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Formation of interfaces in bicontinuous phases
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VVith the charge-frustrated model, this paper examines the structure of interfaces in bicontinuous
oil-water-surfactant phases. We analyze the nonlinear model by variational perturbation theory
with a reference system that explicitly allows for interfaces. On the length scales consistent with a
microscopic length cutoff, the theory predicts distinct microphase separation for some systems that
have been considered bicontinuous. For other systems, for which experimentalists have imagined
microphase separation but not bicontinuity, the theory predicts near homogeneity, i.e. , highly diffuse
interfaces.

PACS number(s): 82.70.Kj, 05.20.—y, 61.20.Gy, 61.25.Em

I. INTRODUCTION

Applying the charge-frustrated model, this paper de-
velops conclusions concerning the nature of interfacial
structure in bicontinuous phases. The charge-frustrated
model is a nonlinear, field theoretic Hamiltonian for oil,
water, and surfactant microemulsions [1—3]. The fields
in this theory are the densities of the different compo-
nents. The Hamiltonian predicts self-assembly [2]. For
bicontinuous phases, an optimized Gaussian treatment of
this nonlinear Hamiltonian seems justified [3]. In partic-
ular, the resulting parameters acquire physically reason-
able values when the predictions of the theory in this ap-
proximation are fit to experimental small-angle neutron
scattering (SANS) data. A Gaussian reference system,
however, does not support thin interfaces. In this pa-
per, we consider a reference system generated by a non-
linear yet local transformation of Gaussian fields. The
procedure is based upon a variational principle. The pa-
rameters associated with the reference system allow the
probability distribution for the oil or water densities at
a given point in space to vary &om the bimodal behav-
ior expected for a microphase-separated system to the
Gaussian behavior expected for a nearly homogeneous
system. This treatment, therefore, allows us to address
the issue of whether interfaces in a bicontinuous phase
are sharp or diffuse. We will see that both possibilities
exist, depending upon thermodynamic state conditions.

Landau-Ginzberg expansions have often been used to
model microemulsion behavior [4]. The advantage of the
charge-frustrated model is that the adjustable parame-
ters involved have physical meaning in terms of quanti-
ties such as molecular lengths and pure oil-water surface
tensions. Recently a single-component Landau-Ginzberg
field theory has been analyzed by a lattice Monte Carlo
simulation [5]. The simulations, while small scale, ex-
plore a variety of microemulsion phases, from lamellar to
bicontinuous. These simulations agree with our analyt-
ical theory that bicontinuous phases with rather diffuse
interfaces can occur.

Our approach of assuming there exist underlying Gaus-

II. THEORETICAI DEVELOPMENT

The nonlinear charge-kustrated Hamiltonian devel-

oped in Refs. [1,3] is of the following form:

1
PH[p] = ) dr —p, (r) [ln p; (r) —1]

i=1

+
2(27r) (i.~(i,

dk h p (—k) A(k) b p(k), (1)

where

A(k) = P[(j +gk )D+4mz C/k ] .

sian fields nonlinearly related to physical fields is not
new. For example, clipped Gaussian models have been
used to study phase separation due to spinodal decom-
position [6] and microphase separation in microemul-
sions [7,8]. Transformed Gaussian functions have also
been used to approximate the nonlinear time dependent
Landau-Ginzburg equations for domain growth [9]. In
these works, the transformation was chosen arbitrarily
to be a step function [6—8] or sigmoidal function [9] so as
to generate an extreme form of bimodality. Our approach
employs a Hamiltonian based criterion for the transfor-
mation and need not lead to bimodal density distribu-
tions. The variational approach developed here should
be applicable to a variety of systems currently of interest,
&om microphase-separated microemulsions to strongly
segregated diblock copolymer melts.

In Sec. II we develop a theory for the variationally
optimized clipped Gaussian reference system. We apply
these results by comparing SANS data with the scat-
tering curve resulting &om the variationally optimized
reference system for the nonlinear oil, water, and sur-

factant microemulsion Hamiltonian in Sec. III. We use

a prediction of microphase separation &om Sec. III to
present typical real-space oil, water, and surfactant con-
figurations in Sec. IV. We conclude in Sec. V.
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Here the vector hp(r) has components p, (r) —p; for the
density fiuctuations of water (i = 1), surfactant head (i =
2), and surfactant tail segments (i = 3). There are only
three independent densities since for long wavelengths,
i.e. , for k ( k„weassume the oil density (i = 4) is related
to these three densities by incompressibility. That is,

