ones that are fixed by the equation of state of the
vapor and its critical constants are involved.

However, it must be emphasized that, in addition to
developing a theory that is quantitatively accurate, it is
equally important to produce one that provides impor-
tant new insights into the mechanism of nucleation. Phe-
nomenological theories, however successful, cannot pro-
vide insight at the molecular level. For example, the
theory of Dillmann and Meier cannot distinguish be-
tween fluctuations that do and do not serve as embryos.
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III. REFINED CHARACTERIZATION
OF THE i/u CLUSTER

IV. PARTITION FUNCTION OF THE i /U CLUSTER

Since the i /U clusters are decoupled from each other
and from the surrounding vapor, we can write the canon-
ical ensemble partition function q, z„(R,T) for an i/U
cluster at aPxed position R of the c m in the. v.olume Vas
though the cluster were in isolation, as

(i +1}
q;~„(R,T)= (i+1)i!

) t" +I
dU U U

Xdr, dr;

where y =(2mmkT) /it, m is the mass of a molecule, ii

is Planck's constant, P:—(kT) ', k is Boltzmann's con-
stant, and T is the temperature. The configuration in-
tegral Z;z„(R,T) for an i /U cluster at a fixed position R is
given by

Z;i„(R,T)

=(i+1)'f dr f f e
""' ""

dU U U

The original characterization of the i/U cluster con-
tained an approximation, in that it was assumed that the
shell molecule formed part of the ideal gas surrounding
the cluster, and as such did not interact with the i mole-
cules in the interior [1,2]. However, the shell molecule
can interact with the interior molecules, the more so for
small clusters with small U. Thus the following refined
characterization allows for this interaction by including
the shell molecule in the cluster.

In a "snapshot" (a frozen configuration) of the supersa-
turated vapor we notice a group of i +1 molecules in a
configuration recognizable as a density fluctuation in that
none of the peripheral molecules in the group are close
enough, according to some reasonable distance criterion,
to molecules in the surrounding "ideal" vapor to interact
with them. Next, we find the group's c.m. R and locate
the molecule in this group that is the farthest away from
R. We then construct a sphere of volume v =(4/3)mR,
centered on R, such that this farthest molecule, which we
now denote as the shell molecule, lies somewhere in the
shell of volume between U and U+dv (Fig. 1). The cluster
then consists of i molecules within the spherical volume U

plus the shell molecule in du (all in all i+1 molecules),
but is still referred to as an i /U cluster. An i /U cluster at
a given position R in the total volume V is then
represented by all possible configurations of the i mole-
cules in U that keep R fixed and all possible locations of
the shell molecule in dv. Furthermore, the position of the
i /v cluster, as represented by R, can be found anywhere
in V.

We have expressed Z;&„(R,T), and therefore q;&„(R,T),
in the coordinate system natural to describing the posi-
tion of a cluster in V, i.e., in the center-of-mass system.
The transformation of the volume elements from labora-
tory coordinates (primed) to c.m. coordinates is given by

(i+1) dR g dr, = Q dr,',
where the c.m. (given by R) and the relative coordinates
(given by r ) are related by

j=i+]
r,

'

j=]R= (&)(i+1)
and

r =r' —R.J

The intermolecular potential energy of the cluster is
specified by u;+, (r, , . . . , r, ), where now the interaction
of the shell molecule is included. This energy is calculat-
ed in the c.m. reference frame at a given R, with the posi-
tions of the i +1 molecules relative to R specified by the
set [r ]. The integral over r, corresponds to the permis-
sible locations of the shell molecule, anywhere in du. The
term y'+" in Eq. (1) is the momentum partition function
for the i +1 molecules, and i! in the denominator of Eq.
(1) removes redundant configurations generated by

Z;h, (R, T) that simply interchange the positions of the i

indistinguishable molecules in the interior of the cluster.
We limit the integrals over ri, . . . , r; i in Eq. (1) to

U
~

U, where U is a cutoff volume that prevents the volume
from becoming so large that the clusters begin to interact
with each other and invalidate the theory. Moreover, it
is implied that i ~i, where i is a cutofF number that
prevents the clusters from becoming so large that they
condense and again invalidate the theory.

