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A nonlinear field theoretic model for surfactant self-assembly is described and applied to bicon-
tinuous phases. The anharmonic model treats bonding constraints and the resulting frustration of
phase separation in terms of an electrostatic analogy. The model does not assume self-assembly,
and it accounts for all long-wavelength density Buctuations. A renormalized harmonic approxima-
tion is used to predict scattering curves. With physically reasonable values for the parameters that
characterize the model, the predictions of the theory compare favorably with experiment and are
consistent with Porod's law in the small angle region.

PACS number(s): 82.70.Kj, 05.20.—y, 61.20.Gy, 61.25.Em

I. INTRODU CTION

This and the following paper [1] address the nature of
bicontinuous phases. The analysis is carried out within
the framework of a 6eld theoretic electrostatic analogy
of oil-water-surfactant systems. The present paper is
devoted to the demonstration that the theory, the so-
called "charge-frustrated" model, is capable of predict-
ing bicontinuity with physically reasonable microscopic
parameters. An analysis of whether the ubiquitous inter-
faces in such systems are thick or thin is presented in the
following paper.

A variety of lattice models have been introduced to
account for the wide range of possible equilibrium mi-
croemulsion behavior [2]. Treated in the mean-field ap-
proximation, these models have yielded phase diagrams.
In some cases, correlation functions and structure fac-
tors have been predicted [3]. There have been molecular
thermodynamic approaches to surfactant self-assembly
as well [4]. Finally, phenomenological approaches to
structure factor calculation have been suggested, from
Landau-Ginzberg expansions [5] to random wave algo-
rithms [6—8]. Most of this work assumes &om the outset
that the amphiphilic interfaces separating oil and water
are thin. The exception is the recent phenomenological
model of Gompper and Kraus [9], in which bicontinuity
is found to possibly coincide with broad interfaces —a
conclusion we also reach in our second paper [1].

The approach we take is different from these earlier
works. We do not assume a particular interfacial struc-
ture. We adopt a model in which molecular parameters
are related to known physical properties of the disasso-
ciated system —the average length of the surfactant
molecules and the surface tension of a surfactant-free
oil-water interface, for example. Since the elementary
constituents of the model are the disassembled species,
the theory does not presuppose the existence of self-
assembled structures. Rather it aims at predicting such
formation.

Thus we are not attempting to replace the phenomeno-
logical models. Rather the ultimate goal is to pro-

vide additional predictive power for these models with
a foundation that relates the phenomenological parame-
ters (e.g. , curvature energies) to microscopic properties
(e.g. , lengths of surfactant molecules).

The model we use is nonlinear. It augments a standard
6eld theoretic Hamiltonian with a contribution that ac-
counts for the constraints of bonding between the head
(waterlike) and tail (oil-like) groups comprising the sur-
factants. This augmenting term will be demonstrated to
be of the form of an electrostatic potential energy, hence
the terminology "electrostatic analogy. " In the absence
of surfactant there is no electrostatic term and the Hamil-
tonian is of the Ising universality class. It predicts the
demixing and interfacial Quctuations of an oil-water mix-
ture below its critical temperature. In this region, the
parameters characterizing the model can be related to
the surface tension of an oil-water interface in the ab-
sence of surfactant. With surfactant present, however,
the constraint of electrostatic neutrality imposed by the
augmenting term frustrates this phase separation. The
extent of the frustration depends, in part, upon the mag-
nitude of an efFective charge. This magnitude is a func-
tion of the microscopic length of a surfactant, i.e. , the
length scale of the bonding constraint. It is also a func-
tion of temperature and surfactant concentration. The
full Hamiltonian is virtually identical to the free energy
functional used by Stillinger in his mean-Geld analysis
of self-assembly [10]. It is also closely related to models
employed in the study of diblock copolymers [11].