P4( ) = Po Pi( ) P&( ) Ps( )

p;(r) =;[P,(r) + P,.], i=123, (4)

where c;(z) is referred to as the transfer function and
the fields P;(r) are taken to be Gaussian. The transfer
function is required to be positive and typically would be
expected to have a sigmoidal shape. The overall scale of
the fiuctuations in P;(r) then defines whether the clipping
function is essentially a linear transform, a step function,
or a smoothly varying sigmoidal function. That is, a
small scale implies diffuse interfaces; conversely, a large
scale implies sharp interfaces. The shift P,. is defined by
the condition

(p'(r)), = p',

where po is the total particle density of the fiuid. The
quantity n; is the number of segments per component
(e.g. , n2 is the number of waterlike, or head, groups in
a surfactant molecule), the symmetric matrix C has el-
ements C22 ——1/nz, C33 —1/As C23 — 1/'R2A3 and
zero otherwise, and the symmetric matrix D has elements
Dqq ——D22 ——Dq2 ——1 and zero otherwise.

The Hamiltonian (1) is of the form of a nonquadratic
local term and quadratic nonlocal terms. Competi-
tion between these two terms leads to a variety of self-
assembled bilayers and micelles in Monte Carlo calcu-
lations [2]. The electrostatic or Coulombic terms, which
&ustrate the underlying Ising system, arise Rom the con-
straints of surfactant stoichiometry. The magnitude of
the frustrating charge is z = {3/4vrPp, A ) /, where 6 is
root-mean-square length separating head and tail groups
in surfactant molecule and p, is the bulk concentration of
surfactant. The presence of the Coulombic terms leads to
the characteristic peak in the scattering curve observed
by SANS experiments when the Hamiltonian is treated
by a variationally optimized Gaussian reference system
[3].

A Gaussian reference system, however, cannot support
thin interfaces and therefore cannot discern whether den-
sity profiles in a self-assembled system are sharp or dif-
fuse. To address this physical issue, we propose the fol-
lowing reference system:

The spectrum ~1 1(k) in Eq. (7) depends only on [k[ just
as A(k) in Eq. (1) depends only on [k~ in an isotropic
fiuid. Note that the positivity of c; does not guarantee
that p4(r) generated &om the incompressibility condition
will be positive. A treatment more complete than we
are proposing here would incorporate four independent
fields and require that incompressibility is satisfied only
at k=o.

The Gibbs-Bogoliubov-Feynman variational bound
can be used determine the unknown clipping function
c; and the Gaussian statistics of P; [10]:

where

ln Z & ln Zp —P(H [p] —Hp [P])

Z= 'Vpr exp —Hpr

Zo —— B r exp —Ho r

where the last term comes f'rom the Jacobian of the trans-
formation. The volume element is v = e, where e is a
grid spacing. Fluctuations on length scales smaller than e

are not resolved. The volume element v can be identified

6 (~)'
(12)

m (kc)
by the requirement that a linear change of variables in
a Gaussian field theory leave the partition function (10)
invariant. Essentially this calculation entails equating
the volume in k space associated with a lattice {8ms/v)
to that associated with a spherical cutofF (saks).

Denoting the density-density correlation function by

X'2(lr - r'I) = {~p'(r)~ps(r'))0

the function to be minimized is given by

E = F+ ) ~ ) y;z(k)A;i(k) —lndety~ 1(k)
~

.

Implementation of the variational principle implied by
Eq. (8) requires expressing H[p(r)] in terms of P(r). The
result of this change of variables gives a Hamiltonian for

~(r)

PH'[(4'(r))] = &H((c'[&'(r)1))

1——) dr ln Bc;/8$;(r),
v i=1

Pp[g(r)] oc exp ( —PHO[qb(r)]) (6)

and

PH [&( )]=, dk & (—~)[~"(k)] '4(~) .2(2~)' (i,((a.

where the average () is taken over the Gaussian fields0
P(r) = [Pi (r), P2 (r), Ps (r) ] with the distribution

Here V denotes the system volume and the function F
contains the average of the nonquadratic local terms in
8'.

[,',"(o)]=).( *( )[ '( ) — ])./ '

1—
~ ) .(ln[~'/~4'(r)l). .

i=1
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where

~' = ~'[y,',"(o)]= (Bc'/B&') o

(16)

The terms omitted from Eq. (16) are of the order of

[y, (r)/y, (0)] smaller than those retained, and expan-(o) (o)

sion (16) is valid at large r where the correlation function
decays. Expansion (16) provides an explanation for the

observation that y;~(k) and y, l(k) can be roughly pro-
portional at small k. It is an accurate approximation for
bulk correlation functions (as opposed to surface or in-
terface correlations), and we will limit its application to
such cases.