We must emphasize that, in addition to providing a
precise definition of a cluster's position in V, use of the
c.m. coordinate system provides an unambiguous separa-
tion of the internal free energy of the cluster from its
translational free energy [2] (thus avoiding the so-called
replacement free-energy problem [28,29]) and permits the
required nonredundant enumeration of configurations in-
volved in the evaluation of the total system partition
function [1]. Furthermore, it is important to emphasize
that the translational free energy of the cluster is explicit-
ly, and unambiguously, included in the theory, unlike
classical theory that treats the cluster as a stationary
body.

The partition function q, &„(V,T) for an i/v cluster
somewhere in Vis related to q;&„(R,T) by relation

q, q„, (V, T)= f q;q„(R, T)dR,

Xdr& . . dr;

so that Eq. (1) can be written as

(3)

where it should be noted that, in the limit V~ ~, the
volume occupied by the clusters themselves is negligible

compared to that of the system. Thus each cluster has

the entire volume V available to its c.m. Substituting Eq.
(1) into Eq. (7), we find
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q;&, (V, T)

(i+1)

x J dRf dr, .f f e
""' ""

Xdr, dr; (8)

Furthermore, the value of q;&„( V, T) is, by symmetry, in-
dependent of the position of the shell molecule in dv and
independent of the position of the c.m. in V, so that Eq.
(8) becomes

(i +1)
q;q„(V, T)= ~ (i+1) Vdvi!

so that Eq. (9) becomes

(i+i)
q;q„(V, T)= Z, i„(V,T) .

g!

V. PROBABILITY OF EXACTLY
ONE i /u CLUSTER

The probability P;(v)dv of having exactly one i/v clus-
ter somewhere in V can be expressed in the language of
fluctuation theory [18,19] as the ratio of the partition
function Qz(N, V, T) of the supersaturated vapor restrict-
ed to always have exactly one i /v cluster somewhere in V,
to the unrestricted partition function Q(N, V, T) of the va-
por,

QR(N, V, T)
Q(N, V, T)

(12)

where for notational convenience we have "embedded" a
dv in Qz (N, V, T).

The restricted partition function Qz (N, V, T) can be ex-
pressed as

Qz(N, V, T)=q;z„(V, T)Qz(N i 1, V—v, —T)—, (13)

where dv is now embedded in q;&„(V,T), the partition
function for an i/v cluster somewhere in V, as given by
Eq. (9). The partition function Qz(N —i —1, V—v, T) is
for the remaining N (i+1) molecules —and refers to a
system restricted to have no i/v clusters. The factoring
«Qtt (N, V, T) follows immediately from the decoupling
of' the cluster from the surrounding vapor. Substituting
Eq. (13) into Eq. (12) then gives

q;q, ( V, T)Q„(N i —1, V—v, T)—
Q(N, V, T) (14)

Xdr, dr;

The configuration integral Z;&, (V, T) for an ilv cluster
somewhere in the volume Vis given by

—p[u,.+&(r&
. r,. )]

Z;&„(V,T)=(i+1) Vdv f e

Virtually all of the N total molecules of the supersa-
turated vapor lie outside the clusters, forming an
efFectively inj7nite reservoir of ideal gas monomers such
that the number of monomers N&-=N. Furthermore,
clusters whose molecules are close enough to interact are
extremely rare. This means that the ratio of partition
functions Qz(N —i —1, V —v, T)/Q(N, V, T) in Eq. (14)
can be written, with negligible error, as the ratio of parti-
tion functions corresponding to ideal gas vapors,

Q„(N i —1,—V v, T—)

Q(N, V, T)

( V )][N
—(i+1)]

[N (i +—1)]!
[XV]"¹!

/1 v
1——

[N —(i +1)]! V

N
1

y(V —v}
(15)

where the last form follows in the limit N » i. Expand-
ing the logarithm of the second factor in Eq. (15) in a
Taylor series and taking the limit N ~ oo, V~ 00, gives

N

where p=N/V, so that p is the density of the supersa-
turated vapor. And, finally, in the limit V~ ~, the term
( V —v) in the denominator of the third factor in Eq. (15)
becomes V.