We motivate the anharlnonic Hamiltonian in Sec. II.
Speci6cally, we consider the energetics of long-
wavelength Buctuations of a nearly homogeneous oil-
water-surfactant system. It is not altogether surpris-
ing that an electrostatic analogy would arise from such
an analysis. The constraints of stoichiometry imply the
constancy of some linear combination of density fields in
the zero wave vector limit k ~ 0+. As such, for small
displacements from homogeneity, the restoring force will
have an infinite force constant in this limit. The assump-
tion of analyticity therefore implies a contribution to the
Hamiltonian quadratic in densities with a coeKcient di-
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verging at least as fast as k 2 as k ~ 0+. This form
is the Coulomb potential. By constraining the form of
the Hamiltonian, we show that this potential appears in
a more general anharmonic model valid for sharply in-
homogeneous systems. Monte Carlo calculations with
this anharmonic Hamiltonian [12] have shown that the
model does predict self-assembly in a variety of forms
(e.g. , lamellar phases and micelles of various shapes).
This provides some justification of our assumed form of
the Hamiltonian.

In Sec. III we discuss the physical meaning aad or-
der of magnitude values for the paraxneters in our model.
Section IV details our variational treatmeat of the nonlia-
ear model. We compare the bulk scattering curves from
the model with those &om experiment in Sec. V. Section
VI discusses the model, as fit to experiment. In partic-
ular, we show the model is consistent with Porod's law,
consistent with demixing if the surfactant is removed,
and consistent with pure oil-water surface tensions. Sec-
tion VII provides a brief summary of our conclusions. An
Appendix presents the details of the variational renor-
malization calculation.

II. NONLINEAR MODEL

PII[6p;(k)] = , ) fdkbp;( —k)
U

x[6;,f,"—. c;,(k)]hp, (k) + O(6p ), (2)

where

where the 4 x 4 matrix M x(k) has elements

M;, '(k) = 6;,f;" —c;,(k) (5)

and 6p(r) is a four-component vector symbolizing fluctu-
ations in the four field components (p;(r) ). Terms higher
order than quadratic in hp have been omitted from Eq.
(4). To the extent that those omitted terms are aegli-
gible, oae may compute the density-density correlation
function

bp; (k) = fdr bp;(r)e

is the Fourier transform of the density function.
In a compact notation, Eq. (2) can be written as

()H[bp(k)) = J dkbp (—k)M '(k)bp(k)

+O(hps), (4)

Here we xnotivate a Hamiltonian valid in the long-
wavelength limit that can describe surfactaat self-
assembly. This Hamiltonian controls the fluctuatioa
statistics of our systexn. Consideration will be directed
to microemulsions of the oil, water, and surfactant type.
Specifically there will be four density fields (p; (r) ), where

px(r) is the water, p4(r) is the oil, p2(r) is the surfactant
head, and ps(r) is the surfactant tail field. There are n;
segments ia a molecule containing groups of type i For.
example, the bulk density of oil segments p4 is n4 times
the bulk density of oil molecules. Similarly, ps is ns times
the bulk density of surfactants. The bulk densities and
the number of segments per molecule will be specified
when actual experimental systems are examined.

It is reasonable to assume that in the long-wavelength
limit, the Hamiltonian for a Beld theoretic model of this
system can be written as (P x = kBT)

&~[(p*(r))l

= ).f drA (p'('))

——) ff drdr'bp;(r)e;, (~r —r'))bp, (r'), (b)
'l2

where f; (p; (r)) is a nonlinear yet local function of p;(r) =
6p;(r) +p;. The nonlocal coupling function c;~ (r) is inde-
pendent of the instantaneous density and is thus a prop-
erty of a statistically isotropic Quid mixture. The terms
linear in the density are not explicitly included in Eq.
(1) since they simply deterxnine the average value of the
density fields, and the average densities will be specified
in actual applications. Equation (1) can be rewritten as

f +p( )~p'( )6'( ')

f 17p(r)e p~- (6)

by performing Gaussian integrals. The result is [13]

d(r —r')(6p;(r)6'(r'))e '"'~' ' = M i(k) . (7)

The quantity measured in kinematical diffractioa studies
[14] is therefore givea in the quadratic approximatioa by
the inverse of the coupling matrix in Eq. (4).