With this simplification, Eq. (14) becomes

Note that, as indicated, F can depend only on y; . (r = 0)(o)

given the Hamiltonian (7). This functional (14) should

be minimized with respect to the functions y;. (k) and
the functions c, (P;).

The functional minimization of Eq. (14) with respect
to yI. l(k) is difficult due to the complicated relationship

between y, ~. (k) and y, . (k) implied by Eqs. (4) and (13).
In our numerical work, however, we have observed that
for bulk correlations, the functions y;~(k) and y, (k)
are roughly proportional at small k. This proportionality
holds for microemulsion bulk SANS data. Given this fact,
the proportionality constant is given by the coefFicient of
the leading term in the expansion of y;~(r) in terms of

Io) („)

Gaussian reference system. Essentially, the inverse spec-
trum of the variationally optimized reference system is
a constant times that in the original Hamiltonian plus
another constant, with the constants determined self-
consistently. Note that Eq. (20) reproduces the varia-
tionally optimized Gaussian reference system of our prior
paper [3] when the transfer function is linear.

Equation (20) can be solved by a globally conver-
gent modification of Newton's method [ll] applied to
Eqs. (17) and (21). The region of convergence (i.e., the
basin of attraction) around the solution is exceedingly
small, however, when y;i(k) has the form typical of mi-
croemulsion SANS data. This feature implies the param-
eters associated with PH must be varied only in small
increments if the root-finding algorithm is to converge
on Eqs. (17) and (21). The F function of Eq. (15) con-
tains three one-dimensional integrals due to single-site
averages associated with pi (r), p2 (r), and p3 (r) and one
three-dimensional integral due to the three-site average
associated with p4(r). The single-site averages were done
to a specified tolerance by adaptive Gauss-Legendre in-

tegration and the multi-site average was done by 2Qth-
order Gauss-Legendre integration [12]. For consistency
with our companion paper [3], the p;(r) ln p;(r) in F were
expanded to fourth order in bp;(r) about p, before the
averages were taken. The p; were also determined by
adaptive Gauss-Legendre integration, as was the $0 im-

plicitly defined by Eq. (5).

III. RESULTS AND DISCUSSION

E = F+ ) ~ ) &&yI,"(k)A„(k)
2V

(18)

We have fit the variationally optimized transformed-
Gaussian reference system to bulk-contrast SANS data
taken for several typical microemulsion systems [6—9].
That is, the sum of the residuals squared (8), given by

Implementing the condition
~ = —Q[&-b (ki) —»»(»)]' (22)

BE/By, ,
'

(k) = 0

leads to the relation

(19)

where

(k) = a,, + p;p, A,, (k)
-(o)-'

+ "e
~ee ) Ve f dk A,e( )i; ee(te)e,

(20)

was minimized with respect to the parameters in /3H for
the measured SANS intensity i b, (k). The wave vectors

k~ were chosen uniformly in the small-angle region as in
our companion paper [3]. The scale factors f are calcu-
lable in all these experiments [3]. However, as in Ref. [3],
we will take f as an adjustable parameter. The vari-
ability in f is then one measure of the accuracy of our
approach. The correlation function yii(k) is generated

from the relation yii(k) = piyii (k). In order to apply
Eq. (20), the form of c;(x) is required. We chose

dF dF
(o) (o)~x;,- ~x,-;

(21)
c;(x) = c(x) = —[1+tanh(x)] .

2
(23)

Note that the total derivatives in Eqs. (20) and (21) in-
volve partial derivatives with respect to Po due to the
constraint (5). It is to be understood that the summation
and integration over k in Eqs. (18) and (20) are confined

to k ( k . Indeed, without a cutoff, y, . = y, (r = 0)(o) (o)

would be infinite.
Equation (20) is an integral equation for the correla-

tion function of the variationally optimized transformed-

In a seemingly more general choice of c;(x) = (po/2) [1 +
tanh(A;x)], the parameter A; is irrelevant since this choice
coincides with a linear transformation of the fields P;(r).
The transfer function (23) ensures that pi(r), p2(r), and