Substituting Eqs. (16) and (17) into Eq. (15) then gives

Qz(N —i —1, V—v, T)

Q(N, V, T)
e pv (18)

and substituting this result into Eq. (14) yields
(i+1)

P,.(v )dv =q,.&„(V, T) ~ e (19)

The chemical potential p of the ideal supersaturated va-
por can be expressed as [1,2]

(20)

Substituting Eq. (20} and the ideal gas law pp=p, where

p is the pressure of the vapor, into Eq. (19) then gives

P, (v)dv=q;&„(V, T)e.
Finally, substituting Eq. (9) into Eq. (21) results in

The first factor on the right-hand side of Eq. (15) can be
written as

N! N(N 1) (—N i )(N —i —1)—
[N (i + 1)—]! (N i —1)(N——i —2)

=N(N 1) (N—i ) =N'—+" (16)



4292 H. MICHAEL ELLERBY

I

P, (v)du= du e ~'~" '"'~(i+1)'V
e~"

higher order in the infinitesimal volume du they can be ig-
nored, so that substitution of Eq. (27) into Eq. (26) yields

Xdr) ' ' dr;

which can be iinmediately rearranged using Eq. (20) to
give

and upon substitution of Eq. (25) gives finally

n;(u)du=pdu exp —P A;*, ——ln[y(i+1)i~ V]j" l3

P.(u)du=pdu e ~'~" '"'~(i+1) V
I

+pv —
&p

—P[u,. + &(r 1

. . r,. ) ]Xf e
'''' 'dr dr

1 i —
1

U U

(23)

The internal Helmholtz free energy A;*„ofthe molecules
in the cluster (under the restriction that the shell mole-
cule remains in du and that the c.m. is fixed) is given by

1 y' '(i+ 1)A'= ——lnlU

for the equilibrium distribution, where 2;„ is given by
Eq. (24). We note, in passing, that Eq. (28) holds for any
average cluster characterization that involves a continu-
ous volume v.

If we "turn off" or "ignore" the interaction between
the shell molecule and the remaining molecules of the
cluster, u;+~(r, r;) may be replaced by the residual
potential u, (r, r, , ) and the corresponding
Helmholtz free energy A „will then be denoted by A, .
At the same time, Eq. (29) becomes

n;(u)du=pdu exp —P A, — ln[—y(i+1) V]
l

Xdr, dr, (24)

Combining this result and Eq. (23) then gives the final ex-
pression for the probability P, (u)dv of having exactly one
i/u cluster somewhere in V as

P, (u)dv=pdv exp —P A, ', ——ln[y(i+1) V]

+pU 1p

where

yi
—

i(& + 1
)3i'2

A*= ——lniv i!
~I" + 1['1

~ ~

(30)

+pU Ip (25)
Xdr, dr,

We also note that the second term in the exponent of Eq.
(25) is the translational Helmholtz free energy of the clus-
ter. While this new approach gives a result, Eq. (25), that
is identical to that obtained previously using fundamental
probability theory [2], it benefits from an immediate con-
nection to statistical mechanics.

VI. EQUILIBRIUM DISTRIBUTION
OF i /v CLUSTERS

The ensemble average number of i/v clusters n;(v)dv,
which is also the equilibrium distribution of clusters, can
be expressed as [2]

Pi(u)du =[P,(v )du]j . (27)

However, because the terms in P';(v)du for j«2 are

n, (u }du = g jP~(u )dv,
j=1

where PJ(u}du is the probability of exactly j such clusters.
Since the clusters do not interact with one another,
P~(u)du can be expressed as the product of j identical un-
correlated probabilities, each being the probability of ex-
actly one i lu cluster, Eq. (25),

The theory published thus far uses Eqs. (30}and (31) with
(i+1}replaced by i [1,2, 16,17]. Clearly, for the larger
clusters the error is smaller. The terms in parentheses in
the exponent of Eq. (30) represent W~(u), the reversible
work of formation of an i/u cluster, i.e.,

1
W;. (u ) = A;*, — ln(yi —V)+Pv ip, —

,

where i + 1 has been replaced by i in both the translation-
al term and in A;*„.