The fuactions f;(p) aad c;~(r) in Eq. (2) are deter-
mined by ensuring that Eqs. (5) and (7) are correct suffi-
ciently close to homogeaeity. In that regime, the Fourier
transform of the density-density correlation functions for
the Belds associated with surfactants at a bulk density
pg has the inverse

M,, '(k) = p~'~, , '(k) —b, c;, (k)

= n, p~ 6;x —cI l(k) . —6c;~(k), i = 2, 3 (8)

1
f;(p;(r)) = —(p;(r) ln[p, (r)] —p;(r) j .

ni

where use is made of both the intramolecular coupling
function c,. (k) and the intermolecular coupling function
b,c;z(k). Equation (8) is a contracted form of Chandler
and Andersen's equation [15] used in the polymer refer-
ence interaction site model (RISM) theory [16]. In that
context, b,c;~(r) is the so-called "site-site" direct corre-
lation function. It is expected to be short ranged.

In view of Eqs. (5) and (8), we have f;"(p;) = 1/n; pg =
1/n;p; and thus
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This equation is the standard Flory &ee energy of mixing
applied to an inhomogeneous fiuid [17].

While we expect the intermolecular contribution to the
nonlocal c,~. (~r —r'~) to be short ranged, the intramolecu-

lar contribution to c; (r. ) has a long-ranged component.
It arises because of the conservation law of stoichiometry,
and it is what is derived in Refs. [10,12]. Specifically,

;!'(k) = -' ~""+O(k'),
n;n, k

those for oil and water density fields. If this similarity
were strictly true, the short-ranged interactions would be
independent of concentrations. The Hamiltonian thus re-
duces to one involving three independent fields and two
parameters

pa((v;(~))) = ) / ar —u, (r))n u, (r)
2

dk bp (—k)
227r s

z2 — z3— 3

4irPP, A2

1
2 :—z . (10) 4mz

x (j+gk )D+ C b'p(k), (14)

The length b, in Eq. (10) is roughly the root-mean-square
separation between the head and the tail groups of a
surfactant molecule.

A similar comparison between the quadratic field the-
oretic Hamiltonian and the correlation functions for the
oil and water components produces additional diagonal
Flory free energy of mixing terms as well as short-ranged
direct correlation function interactions. There is no non-
local stoichiometric constraint governing the pi(r) and

p2(r) fields, however, and thus there are no additional ef-
fective Coulombic interactions. Assuming the surfactant
and oil-water cross terms are also short ranged, the final
long-wavelength Hamiltonian is

PH[(p, (k) f] = ) dr —p, (r) ln p;(r)
1

2

dk bp (—k)
2 2' s

4vrz
x J+ Gk + C bp(k),

where vector bp(r) is now a three-component vector sym-
bolizing fiuctuations in pi(r), p2(r), and ps(r). The ma-
trices C and D are 3 x 3: D,z

——0 if i = 3 or j = 3,
andD;~ =1otherwise; C,~

=Oifi =1or j =1, and
C,~

= (
—1)"+~/n, n~ otherwise. The energy parameters

are defined by

j = Ji&+ J22 —2Ji2,

g = Gii+ t"22 —~&i2

(15)

III. MICROSCOPIC ENERGY
AND LENGTH SCALES

In the summation, it is now understood that the fourth
field p4(r) is computed &om Eq. (13). Our field theoretic
Hamiltonian Eq. (14) is virtually identical to that used by
Stillinger in a variational density-functional calculation
[10].

&&[ip*(r))]
1= ) dr —p;(r) ln p;(r)

+— dr bp (r)[J —GV ]bp(r)
2

+— drdr'hp (r), C hp(r') .
Z

2
(12)

We assume that the net total density is fixed, i.e.,

pi( ) + P2( ) + p&( ) + p4( ) = po

is a constant. This local incompressibility is plausible for
long wavelengths. A reasonable and simplest approxima-
tion for the short-ranged interactions of the surfactant
head and tail density fields is that they are the same as

where again the terms linear in the density have been left
out. The elements of the matrices J and G give the coef-
ficients of the small k expansion of the Ac;~ (k) functions,
and C;~ = z, z~/z2n;n~ (the nonsurfactant components of
which are zero). The terms of O(k ) and O(k2) in the
bonding &ee energy terms have also been neglected. This
Fourier space representation is, of course, equivalent to
the real-space representation