p3 (r) are positive and leads to values of p4 (r) generated
by the incompressibility condition that are usually posi-
tive. Tables I and II list the results of our fit of the pa-
rameters j and g when PH is treated by the variationally
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TABLE I. The results of fitting the model Hamiltonian Eq. (1) to the SANS data of Ref. [15]. Only the data for the 1-octanol
cosurfactant were fit. Both the variationally optimized Gaussian reference system (VG) [3] and the variationally optimized
transformed Gaussian reference system (VTG) parameters are indicated. The energy units are Ic&T and the length units are
A, except for fvo and fvTo, which have units of A /cm. Calculations done with cutoff wave vector k = 0.15 A

p2+ p3
0.010667
0.011333
0.011667
0.012333

px
0.008333
0.006667
0.005667
0.004667

p4
0.014333
0.015333
0.016
0.016333

YLQ

1
1
1
1

n2
1
1
1
1

n3
10
10
10
10

A4

15
15
15
15

8.0
8.0
8.0
8.0

fvG
7.13
9.?7

11.75
9.38

gVG )VG
768 -298
957 -359

1043 -399
1262 -436

jvTG
10.8
14.3
15.8
12.1

gVTG
820
975

1180
1560

2vTG
-335
-454
-612
-740

optimized Gaussian [3] and transformed-Gaussian refer-
ence systems. Due to the small basin of attraction and
the resulting difficulty in finding convergence to Eq. (20),
the parameters that minimize Eq. (22) were determined
by hand for the transformed Gaussian case. The qual-
ity of the fits is roughly that of our preceding paper [3],
however.

The form on the transfer function Eq. (23) was chosen
to allow the possibility of bimodal distributions in the
point densities of oil and water in the Hamiltonian (1).
We let p;(p) denote the probability distribution that the
density p;(r) at position r has the value p, a quantity
independent of r in this translationally invariant system.
Figures 1—3 present these density distributions for wa-
ter as predicted by the variationally optimized Gaussian
and transformed Gaussian cases. The pure Gaussian case
results simply in

p;(p) = [2xy;;(0)] exp[—(p —p;) /2X, ;(0)] . (24)

The transformed Gaussian results in a modified distribu-
tion

p*(p) = [2 X,',"(0)] '/'
p[—4,'/2X,',"(0)] (25)

1

Bc Bg;'

where p = c(P; + $0) and c(x) is given by Eq. (23). It is
immediately obvious that the transformed-Gaussian ref-
erence system leads to densities that more nearly obey
the constraints real densities do than does the Gaus-
sian reference system. For example, the water site den-
sity is always positive in the transformed-Gaussian ref-
erence system. The Gaussian reference system predicts
large Quctuations in the water site density, and the re-
sulting large width in the probability distribution leads
to negative densities occurring with significant probabil-
ities. Such negative densities are clearly unacceptable in
a quantitatively accurate density field theory. These neg-
ative densities lead to distortions in the predicted g;z (r)
and can lead to such results as a negative radial distri-
bution function g;~(r), which is impossible in any real

physical system [13]. A transformed-Gaussian reference
system alleviates such difficulties (with the proviso that
incompressibility be treated correctly as a condition only
at k=O).

More striking is the shape of the p;(p) curves in Figs. 1
and 2 for the transformed-Gaussian reference system.
While they are certainly distinct &om the Gaussian dis-
tributions, in no case are they highly bimodal. In fact,
neither of these systems was postulated to be bicontinu-
ous, although Ref. [14] suggested freeze-fracture evidence
for microphase separation. Figure 1(a), which corre-
sponds to a scattering curve that peaks at the smallest k,
is the only case in which a degree of bimodality occurs.
Intuitively, one expects the degree of mixing to increase
and the degree of bimodality to decrease as the charac-
teristic domain size of the microemulsion decreases. This
result is expected due to the increased role of interfa-
cial fiuctuations on small domains. In other words, a
microemulsion can only microphase separate when the
microphases are of a significant size. This trend of de-
creasing bimodality is observed in Figs. 1(a)—1(d), where
the degree of bimodality decreases as the position of the
SANS peak shifts to a larger inverse distance. The de-

gree of mixing is also expected to increase and interfaces
to broaden as the concentration of surfactant is increased
beyond that which can be accommodated at a sharp, al-
beit complicated, interface. Figure 2 indeed indicates a
complete lack of bimodality for a system with a very high
surfactant concentration.