This approach to calculating n, (u)du is more direct
than, and as rigorous as, that of previous work [1],where
the total partition function of the supersaturated vapor
was derived, and then the formula for n,.(u)du was ob-
tained through the use of the "maximum-term method*'

[25]. The use of that method required, in turn, the use of
Stirling s approximation for [n;(u )dv ].. This approxima-
tion, and the factorial itself, is somewhat in con6ict with
the fact that n;(u)dv is a probability [=P;(u)dv], and
hence a fraction. The above method avoids the use of
this physically ambiguous approximation. For complete-
ness, it should be mentioned that, in spite of this fact, the
maximum term method does yield the correct result for
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the equilibrium distribution of clusters [30]. The ap-
proach presented here does contain its own mild approxi-
mation, embodied in Eq. (18}. However, this approxima-
tion is well defined and physically consistent with the
properties of the supersaturated vapor.

VII. AVERAGE CLUSTER DEFINED
WITHOUT A SHELL MOLECULE

The molecular number i and volume v are intuitively
attractive features of the i/v cluster characterization.
However, the shell molecule can appear to be a rather
restrictive, even artificial, feature. This motivates us to
derive an equilibrium distribution for an average cluster
having the following characterization.

(1) The cluster is composed of i molecules.
(2) These molecules alone determine the c.m. R of the

cluster.
(3) The cluster molecules occupy a volume v, centered

on R.
(4) For a given R, cluster molecules assume only those

configurations that keep R fixed.
(5} Only molecules within the same cluster interact

with one another.
This cluster will be called an iv cluster and divers from

the i /v cluster in that there is no shell molecule. Howev-
er, the cluster is still characterized by a discrete volume v.
The canonical ensemble partition function q;, (V, T) for
an iv cluster, somewhere in the volume V, is then given

by

Substitution of Eqs. (20) and (33) and the ideal gas law
into Eq. (36) then gives the probability P;„ofhaving ex-

actly one iv cluster somewhere in the volume V as

l

p —e
—p(pu —ip)~t 3Vf . . . f e

@ui~ I i —1~)

l! v v

Xdr& . . dr;

(37)

which is a pure number. Finally, using the definition

i 1 i —1

p i! u u

Xdr, dr,

we can write Eq. (37) as
r

P;„=exp —P A „— ln(—yi ~ V)+pv ip— ,
1

(38)

(39)

This result for the equilibrium distribution of clusters
(where we set n;„=P;„)was originally obtained by Reiss,
Tabazedeh, and Talbot [31] by a more complicated
analysis.

The probability P; of having exactly one iv cluster, re-
gardless of the volume v, can be expressed as the sum of
P,„over all allowable v's in Eq. (39),

q, „(V,T)=~i Vf f ei! v v

Xdr, dr; (33)

P;= gP;„. (40)

where we emphasize that there is no dv (for that matter
no b,v) in Eq. (33). The volume v is a fixed boundary, ap-
pearing only as the limit on the integrals over r& r;

In analogy to the treatment of the i/v cluster, the
probability P;„of having exactly one iv cluster some-
where in V can also be expressed in the language of fiuc-
tuation theory [18,19] as

q,„(V,T)Qtt(N i, V—v, T)—
Q(N, V, T} (34)

where q,„(V, T) is the partition function, Eq. (33), for an
iv cluster and Qtt (N i, V—v, T) is—the partition function
for the remaining N —i molecules and to a system re-
stricted to have no iv clusters.

The ratio of partition functions

Qii (N i, V—v, T)/Q(N, —V, T) in Eq. (34) can be written,
with negligible error, and in direct analogy to the devel-
opment of Eq. (18) from Eq. (15) as

On substitution of Eq. (39) into Eq. (40) we obtain

P;= +exp —P A„— ln(yi —~ V)+pv ip—1
(41)

P;= g exp —P A „——ln(yi ~ V)
AV e 1 ~ 3/2
hv '"

p

The sum over discrete volume "states" in Eq. (41) is
formally exact. Yet Eq. (41) does not explicitly express
the fact that the cluster volume v is, in reality, a continu
ous variable in our problem. However, the sum in Eq.
(41) can be converted to an integral over volume. Let b, v

be the interval in the summation over v in Eq. (41). Phys-
ically this means that b v is formally the proper "quan-
tum of volume, " the proper volume scale, which is as yet
undetermined.