The model Hamiltonian Eq. (14) contains several pa-
rameters. They are the net total density po, the j and

g energy parameters, the &ustrating charge magnitude
z, and an implicit short-wavelength cutoff k, . Physi-
cally reasonable values of each of these quantities are
known. For example, net total particle density should be
close to that appropriate for water at standard conditions

po = 1/30 A . In our numerical work, we adopt pre-
cisely this value. The Hamiltonian in Eq. (14), being a
functional of density fields, cannot apply on truly atom-
istic length scales. A short-wavelength cutofF is therefore
required. This cutoff excludes from consideration those
density fields with density variations on too short a length
scale. A surfactant length is an appropriate value for
this minimal level of resolution, and the cutofF should be
roughly vr/20 A.= 0.15 A . This is the value we will use.

The energy parameter j represents the unfavorable
oil-water contact energy times an oil segment or water
molecule volume. Presumably, therefore, jpo is in the
range of —3 to —10k~T. Thus we expect j to be of the
order of —102kiiT As. Similarly the ratio —g/j repre-
sents the cross-sectional area of a typical segment. The g
parameters should thus be of the order of (10 —10 )kgb T

With these typical values, a surfactant-&ee oil-water
system would phase separate in a mean-field approxima-
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p(&)

0 = [
—2gW(p)]'~'dp,

p(a)
(16)

where p~ ~ and p~~~ are concentrations of water in the
two separated phases, and —W(p) is the excess f'ree en-

ergy density of the homogeneous phase over that of the
separated phases. In particular,

W(P) = 4'(P—) + &(P")(P—P")/(P" —P' ')
—4(P")(P —P' ')/(P" —P' ') (»)

where

4(p) =i p'+ p[» p 1]/Pnl-
+ (ps —p) [ln(po —p) —1]/Pnz (is)

is the local part of the nonsurfactant contribution to the
free energy density from Eq. (14). The correct order
of magnitude for the surface tension, O. lk~T/Az, is
obtained from Eq. (16) with the parameters discussed
above.

The presence of the surfactant in a microemulsion mix-
ture tends to frustrate the oil-water phase separation.
The size of the frustrating charge, z in Eq. (10), leads to a
pair interaction between neighboring surfactant particles
of typical size zz p, ~ /n;nz. The concentration of surfac-
tant in bicontinuous phases are generally in the range of
x, = p, /po between 0.05 and 0.5. The length of a surfac-
tant molecule b. is about 20 A. and n; is in the range 1—10.
With these parameters, one finds that zzp, ~ /n;nz is in
the range 10 —10 k~T. Thus, the frustration makes a
small contribution to the local &ee energetics. It is the
cumulative effect, i.e., the contributions to small k in Eq.
(14), that can lead to mesoscopic self-assembly.

To address whether the physically reasonable molecu-
lar parameters in our model do indeed lead to such a large

tion to our Hamiltonian (14). The surface tension in a
phase-separated oil-water mixture (with no surfactant)
can in fact, be deduced from our model. Since we make
the simplifying assumption that the short-ranged interac-
tions of surfactant head and tail segments are identical to
those of water and oil, the result of applying our theory to
a pure oil-water mixture will still be Eq. (14). But there
is then just one field pi(r); D is unity and C is zero. To
calculate an approximate surface tension, we have per-
formed mean-field (maximum term) calculations on Eq.
(14) specialized to an oil-water mixture in the presence of
an interface [18]. That is, we constrained the system to
variations in one direction only and found the two den-
sity configurations that correspond to the two states of
broken symmetry. The mean-field convexity condition for
phase separation is identical to the det[y(0)] & 0 stability
condition for the Gaussian theory. These two bulk con-
figurations were then used as boundary conditions, and
the density profile that minimized the Hamiltonian in Eq.
(14) was determined. The excess energy associated with
this profile relative to the energy of the uniform state is
the surface tension.