Bear in mind that the length scales resolved in our the-
ory are those that are larger than v /s separated, but the
typical distances across a local oil- or water-rich region
are of the order of or smaller than vi/s 30 A. . In such
a case, the probability p;(p) would be unimodal.

The experimental i(k) corresponding to Figs. 1 and
2 roughly satisfy a sum rule implied for a microphase-
separated system with a highly bimodal site density dis-
tribution. That is, yii(r = 0) ( pi(po —pi), and equality
is achieved if the system is highly bimodal. (Actually this
sum rule applies to data that have been smoothed with

TABLE II. The results of fitting the model Hamiltonian Eq. (1) to bicontiiiuous SANS data.
The energy units are k~T and the length units are A., except for fvTo, which has units of A /cm.

p2+ p3
0.017333
0.004667

pz
0.008
0.014333

p4
0.008
0.014333

n2
7.2
4

n3
9.6
16

f54

8
6

10.0
8.0

fvTa
447.8
4.6

gVTG
4840
992

2vTG
-104
-157

A fit to SANS data of Ref. [16]. The wave vector cutoff used in the calculations is k, = 0.15 A.
A fit to SANS data of Ref. [17]. The wave vector cutoff used in the calculations is k, = 0.10 A.
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a filter to remove the high-k molecular details Rom the
scattering curve. Such a filter would have a vanishing
eH'ect on the small-k data measured by SANS, which ad-
ditionally decay as k for intermediate k.) In fact these
experimental data imply that yii (0) is somewhat larger
than pi (po —pi), indicating that perfect contrast was not
achieved in these SANS experiments. Our treatment of
the model Hamiltonian (1), however, satisfies the bound

yii(0) ( pi(po —pi) and fitting the experimental data
with gii(k) requires values of f that are two or three
times too large. For example, had perfect contrast been
achieved for the data reported in Ref. [15], f would be
4.2 A.s/cm. To fit this data, we required f 10 A /cm

(see Table I). This difference is perhaps a matter of de-

tail which might be clarified with further experimental
work focusing on the contrast matching and with a more
complete treatment of the charge kustrated model that
allows for more than just two energy parameters.

For the data in Ref. [16], however, the difference may
be far more significant and seems to deserve more atten-
tion both theoretically and experimentally. In the case
of Ref. [16],assumption of perfect contrast yields f = 3.7
k3 p'cm, while the transformed-Gaussian treatment of the
Hamiltonian (1) requires f = 400 As/cm to fit that data
(see Table II). Assuming that there is no error in the
reported experimental scale, we must conclude that the

10 -r------- 10

8 60---

b)

4
I

0

0.0 0.2 0.4 0.6 0.8 1.0

/p,
0.0 0.2 0.4 0.6 0.8 1.0

/p,

10

10

8

c) 8--

4--
15

15

2

0

0.0 0.2 0.4 0.6 0.8 1.0

0

0.0 0.2 0 4 0 6

p/p,
0.8 1.0

FIG. 1. Single-site probability distributions for the water density [denoted b ( )] f theno e y p,.~&p ~jj~or e vanationaBy optimized Gaussian
in 'ne an t e variationally optimized clipped Gaussian (thick line) treatments. (a)—(d) correspond to the first throu h

fourth fits listed in Table I. The density po is 1/ 30 A . In the cli ed theor
pon o e rs oug

0« . I th Gp & po. n t e Gaussian theor the G
n e c ippe t eory, pi(p) is properly zero outside the pictured range

y, he Gaussian pi(p) is, at least to some extent, nonzero outside that region. The insets

depict comparisons of the bulk scatterin curves redicted b
SANS ((diamonds).

g s pre ic e y the transformed-Gaussian treatment mith those measur d bs re ice —
' sure y
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10 10

4oo
~ 1500

0

k(A ) 0.15
0

k(A ) 0.08

0.0 0.2 0.4 0.8 0.8
p/r,

1.0 0.0 0.2 0.4 0.8 0.8 1.0

FIG. 2. Single-site probability distributions for the wa-

ter density [denoted by p;(p)] for the variationally optimized
clipped Gaussian treatment corresponding to the first fit in
Table II. The density po is 1/30 A . The inset depicts a com-
parison of the bulk scattering curve predicted by the trans-
formed-Gaussian treatment (thick line) with that measured
by SANS (diamonds).