Multiplying and dividing Eq. (41}by hv, we find

Qz(N i, V—v, T)—
Q(N, V, T)

which upon substitution into Eq. (34) yields

P;„=q;,( V, T) e
. r

(35)

(36)

+pv —i@ (42)

t

dv ~ 1
exp —P A, — ln(yi ~ V)+pv —ip- ,

ukv p
(43)

We can then immediately write the sum over volume v in
Eq. (42) as an integral [20,32] to give
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or

1I'; = pdv exp — A;*, ——ln yi V +pv —ip

(44)

where we define the scale p, i.e., the "density of volume
states, "by the relation

where we take the scale p to be independent of the
volume v. Although strictly for convenience, we will per-
mit the volume v to range from 0 to ~. Then, on per-
forming the integration, we find

b, (i,p, T) = (52)
(p )i+1

and, upon using the ideal gas law Pp =p, we can write

p=—b, v

Now, Eq. (44) can be expressed as

P, =f P(u)dv,
U

P, (u)du =p dv exp —P A,', ——ln(yi V)
1

(45)

(46)

b, (i,p, T)=
p p

where since the surrounding vapor is the barostat, p is
the density of that vapor.

The relation between the partition function 6(i,p, T)
and the corresponding thermodynamic characteristic
function, the Gibbs free energy G(i, v, T},is given by [20]

G(i, v, T) = — 1nb(i—,p, T) .
1

(54)

+pv ip (47)

where P;(v)du is the probability of having exactly one iu

cluster when volume is treated naturally as a continuous
variable. We note that p times the exponential in Eq. (47}
is a density so that P, (v }dv is a pure number.

If the scale p is set equal to the number density p, then
Eq. (47) is identical to the result for P;(u)dv, and there-
fore for n;(v)du, obtained earlier by approaches that ex-

plicitly employ a shell molecule [1,2]. However, at this
point, we have not shown that, in fact, the scale p is iden-
tical to p.

VIII. CALCULATION OF THE SCALE p

The scale p involved in the integration over the volume
v in Eq. (47) can be estimated using the constant pressure
ensemble partition function b, (i,p, T} [20]. Consider a
stationary cluster whose internal behavior is that of an
ideal gas. In accordance with the formulation of the con-
stant pressure ensemble, p must be the pressure of the
"barostat, "namely, that of the surrounding supersaturat-
ed vapor, and

Substituting Eq. (53) into Eq. (54) then gives

1
G(i u T)= ——ln7 t

p p p

The chemical potential p of a molecule in the cluster,
i.e., of the ideal gas in the cluster, is given by [20]

1p= ——ln
P p'

(56)

where p' is the density of the gas in the cluster. However,
since the gas inside and outside the cluster is ideal, it is
clear that the equilibrium value of v in the constant pres-
sure case will be such that p'=i lv =p. This argument
depends on i being large enough so that the constant
pressure and canonical ensembles lead to the same ther-
modynamic results. Therefore, for small clusters the ar-
gument involves an approximation.

The relation between the Gibbs free energy of an ideal
gas of i molecules in a volume v at temperature T and its
chemical potential p is given by [33]

G(i, v, T)=i@ . (57)

Substituting Eq. (56) into Eq. (57) then yields

b(i,p, T)= QQ(i, u, T)e (48)
1

G(i, u, T)= ——ln
p

(58)

Q(i, u, T)= (yu)'
it

(49)

Referring to the preceding section, b, (i,p, T) can be writ-
ten in the continuous volume picture as

&(i,p, T)=f p du Q(i, u, T)e (50)

where, again, p=hu . Substituting Eq. (49) into Eq.
(50) then yields

where Q(i, v, T) is the canonical ensemble partition func-
tion for the i ideal gas molecules in the volume v at tem-
perature T, given by

where we set p'=p. Finally, comparison of Eqs. (58) and
(55) requires that

p p (59)

thus yielding as an estimate of the scale p the number
density p of the molecules in the system.

Assuming that the scale p is roughly independent of
the size of the cluster, independent of whether it is treat-
ed as real or ideal, or of where it is located in the volume
V, we can write Eq.(47) as

1
n, (u)du=pdv exp ~ —P A,*, ——ln(yi' 'V)

6(i,p, T)=p f dv e(yu )'

U it
(51) +pv ip (60)
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where we note from Eq .(28) that P, (v)dv =n, (v)dv .This
result is identical to the result obtained for the original
i/v cluster characterization [1,2] that include a nonin-
teracting shell molecule. Thus it might appear as though
it is not absolutely necessary to include the shell molecule
as part of the characterization.

