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Reentrant smectic-C and smectic-C* phases in liquid crystals under an electric field
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Kondo et al. [Jpn. J. Appl. Phys. 22, L43 (1983)] discovered that both the smectic-C and
smectic-C* phases in the liquid crystal p-n-decyloxybenzylidene-p-amino-2-methylbutyl-cinnamate
are reentrant with temperature for a range of electric fields. We show that the Landau theory with
no adjustable parameters provides a semiquantitative explanation of the phase diagram. The double
reentrance is due to two fourth-order terms, one chiral and the other achiral, and is intimately related
to the maximum in the pitch, unlike the reentrance under magnetic field. The Sm-C-Sm-C* tran-
sition curve displays both main types of second-order phase transition, instability, and nucleation,
separated by a first-order segment. p-azoxy-cinnamate-methyl-2-butanol and other compounds with
divergent pitch should also show the double reentrance, but the physical origin is different.

PACS number(s): 61.30.Cz, 83.70.Jr, 64.70.Md, 77.80.Bh

I. INTRODUCTION

The smectic phases of liquid crystals have layered
structures with positional order in the direction normal
to the planes. There are three principal phases. In the
smectic-A (Sm-A) phase, the molecules are parallel on
average to the layer normal. In the smectic-C (Sm-C)
phase, the molecular director is tilted, making an angle 6
with the normal. In the smectic-C* (Sm-C*) phase, the
molecules are again tilted; the structure is helical, with
the helix axis perpendicular to the layers (the azimuthal
angle ¢ of the projection of the director onto the layer
planes rotates with the coordinate along the normal). A
typical phase sequence with decreasing temperature for a
nonracemic mixture of chiral molecules is isotropic—Sm-
A —Sm-C* (in zero field).

Interest in smectic phases was greatly stimulated by
the discovery [1] of ferroelectric liquid crystals. If the
molecules possess an electric dipole moment with a com-
ponent normal to the director, the tilt in the Sm-C and
Sm-C* phases hinders molecular rotation about the long
axis, producing a spontaneous electric polarization (par-
allel to the layers and perpendicular to the director). The
macroscopic polarization vanishes in the Sm-C* phase,
but an electric or a magnetic field parallel to the layers
distorts the helicoidal structure, disfavoring the Sm-C*
phase, and leading eventually to the Sm-C phase which
has a macroscopic polarization.

The Sm-C—Sm-C* transition under magnetic field
was first observed by Musevi¢ et al. [2], in the liquid
crystal p-n-decyloxybenzylidene-p-amino-2-methylbutyl-
cinnamate (DOBAMBC); they found the Sm-A—Sm-
C-Sm-C* Lifshitz point which had been predicted by
Michelson [3], but observed (unexpectedly) that the Sm-
C* phase is reentrant: for a range of fields, the phase
transitions Sm-4 -Sm-C*—Sm-C —-Sm-C* occur with
decreasing temperature. The reentrance of the Sm-C*
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phase was explained in Refs. [4] and [5].

Early experiments under electric field found a mono-
tonic decrease of the critical temperature with increas-
ing field, for DOBAMBC (6], for several members of
the DOBAMBC family [7] (see Fig. 25; but some re-
sults on DOBAMBC suggest reentrance—see Fig. 26
and the discussion in [7]), and for 2-methylbutyl-p-(p-n-
hexyloxybenylizene-amino)-cinnamate [8] (but the pitch
varied unexpectedly rapidly). Later experiments gave
different results; the samples are difficult both to pre-
pare and to measure (many of the compounds are un-
stable at elevated temperature), and properties vary
markedly. Shortly after the work of Musevi¢ et al. [2],
Kondo et al. [9,10] (examining the DOBAMBC fam-
ily) observed the phase sequence Sm-C*—Sm-C —Sm-
C* with decreasing temperature for a range of fields;
strictly speaking, only Sm-C* reentrance was observed,
but the Sm-A and Sm-C phases have the same symme-
try in an electric field and so the Sm-C phase must also
be reentrant, giving a nice parallel with the magnetic-
field case [2]. Subsequent experiments on DOBAMBC
found reentrance [11], hysteresis, and an apparent di-
vergence in the pitch (but not literal reentrance) [12]
and both reentrance and hysteresis [13]. Reentrance and
hysteresis were observed in p-decycloxybenzylidene-p’-
amino-1-methylpropyl-cinnamate (DOBA-1-MPC) [14]
and reentrance in (S)-2-hydroxy-4-decyloxybenzylidene-
4’-amino-2p”-methylbutyl-cinnamate [15]. At least two
different geometries are used in the experiments, planar
and homeotropic; the first favors reentrance and hystere-
sis [7].