FIG. 3. Single-site probability distributions for the wa-
ter density [denoted by p, (p)] for the variationally optimized
clipped Gaussian treatment corresponding to the second fit
in Table II. The density ps is 1/30 A. . The inset depicts
a comparison of the bulk scattering curve predicted by the
transformed-Gaussian treatment (thick line) with that mea-
sured by SANS (diamonds).

theoretical model predicts density fiuctuations that are
far too small for this particular system. Indeed, in the
model with only two j and g parameters, density fiuctua-
tions cannot be very large at the high surfactant concen-
trations considered in Ref. [16] (see also Ref. [3]). The
resulting near-Gaussian behavior of the density predicted
by the model for this system is evident in Fig. 2.

In contrast, we can find bimodality for bicontinu-
ous phases where the experimental microemulsion SANS
data show a peak at smaller k than do those of
Refs. [15,16]. Figure 3 indicates the results of a varia-
tionally optimized transformed-Gaussian calculation for
such a situation. The surfactant interface was studied by
contrast matching in Ref. [17], and the mean curvature
of the interface was shown to be zero. Such a result is en-
tirely consistent with a bicontinuous structure. Figure 3
clearly supports such a conjecture. Note that we predict
bimodality even though our fit value of f is somewhat
larger than the expected value of 2.5 A.s/cm.

The authors of Ref. [18] suggest that their SANS data
is &om a disordered bicontinuous phase as well. We have
found these data to be extremely diKcult to fit with the
variationally optimized transformed-Gaussian procedure.
The region of convergence for Eq. (20) is particularly
small in this case, and the efBciency of the algorithm
we use to solve this equation diminishes as the region
of convergence shrinks. We have carried the calculation
far enough to successfully fit the peak position of the
SANS structure factor. The resulting parameters lead
to a highly bimodal density distribution sin~&ar to that
presented in Fig. 3. A markedly bimodal density distri-
bution is consistent with the low surfactant concentration

in the system [allowing Eq. (25) to show birnodality with

only a moderate yi(i) (0)] and with the experimental data
that reasonably satisfy yii(0) = pi(po —pi).

The oil-water surface tension associated with Hamil-
tonian (1) applied to a phase-separated oil and water
mixture (in the absence of surfactant) can be calculated
in a mean-field approximation [19]. We have described
this standard calculation for this particular context in
Ref. [3]. We have carried out the calculations for j and g
parameters listed in Table I. We find surface tensions in
the range 0.17—0.28 knT/ jt. with the j's and g's arrived
at through the Gaussian treatment 3]. We find surface
tensions in the range 0.19—0.43 knT/A2 for the j's and g's
arrived at through the transformed-Gaussian treatment.
The surface tensions obtained &om the parameters in Ta-
ble II are in a similar range. A typical oil-water surface
tension is 0.12 kBT/%2[20]. Given th. at the transformed-
Gaussian treatment is expected to be the more accurate
of the two, it appears fortuitous that the Gaussian treat-
ment leads to a more accurate surface tension. In fact,
one should not expect a water, oil, and surfactant mix-
ture should be described by only two energy parameters
j and g. There should be a whole matrix of such terms
[3]. The simplified assumption of only two parameters
is what leads to the only approximately correct surface
tension deduced above.

Along with surface tension, the mean-field approxima-
tion also predicts interfacial widths. With the parameters
listed in Tables I and II, this approach generally predicts
interfacial widths of oil-water interfaces to be roughly 10
A. The parameters found to fit the scattering data of
Ref. [16], however, lead to a rather large width of 50 L
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1 Lj2
« (~[ —~'(z)1)L

1= —(dz/dp) .
L (26)

for the oil-water interface in the absence of surfactant.
Such a large width in the pure oil and water system is,
of course, consistent with the predicted lack of bimodal
behavior in the microemulsion.

With the aid of a mean-field model, one may attempt
to estimate an intrinsic oil-water interfacial width in
the presence of surfactant, i.e., for the bicontinuous mi-
croemulsion. Specifically, we use

IV. REAL-SPACE IMAGES

Our transformed Gaussian reference system is very
similar to previous random wave [6—8] and transformed
Gaussian [9] reference systems. Real-space images ap-
pear frequently in those works. We describe below an
efficient method for generating real-space microemulsion
configurations from our transformed Gaussian reference
system.