However, a moment's reBection will show that a shell
molecule is implicitly included in the above derivation.
In the quantum-statistical development leading to the
formulas connecting the various partition functions to
thermodynamic properties, molecules are described by
wave functions that "occupy" the entire volume v simul-
taneously. The molecules must know above the presence
of the wall prescribed by v, since that wall enters the
boundary conditions which determine the wave functions
and their corresponding eigenvalues. It is exactly in this
way that the volume, in addition to molecular number i,
dej7nes the quantum state of the cluster.

In the classical limit, and in a macroscopic system, the
requirement that the system sense the volume is likely
transformed into the requirement that some cluster mole-
cule (a "shell" molecule) is always near the wall. But in a
macroscopic system it is overwhelmingly probable that
some molecule will always be near enough to the wall to
interact with it, so that the requirement does not have to
be stated explicitly. However, for a small system such as
the i/v cluster, explicit specification is necessary, in the
form of the shell molecule.

We note further that the awkwardness of the pressure
ensemble associated with its expression as a sum over
volume is automatically removed once the necessary
presence of the wall molecule is recognized. Then the
sum can be converted naturally to an integral in terms of
the coordinates of the wall molecule.

The scale p can be related to a corresponding length
scale g given by

portional to Xdr/V=p dr .Thus the probability of gen-
erating a new classical state is related to the probability
that a new volume element d ~ is occupied, and any such
element has a probability proportional to pd~ of being
occupied.

IX. FUNCTION OF THK SHELL MOLECULE

At the beginning of this paper, the scale p was deter-
mined as a natural consequence of the introduction of the
shell molecule. Furthermore, in the preceding section,
the shell molecule was implicitly present in the derivation
of the scale. However, it remains possible that a theory of
nucleation could be based on an average cluster defined
with a volume, but without a shell molecule, which from
the quantitative point of view might di6'er little from one
developed with a shell molecule.

Since the shell molecule adds another level of complex-
ity to the cluster characterization, it would be tempting
to do away with it, unless, of course, there is a compelling
reason to keep it. There is such a reason. A cluster must
be defined with a shell molecule if, in addition to nu-
cleation theory, it is to be used in the rigorous evaluation
of the total system partition function [1]. In order to see
why this is true, consider Fig. 2.

In the figure, the 1V molecules of the supersaturated va-

vi

p —~—1/3 —]/3 (61)

This length scale is the amount by which the radius of a
spherical volume v must change in order that a new
"volume state" can be defined for the cluster, and hence
for the entire vapor system. This is closely analogous to
the length scale A, involved in the evaluation of the
configurational entropy of microemulsions [34]. There
the scale defines how far an element of interface must be
displaced before a new configuration (new "shape state")
of a globule (the analog of the cluster) can be considered
to have been generated, and hence a new configuration of
the entire microemulsion. For a real microemulsion, the
length scale A, has been estimated to be equal to p
[34].

Although speculative at this point, there might be a
fundamental reason that both of these scales are, within
an order of magnitude, equal to p

' . The idea is that a
distinguishable state, in the sense of the semiclassical
phase integral, in either system is generated by the occu-
pation of an element of volume dv by a molecule. The
probability that such an element is occupied by a specific
molecule is always proportional to d v/V. Since there are
N total molecules in the system, the total probability that
the element is occupied by some molecule is always pro-

FIG. 2. A demonstration of the redundant counting of
con6gurations that follows from the use of a cluster de6ned
without a shell molecule. We show two "volume states" of the
cluster, labeled vl in the top panel and U2 in the bottom panel,
but only one actual physical state {con6guration) for the mole-
cules in the system. The con6guration of the molecules is iden-
tical in both panels. The classical phase integral "counts" this
con6guration twice {once for u l and once for u&), thus leading to
redundant counting.