The equation for the surface tension thus calculated is
[is]

length scale structure, we use a variational treatment of
the Hamiltonian (14). We turn to that treatment now.

IV. VARIATIONAL TREATMENT
FOR BULK CORRELATIONS

The free energy of mixing terms, the p;(r) lnp;(r)
terms, are not quadratic in the density field variables.
The Hamiltonian is thus not amenable to exact analyt-
ical treatment. We use the Gibbs-Bogoliubov-Feynman
variational bound to determine the optimal harmonic ref-
erence system for the Hamiltonian [19]. This variational
method makes use of the bound for the partition func-

tion,

Z & Z~ exp[—P(H —H~)G]—:e P"'

Here Z~ denotes the partition function with the Gaussian
Hamiltonian

PH~ = dk p (—k)G(k)p(k),2(2z)s
(20)

where irrelevant terms linear in the density have been
dropped. The averaging, ()~, is done with the Gaussian
weight implied by this reference Hamiltonian.

The variational procedure identifies the coupling ma-
trix as

G(k) = P ~ (j + gk')D +, C
~
+ 2g, .

4~z'

V. COMPARISON WITH EXPERIMENT

We have fit the structure factor predicted by the vari-
ational treatment of the Hamiltonian Eq. (14) to small
angle scattering data. To carry out the fit, we varied the
j and g parameters. The experimental data we consid-
ered are all of the bulk-contrast type, so that the exper-
imental scattering intensity i(k) is proportional to the

The gi term arises from the p;(r) lnp;(r) terms in Eq.
(14). The variational approach deals with this nonlinear-
ity by enforcing a self-consistency condition on gi. As gi
is independent of k, this result can be viewed as a renor-
malization of the J = jD matrix.

This procedure, which requires use of the high wave
vector cutoff k„ leads to wave vector independent co-
efficients in the quadratic Hainiltonian that are some-
what different than those arrived at through a truncated
Taylor expansion. The differences, or renormalization,
account for the anharmonic contributions to the Hamil-
tonian. The details of this calculation relevant to the
present field theoretic Hamiltonian Eq. (14) are presented
in the Appendix.

This variational approach is identical to a self-
consistent first-order theory for the density-density cor-
relation function. As such, it should provide a good ap-
proximate bulk scattering curve that can be compared
with experiment.



4272 MICHAEL W. DEEM AND DAVID CHANDLER 49

TABLE I. The results of fitting the model Hamiltonian to the SANS data of Ref. [22]. The data
are for the cosurfactant 1-octanol .The energy units are knT and the length units are A, except
for f, which has units of A /cm. The value of po is 1/30 A .

pa+ p3
0.010667
0.011333
0.011667
0.012333

px

0.008333
0.006667
0.005667
0.004667

p4
0.014333
0.015333
0.016
0.016333

nl
1
1

1

1

n2
1
1

1

1

n3
10
10
10
10

A4

15
15
15
15

f
8.0 7.13
8.0 9.77
8.0 11.75
8.0 9.38

768 -298
957 -359

1043 -399
1262 -436

k,
0.15
0.15
0.15
0.15

100 -----

80

60—

E
40 i

C3

1

C Ql

20—

0.00 0.10

k{A }

0.05 0.15

FIG. 1. The SANS data of Ref. [22] for the cosurfactant
1-octanol are compared with the 6t of Table I. The peak in-

tensity decreases with increasing pz.

water-water structure factor [20] given in the theory by
Eq. (A12). The proportionality constant is

f = (iso —riw)'/pp, (22)

where n~ and n~ are, respectively, the oil and wa-
ter scattering length densities (not to be confused with
the segment numbers n;) In . all the fitting, we take

pp = 1/30 A 3, the molecular density of water at normal
conditions. This f factor should be constant within an
experiment that varies only composition, and for typical
scattering length densities it should be approximately 4
A. /cm. In our fitting, however, we varied f along with

j and g. The fit was accomplished by Powell's modified
quadratically convergent method [21]. Additional quan-
tities appearing in the Hamiltonian (14) were fixed at
physically reasonable values, as noted in Table I.