The field theoretic Hamiltonian Eq. (7) provides a
well defined probability for any given field configuration,
Eq. (6). This distribution can be used to display typical
density configurations that will occur in the ensemble.
Specifically, the quadratic Hamiltonian in Eq. (7) can be
written for a finite volume V as

Here the length L is the typical separation between the
centers of oil-rich and water-rich regions for a microphase
separated system. A reasonable value is L x/k
10zA. , where k is the wave vector at which i(k) is
maximum. For the system considered in Fig. 3, the solu-
tion of the differential equation (26) is shown in Fig. 4.
The broad interfacial profile pictured there must be the
result of an extremely small effective surface tension (if
that property is defined). Indeed, consider the total sur-
face area A separating microregions of oil from those of
water. Since the correlation length of the bicontinuous
phase is finite, one might argue that this total surface
area grows linearly with system size. Our transformed-
gaussian treatment, in fact, predicts the surface area is
extensive (see also Fig. 5). As such, the average sur-
face area is that which minimizes the &ee energy I".
Hence BI"/BA = 0. In other words, the persistence of
microphase separated structures throughout a bicontin-
uous system implies that the surfactant has induced zero
surface tension between oil and water.

1.0

0.8—

PIIo ——b. g(0)+ —) 'jb (
—k)[yi l(k)] 'P(k), (27)

where the primed summation is over half of k space with
k & k, and b is used to set average field values.

When specialized to a one-component field by inte-

grating out all field components but one P;(r) such a
Hamiltonian predicts that all the Fourier components,
real and imaginary parts, in "half" of k space are in-

dependent, Gaussian random variables, with a variance

Vy, , (lk)/ .2 The other half of k space is defined by

the relation P;(—k) = P;(k). There are, however, sev-

eral special points in k space where, due to the con-
straints of reality of P;(r) and of translational symmetry,

P;(k) is required to be real. If the grid is numbered by

( N /2+1, —N„/2+1, —N, /2+1) ——(N /2, N„/2,N, /2),
these special points are the eight points given by (0 or
N /2, and 0 or N„/2, 0 or N, /2). The (real) Fourier com-

ponents at each of these locations has variance Vy;, l (k).
The linear k = 0 term in Eq. (27) simply specifies the
average field values, implying

(&'(o)) = -V).~,',"(o)b

and

(P;(k)) = 0, k g 0.

0.6—

0.4—

0.2—

The method of generating a typical configuration given
the Hamiltonian Eq. (27) is thus clear. Fourier compo-
nents are generated on a grid in half of k space by assign-

ing Gaussian random variables to each grid point. The
real-space density configuration is generated by perform-
ing a Fourier inversion,

P;(r) = —) rtr;(k)e

0.0 r

0.0 0.2 0.4 0.6 0.8 1.0

zlL

FIG. 4. The average interfacial density pro6le predicted
using Hq. (26) for the system corresponding to the second fit
of Table II.

where the sum is truncated at a wave vector correspond-
ing to the discrete grid for visualization in real space.

The process can be optimized further by simply as-

signing Gaussian random variables with standard devia-

tion [y,, (k)/2V] ~ to the real and imaginary parts of the
Fourier components on half of a grid in k space, gener-
ating the other half of k space, and using a fast Founer
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transform to accomplish the sum over k space in Eq. (29)
[21]. This operation of generalizing a typical configura-

tion is very eKcient and is O(Ns ln N) for a N x N x N
grid.

Figure 3 indicates that the water density is highly
bimodal for the system of Ref. [17]. As such, we can
choose pi(r) = po if Pi (r) ) 0 and zero otherwise for dis-
play purposes. This essentially is choosing the transfer
function to be a Heaviside function. Figure 5 presents
a three-dimensional image of the dividing surface of a
typical configuration generated in this fashion. The sur-
face displayed is the level surface pi(r) = p4(r). Within
the spirit of our model, this surface represents the layer
of surfactant separating the bicontinuous phases oil and
water phases. There are clearly many interesting topo-
logical features in this bicontinuous con6guration. On
long length scales, the behavior is random, but on shorter
length scales, regions of a single, connected phase are
clearly present. Of course, surface elastic moduli can be
extracted &om such configurations [8]. Figure 6 depicts
a two-dimensional slice of this three-dimensional config-
uration. This configuration is remarkably similar to the
real-space results of freeze-fracture TEM [14,22].

The domains observed in Fig. 5 have a large variety
of shapes, with many narrow necks evident in the local
domains of oil and water. Recall that a large wave vec-
tor cutoK k is intrinsic to the long-wavelength Hamilto-
nian (11) and implies a finite grid. The elemental length
of the grid in Fig. 5 is 30 A. To quantify the degree of
constriction, we have computed the number of elemental
cells that are adjacent to the interface on that grid. The
number represents 45% of the total.