4296 H. MICHAEL ELLERBY

X. MSCUSSION

shell molecule o

shell molecule
moves out

FIG. 3. A demonstration of the nonredundant counting of
configurations that follows from the use of an i/U cluster. We
show two "volume states" of the cluster, labeled U& in the top
panel and v2 in the bottom panel, each defined by the shell mol-
ecule in dU. Since the only way to change the volume v is to
change the position of an actual molecule in the system, the
shell molecule, there is no redundant counting of configurations
in the classical phase integral, for here there are two physical
states (configurations) for the molecules in the system.

por are "frozen" in one of the configurations available to
them. In the classical phase integral for the N molecules
this configuration should be counted only once. However,
without a shell molecule, it will be counted more than
once. In the figure we show how it would be counted
twice —once when the cluster volume v is equal to v

&
and

again when that volume is equal to v2.
The problem lies in the fact that the "volume state" of

the cluster defined without a shell molecule is not con-
nected to the actual physical state of the molecules in the
vapor. Introduction of the shell molecule solves this
problem, since then the volume v is defined by the posi-
tion of a molecule. Thus the actual physical
configuration of the cluster molecules and therefore of
the overall physical configuration of the X molecules in
the vapor changes when the volume changes (see Fig. 3).
In this way, the shell molecule aids in the exhaustive and
nonredundant counting of the configurations that enter
into the classical phase integral of the total system.

It should also be emphasized that in addition to the
shell molecule, the centering of the volume v on the c.m.
is also required for nonredundant counting. Both the
shell molecule and the c.m. endow the cluster with natu-
ral "markers" that enable the unambiguous and proper
evaluation of the partition function of the system.

Most theories of nucleation, including modern ones
such as the phenomenological theory of Dillman and
Meier theory [24], characterize the average physical clus-
ter by a single parameter i, namely, the number of mole-
cules in the cluster. In reality, the clusters represent den-
sity fluctuations and no prescription is given for distin-
guishing those fluctuations that contribute to the forrna-
tion of the stable phase from those that do not. As dis-
cussed previously [1,2, 16,17], the distinction must really
be made on a kinetic basis (i.e., on the basis of the rate
theory) rather than on a thermodynamic basis.

It turns out that the possibility of making the distinc-
tion in this way depends on the ability to distinguish be-
tween clusters with the same molecular number i, but
diferent volumes U, or difFerent other parameters. Since
the overwhelming number of density Quctuations are not
involved in the dynamics of the phase transition, the
failure to provide the theory with a fundamental means
of distinction represents a serious problem in the attempt
to devise a fundamental theory.

In the existing theories the distinction is made on an ad
hoc basic, usually requiring those clusters that serve as
embryos to exhibit a density identical to that of the bulk
liquid or a density that is some simple function of that
density. By suppressing the mutual independence of i
and v in this manner, one is limited to a much narrower
view of molecular events and loses considerable insight
into the molecular mechanism of nucleation. All theories
of nucleation that identify embryos by i alone are liable to
this criticism. Thus the properties of the volume v, the
number i, and the shell molecule are all vital elements in
the cluster characterization.

In closing„we should emphasize that the cluster distri-
bution based on the i /U cluster can be used in modest
variants of the conventional rate equations (involving the
new property of cluster volume) to form the foundation
on which a theory of nucleation can be built, once the
free energy of formation of the i/U cluster is calculated.
Many approaches exist for the evaluation of this free en-
ergy. It can be determined by computer simulation (re-
quiring model potentials) [16]. Also, the modified liquid
drop model [16], discussed in the Introduction, provides
a simple way to calculate it. Another approach involves
the use of density functional t-heory [35—37] to calculate
the work of formation of the i /U cluster [38].

Future work may address the development of an op-
timum method for calculating the free energy of an i /v
cluster, using a cluster model whose complexity lies
somewhere in between the strict microscopic i/u cluster
and the more macroscopic MLDM. A rate theory based
on such a model will hopefully provide both an accurate
prediction of rates and insight into the mechanism of nu-
cleation.

ACKNOWLEDGMENTS

The author would like to thank Professor Howard
Reiss for invaluable discussions. This work was support-
ed by the National Science Foundation Grant No. 4-
44383S-HR-21116 and by the Petroleum Research Fund
No. 2-443835-HR-59424.



49 DISTRIBUTION OF DENSITY FLUCTUATIONS IN A. . . 4297

[1]H. M. Ellerby, C. L. Weakliem, and H. Reiss, J. Chem.
Phys. 95, 9209 (1991).

[2] H. M. Ellerby and H. Reiss, J. Chem. Phys. 97, 5766
(1992).