The results of the fits to the ionic surfactant system
D20-CisH34 potassium oleate-1-H(CH2);OH studied by
Caponetti et al. are indicated in Fig. 1 [22]. These au-
thors studied four systems, differing only in cosurfactant.
The authors suggest that the microemulsion is in a ran-
dom configuration. Only the Gt for the 1-octanol co-
surfactant system is displayed in Fig. 1. The scattering
data were all taken at the constant sample temperature
of 25 'C. The parameters of the fits are listed in Table
I. The parameter f is predicted to be 4.2 A3/cm in this
experiment. In this four-component system, the alcohol
cosurfactant has been assumed to be part of the surfac-
tant when calculating pp. Any long-range component to
the direct correlation function that is due to the electro-

static interactions of the polar surfactant is, of course,
not included in the model Hamiltonian Eq. (14).

Six additional sets of scattering data &om disordered
isotropic microemulsions [6,23—27] were fit, however, by
a straightforward quadratic expansion of Eq. (14) about
average densities. That is, only the Grst term in Eq.
(All) was used. All these fits were successful, but the
parameters determined are not quantitatively accurate
since this approach neglects the nonlinear effects in Eq.
(14). Unless otherwise noted, our discussion will pertain
only to the results of the variational calculation.

VI. DISCUSSION OF RESULTS

These microemulsion systems possesses a wide range
of characteristic lengths. The scattering peak typically
corresponds to a distance of 300 A. , surfactant lengths
are about 20 A. , and atomic details are of the order of 1
A. The great disparity between the first length scale and
the other two is what allows for a successful small-k Geld

theoretic description of the system. The Hamiltonian
Eq. (14) is specialized to a very simple model of a three-
component surfactant system. Explicit consideration of
the cosurfactant is not included, for example. Addition-
ally the long-ranged Coulombic interactions present in
ionic and polar surfactants are not included. In the sys-
tems examined, however, these interactions are screened
by ionic density fluctuations, and the assumption of effec-

tively short-ranged interactions should be appropriate.
The assumption of the very simple forms for the small

k intermolecular couplings is perhaps the least tenable.
This assumption is what leads to the presence of only two
adjustable parameters in the model, j and g. These pa-
rameters are, in fact, not constant with varying oil, water,
and surfactant volume &actions. The square-gradient co-
efBcient g increases with pg and the bulk term j decreases
with pg within a series of experiments on a single sur-
factant system. This variability should not be surprising
considering the true difFerence between oil and water and
the surfactant tail and head groups. Contrast variation
experiments that probe the fluctuations of more than one
independent Geld will indicate further failings due to the
simple assumption that J and G matrices are character-
ized by only two parameters j and g.

As seen in Table I, the variational treatment produces
scaling factors f that are nearly constant with changing
system composition. These scaling factors should be con-
stant with changing system composition, and this result
is another indication of the importance of the nonlinear
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response in Eq. (14), which is incompletely accounted for
in the variational treatment.

A test of the model would be to allow the surfactant
length 4 to vary. Since this length is precisely defined,
allowing it to be optimized should not lead to a result
substantially difFerent from that assumed in the table.
In all cases, the optimized length is within a factor of 2
of the value initially assumed, and the quality of the fit
was not improved significantly upon optimization of the
surfactant length. It seems, therefore, that the parameter
b, appearing in Eq. (10) has been correctly defined. It is
not, for example, necessary to renormalize it to account
for effects that have been neglected in the Hamiltonian
Eq. (14).

Another test of the model is to remove the surfactant
and determine where the system phase separates, as an
oil and water mixture should. We have computed the
densities of oil and water that would be present if the sur-
factant were removed, scaling them up so as to maintain
the constant density po. In all cases, a quadratic treat-
ment predicts that the xnodel does, in fact, phase separate
with the j parameter found &om fitting the diKraction
data.