FIG. 5. The three-dimensional level surface pi(r) —p4(r) is
visualized for the second parameter set of Table II. The view
is along the z axis of a 64 x 64 x 64 grid with 30 A resolution.
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FIG. 6. The density field pi(r) —p4(r) is visualized for
the second parameter set of Table II. The z = 0 slice of a
128 x 128 x 128 grid with 30 A. resolution is presented.

V. CONCLUSIONS

In summary, this paper presents a treatxnent of a non-
linear Hamiltonian for oil, water, and surfactant mi-
croemulsions that can discern the differences between
thin and difFuse interfaces. The theory is restricted, how-

ever, to length scales greater than I/k, . When applied to
SANS data that had been thought to be from microphase
separated but not bicontinuous systems, the variation-
ally optimized, transformed-Gaussian reference systexn
indicates a lack of distinct bimodal behavior. This re-
sult, along with the failure of these experimental SANS
data to satisfy a sum rule for bimodal distributions, in-

dicates that soxne of the xnicroemulsion systems exam-
ined by SANS may be closer to homogeneity than previ-
ously expected. When applied to SANS data that were
postulated to be &om bicontinuous phases, however, the
nonlinear treatment predicts marked bimodal behavior.
Real-space con6gurations generated &om the Hamilto-
nian are strikingly similar to experimental &eeze-fracture
results.

A rough phase diagram of the behavior of our predicted
i(k) is indicated in Fig. 7. For given concentrations
and surfactant lengths, we predict monotonically decay-
ing scattering curves, peaked scattering curves, or lamel-
lar phases (finite-k divergence in the scattering curve) in
the j-g plane. Additionally, interfacial thickness within
the peaked scattering curve region increases with increas-
ing surfactant concentration. The Lifshitz line separating
peaked and unpeaked scattering curves is given by the
condition 8 yii(k)/Bkz = 0 at k = 0, and the instability
lines separating the random and laxnellar microemulsion
phases is given by the first instance of yii(k) + oo at
k coinciding with the main peak in yii(k). These tran-
sitions, as well as quantities such as peak positions, of
course, follow once j and g are speci6ed in the charge
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FIG. 7. Predicted phase diagram for the form of i(k) in
our j and y variables. Typical numerical values of j and g are
indicated for the surfactant systems considered herein.

&ustrated model.
The quantity —j has the physical meaning of the un-

favorable oil-water contact energy times the volume of a
surfactant segment. The ratio of parameters g/j coin-
cides roughly with the cross section of a surfactant seg-
ment. As such, these quantities could be adjusted inde-
pendently within an experiment by varying, for example,
the size of the molecules. Systematic SANS or small-

angle x-ray scattering explorations of the phase diagram
for various microemulsion constituents should map onto
Fig. 7. Our predicted increasing diffuseness of the sur-
factant interface with increasing surfactant concentration
is, of course, straightforward to study. In situ experi-
ments such as NMR and high-k scattering experiments
that probe the local molecular environment and thus pro-
vide information about the site density distributions in
these systems should provide more comprehensive infor-
mation about the bimodal character of these oil, water,

and surfactant phases.
Our conclusions concerning interfaces are inferred from

our examination of the local probability distribution

pq(p). More direct examination requires extensions of the
calculations presented here. Specifically, the treatment of
correlations associated with surfactants confined to thin
interfaces require corrections to the proportionality ap-
proximation Eq. (16). We have avoided these corrections
in the current work as a matter of computational conve-
nience. For the cases where pq(p) are bimodal, one may
instead assume simply that the surfactant is confined to a
molecularly thin oil-water interface. That assumption al-
lows the surfactant correlation function to be computed
in terms of ~( )(k), as detailed, for example, by Teub-
ner [8]. Since our computed bulk scattering curves agree
with experiment, this hybrid procedure will agree with
film scattering experiments for the cases of microphase
separation [8].

Having established that the charge-frustrated model
does successfully predict mesoscopic self-assembly with

physically reasonable parameters, it would now be prof-
itable to consider reduced representations of that model.
For example, a one-component field theory should be
derivable by integrating out surfactant fluctuations. The
energies in that field theory will then be determined in
terms of quantities such as surfactant length and con-
centrations. This approach may aid in the derivation
of phase diagrams for the charge-frustrated model. It
may also lead to molecular based predictions of the phe-
nomenological parameters currently employed to inter-

pret the behavior of self-assembled systems.
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