[3]L. Farkas, Z. Phys. Chem. (Leipzig) 125, 236 (1927).
[4] M. Volmer and A. Weber, Z. Phys. Chem. (Leipzig) 119,

277 (1926).
[5] R. Becker and W. Doring, Mol. Phys. 24, 719 (1935).
[6] J. Frenkel, J.Chem. Phys. 7, 324 (1939).
[7]Y. B. Zeldovich, in Khimicheskaya Fizika i Gedrodinami

ka (Chemical Physics and Hydrodynamics), Selected Pa-
pers (Nauka, Moscow 1984), p. 107.

[8] P. E. Wagner and R. Strey, J. Phys. Chem. 8S, 2694 (1981).
[9] R. Miller, R. J. Anderson, J. L. Kassner, and D. E. Hagen,

J. Chem. Phys. 78, 3204 (1983).
[10]G. W. Adams, J. L. Schmitt, and R. A. Zalabsky, J. Chem.

Phys. 81, 5704 (1984).
[11]P. E. Wagner and R. Strey, J. Chem. Phys. 80, 5266 (1984).
[12]A. Kacker and R. H. Heist, J. Chem. Phys. 82, 2734

(1985).
[13]R. Strey, P. E. Wagner, and T. Schmeling, J. Chem. Phys.

84, 2325 (1986).
[14]C. Hung, M. J. Krasnopoler, and J. L. Katz, J. Chem.

Phys. 90, 1856 (1989).
[15]Y. Viisanen, R. Strey, and H. Reiss, J. Chem. Phys. 99,

4680 (1993).
[16]C. L. Weakliem and H. Reiss, J. Chem. Phys. 99, 5374

(1993).
[17]C. L. Weakliem and H. Reiss, J. Chem. Phys. (to be pub-

lished}.
[18]R. C. Tolman, The Principles of Statistical Mechanics (Ox-

ford University Press, Oxford, 1938), Chap. XIV, pp.
637-640.

[19]A. Einstein, Ann. der. Phys. 33, 1275 (1910).

[2()] T. L. Hill, Statistical Mechanics: Principles and Applica-
tions (Mcoraw-Hill, New York, 1956).

[21]A. C. Zettlemoyer, Nucleation (Dekker, New York, 1969).
[22] F. F. Abraham, Homogeneous Nucleation Theory

(Academic, New York, 1974}.
[23]J.E. McDonald, Am. J. Phys. 31, 31 (1963);30, 870 (1962).
[24] A. Dillmann and G. E. A. Meier, Chem. Phys. Lett. 160,

71 (1989);J. Chem. Phys. 94, 3872 (1991).
[25] D. A. McQuarrie, Statistical Mechanics (Harper and Row,

New York, 1976), Chap. 12.
[26] J. K. Lee, J. A. Barker, and F. F. Abraham, J. Chem.

Phys. 58, 3166 (1973).
[27] M. E. Fisher, Physics 3, 255 (1967).
[28] H. Reiss, J. L. Katz, and E. R. Cohen, J. Chem. Phys. 48,

5553 (1968}.
[29] J. Lothe and G. M. Pound, J. Chem. Phys. 36, 2080 (1962).
[30] H. Reiss and P. Mirabel, J. Chem. Phys. 91, 1 (1987).
[31]H. Reiss, A. Tabazedeh, and J. Talbot, J. Chem. Phys. 92,

1266 (1990).
[32] T. M. Apostol, Mathematical Analysis, 2nd ed (Addis. on-

Wesley, Reading, MA, 1974).
[33]F. C. Andrews, Thermodynamics: Principles and Applica

tions (Wiley, New York, 1971).
[34] H. Reiss, H. M. Ellerby, and J. A. Manzanares, J. Chem.

Phys. 99, 9930 (1993).
[35]X. C. Zeng and D. W. Oxtoby, J. Chem. Phys. 94, 4472

{1991);95, 5940 {1991).
[36] D. W. Oxtoby and R. Evans, J. Chem. Phys. 89, 7521

(1988).
[37]D. W. Oxtoby, in Fundamentals of Inhomogeneous Fluids,

edited by D. Henderson (Dekker, New York, 1992), Chap.
10, p. 407.

[38] V. Talanguer and D. W. Oxtoby (unpublished).