As another test of the model, we consider the oil-
water surface tension for this phase separated system
in the absence of surfactant. The surface tensions com-
puted as discussed in Sec. III with the parameters de-
termined by the variational treatment are in the range
0.17—0.28 k~T/A2. A typical oil-water surface tension is
0.12kxxT/%[28]. This. rough agreement with the vari-
ational estimate supports the model that underlies our
analysis. The associated calculation for the density pro-
files gives interfacial widths of roughly 10 A.

To the extent that a bicontinuous phase is a correlated
microphase separated material with isotropically Buctu-
ating interfaces of negligible width, the scattering curve
decays as 1/k4 for large k [29,30]. This decay is known as
Porod's law. The authors of Refs. [6,24,25] report that
this law is observed in the range just beyond the peak in
the small-angle neutron scattering (SANS) data for bi-
continuous phases. A plot of lni(k) versus ink shows a
1/k4 decay for the structure factors predicted by some of
the fits (both variational and nonvariational) in the same
range in which the experiments observe the 1/k4 decay.
Figure 2 displays such plots for some of the 6ts. The
first two curves in Fig. 2 decay with a slope of —4.0+0.1,
whereas the last two curves decay with slopes of —4.5 and
—5.2. In fact, all of the other 6ts lead to such approxi-
mate 1/k4 decays, with three exceptions. These excep-
tions occur in studies for which bicontinuous structures
were not postulated.

While the k 4 decay does follow from the presence
of thin interfaces, our theoretical results based upon a
Gaussian approximation that does not support thin in-
terfaces demonstrate that the converse is not necessarily
true. More generally, the k 4 decay is a manifestation
of large domains, rich in either oil or water. Such struc-
tures can be well described by a Gaussian field theory,
as evidenced by the curves shown in Fig. 2. Whether or
not the interfaces separating these domains are sharp can
be discerned from the correlations between surfactants.

10000

1000

100

10

.01

.001

.0001

.001 .01 .1 1

k(A )

FIG. 2. The predicted scattering curves for fits to the
SANS data in Refs. [24,6,22,25] are plotted on a log-log scale.
The curves are divided by factors of 1, 10, 100, and 1000,
respectively, to facilitate plotting.

This issue, studied experimentally by film scattering, is
outside the realm of a Gaussian model, since that class of
models is not applicable to microphase separated systems
at the small lengths associated with a narrow interface
[31]. The analysis of this issue and the corresponding
bimodality of density distributions is given in our subse-
quent companion paper [1].

VII. CONCLUSIONS
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APPENDIX: THE OPTIMAL HARMONIC
REFERENCE SYSTEM

We want to find the optimal harmonic reference system
to treat Eq. (14). The Haxniltonian of Eq. (14) contains
a nonquadratic local part as well as a quadratic nonlocal

We have derived an anharmonic field theoretic Hamil-
tonian for oil, water, and surfactant systems valid from
nearly homogeneous to microphase separated emulsions.
With physically reasonable parameters, this model com-
pares favorably with several sets of SANS data. The
parameters in the model pertain to small length scale
microscopic properties. Given the favorable comparison
of theory and experiment, it appears that the charge frus-
trated model Eq. (14) captures the essential physical fea-
tures that underlie the nature of oil-water-surfactant as-
semblies. In the following paper we use the model to
examine specifically the formation of interfaces in bicon-
tinuous phases.
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part. Schematically, the Hamiltonian is of the form

PH[p(r)] = F [p(k)]+F [p(r)]

Fi[p(k)] = a p(0) + ) p (—k)A(k)p(k),

F2(~(~)I = f «f* b (~)) (Al)

PHc, = b p(0) + ) p (—k)G(k)p(k), (A2)
k

where Fi is the quadratic part of PH, F2 is the local
nonquadratic part, A(k) is a real, symmetric, positive-
definite N x X matrix, and a is a real, N-vector
constant. In the specific case of Eq. (14), N = 3,
A(k) = p[(j + gk2)D + (4vrz2/k2)C], f2 (p;(r)f
P,. n,. p;(r) ln p, (r), and the a field has been suppressed
by convention. This Hamiltonian will be treated in the
grand canonical ensemble. To facilitate the following ma-
nipulations, a discrete spectrum in k space is indicated in
Eq. (Al). In the limit V -4 oo, the spectrum will become
continuous.

We want to approximate (Al) by the purely harmonic
reference system that has the Hamiltonian

where the tensors (i and ('2 are the partial derivatives

(i,. ——B([W,y]/BIvV... (2, ——B([W,y]//By, . (A7)

Equation (A6) is a simple integral equation for the renor-
malized harmonic coefficients. In particular, the renor-
malized coupling matrix can be considered to be equal
to the original coupling matrix plus a self-consistent con-
stant. In the case of Eq. (14), one can see that essentially
only the matrix jD is renormalized in this procedure.

This result Eq. (A6) is applied to Eq. (14) by expand-
ing the p;(r) ln p, (r) terms about the av".rage density that
the variational treatment would predict. That is, these
terms are expanded about the average densities of the oil,
water, and surfactant mixture, and a statistical mechan-
ical treatment (via the variational bound) of the model
is required to lead to the correct bulk densities. With
this stipulation, only the first relation in Eq. (A6) need
be considered. Specifically,

p(xll Pl)/nl + p(X22 p2)/n2

+p(xss, ps)/ns+ p(X44 P4)/n4 (AS)

where the Gaussian average function p is given by

p(x P) = P(»P —1)+X/2p+X /4P + (A9)

where again G(k) is a real, symmetric, positive-definite
matrix, and b is a real, constant vector without loss of
generality if p;(r) is real. The average of the local F2
function in the harmonic reference system defined by Eq.
(A2) is denoted as

and

(i„=~'~pi(X", p*)/n'+ S»(X44, p4)/n4,

where the partial derivative pq is given by

2pi(x) p) = 1/p+ x/p + ' '

(Alo)

(All)

(F2)G = V(f2)G ——V([G (0), p] . (A3)

Note that the average of the local f2 function ( depends
only upon the average density and the variance of the
density in a isotropic fiuid, as is indicated in Eq. (A3).
Prom Gaussian statistics this average is given by

([G '(0), p] = ( V ) G '(k), -G '(0)b

=$ (2m) f dkG '(k), —G '(0)b

(A4)

Employing the variational bound Eq. (19),

8 |9
Ai —— Ag =0,

BG;~(k)
(A5)

one finds that the terms in the optimal harmonic refer-
ence system satisfy the equations

b = G(o)A-'(o)

x a+ $2 V ' ) C '(k), -G '(0)b
k

G(k) = A(k) + 2$, V ' ) G '(k), —G '(0)b
rk

(A6)

Here p4
——po —pi —p2 —ps and X44 ——g, . X,~. The short-

hand X,~ = G,. (0) has been used for the point density-
density correlations of the reference system. Both of
these series Eqs. (A9) and (All) are asymptotic expan-
sions that have been truncated. Equation (All) implies
that there will be one term beyond that due to a pure
quadratic expansion that enters in the first relation in
(A6). This term will give an indication of the impor-
tance of the nonlinear response in Eq. (14). Specifically,
the four pl functions in (A9), and hence in (A6), need
to be determined self-consistently. Note that if only the
first term in (All) is employed, no self-consistency condi-
tion is enforced, and this treatment leads to a quadratic
approximation to Eq. (14).

The model Hamiltonian Eq. (14), does not have a con-
vergent value for the integral expression for the ~
G (0) matrix in Eq. (A4). A cutoff is therefore em-

ployed in this small-k theory. In the case of Table I, the
cutoff is 0.15 A i. Note that the SANS intensity is given
by

i(k) = f[G(k) ']ll . (A12)

Equation (A6) is solved efficiently by a globally conver-
gent, iterative Newton-Raphson technique [32]. We find
that the region of convergence for this root-finding tech-
nique is rather small when the scattering function Eq.
(A12) has the peaked form typical of the bicontinuous
SANS data. As a result, the j and g parameters must be
varied in small increments during the fitting procedure if
the root finder is to converge.
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