Section II reviews previous work on the Landau the-
ory of the Sm-C-Sm-C* transition in the presence of an
electric field and also some experimental results. Section
IIT analyzes a simple free-energy density (which applies
to some samples), using both approximate and numer-
ical solutions of the Euler-Lagrange equations. Section
IV compares the theoretical and experimental E-T phase
diagrams of DOBAMBC, finding reasonable agreement,
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all that can be expected given the variance of the exper-
imental results and the neglect of terms in the theory.
The double reentrance in DOBAMBC is due to the com-
bined action of the chiral term responsible for the reen-
trance under magnetic field and the achiral term linked
to the maximum in the pitch at zero field. Finally, Sec.
V discusses various possibilities for the phase diagrams
under electric or magnetic field and suggests further ex-
periments.

A B C dn\? [dn,\®
F = E(nﬁ +nl) + Z(ni +nl)? + E(ni +n2)® + Dy [<l> + (—nﬁ) ]
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II. FREE-ENERGY DENSITY

In the Landau theory of smectic liquid crystals under
electric field [1,16-20], the free-energy density F is ex-
panded in primary and secondary order parameters, the
projection n = (ng,ny) of the director onto the layer
plane, and the layer polarization P= (P, P,), respec-
tively; we take the layer normal in the z direction:

dz dz

d dn, .
—-D, (sz%—n n )+-2LX(P§+P;)+k(Pzny—Pynz)—u(Pz@_ +Py‘_iﬁ) —-P-E

d Y dz dz dz
dn dng Q n
_D3 (ngd—zy — nz dz ) — ~2—(Pzny —_ _P,y'n,m)2 + Z(Pzz + _P;)2 ; (1)

we omit a term (quadratic in the electric field) which is
known to be small [21,22].

As usual, only the coefficient A depends on the tem-
perature T: A = A'(T—T,); the Sm-A-Sm-C* transition
in zero field occurs at a temperature T,(0) greater than
Ty. The D; term is the elastic energy (D; = K3/2) and
the chiral D, term (a Lifshitz invariant) is primarily re-
sponsible for the Sm-C* phase; the k and p terms are chi-
ral, piezoelectric and achiral, flexoelectric in nature. The
last three terms (with coefficients D3, 2, and 7) have
no effect on the Sm-A-Sm-C and Sm-A-Sm-C* phase
boundaries under magnetic field; their effect is small on
the Sm-C-Sm-C* boundary both near the Lifshitz point
in magnetic field and for small electric field [where the
result [16] To(E) = T.(0) — aE? is generally valid, as
observed in the early experiments [6-8]].

If the last two terms (with coefficients  and 7) in
Eq. (1) can be neglected, then the polarization can be
eliminated by P = x(E + k% X n + pdn/dz); the other
four terms depending on P are replaced by a constant,
and one obtains an expansion in n alone, with some co-
efficients renormalized. In zero field, the solution for n is
(nz,ny) = n(cosqz,sinqz), with P - n = 0; the ratio P/n
is independent of T' (the amplitudes P and n are “propor-
tional”) and the pitch p = 2w /q changes monotonically
with T (that is, the ratio P/n can be independent of T
even if the pitch depends on T). If in addition the coef-
ficient D3 is small, then the pitch is also independent of
T.

In most DOBAMBC samples both the pitch p and
the ratio P/n depend significantly on T. The pitch
has a maximum, while P/n is approximately constant
if T < T. — 2K but decreases sharply as T — T, (by
roughly a factor of 2) [23]. (Reference (23] discusses the
ratio P/, but 6 and n = sin# are almost equal near
the transition.) To explain these results, both the chi-
ral D3 term and the achiral Q term must be included
in Eq. (1) (and therefore also the 7 term, for stability).
The maximum in p at zero field arises as follows: the Q

f

term favors the spatially homogeneous Sm-C phase, in-
creasingly enhances its stability with decreasing T and
causing p to increase initially with decreasing T'; the D3
term favors the inhomogeneous Sm-C* phase (D2;D3 > 0
for DOBAMBC) and eventually causes p to decrease, giv-
ing the maximum. Other explanations of the maximum
have been given [24-26).

The reentrance of the Sm-C* phase has been attributed
to fluctuations (thermal generation of antisolitons [27]),
but the wide variety of observed behavior [28] argues
against this interpretation. References [4] and [5] showed
that the chiral D3 term in Eq. (1) is responsible for the
reentrance of the Sm-C* phase under magnetic field H
(this term is the product of the two invariants with co-
efficients A and D, apart from a factor and a surface
term). A qualitative explanation follows: Near the Lif-
shitz point, dT./dH (T is the Sm-C-Sm-C* transition
temperature) is always positive, regardless of the zero-
field behavior of the pitch [3]. Without the D3 term, the
critical magnetic field H. is independent of T' at low T; if
Dy;D3 > 0, the D3 term (optimized by the Sm-C* phase)
shifts the phase boundary to ever larger H with decreas-
ing T. The combination of the conditions dT./dH > 0
near the Lifshitz point and dT./dH < 0 at low T gives
the reentrance. By itself, the © term cannot give a reen-
trant Sm-C* phase (which reflects enhanced stability of
this phase), only a reentrant Sm-C phase. The double
reentrance under electric field requires both terms (D3
and Q).

The density of Eq. (1) is distastefully complicated, but
all terms have received a microscopic explanation and all
are necessary to provide a semiquantitative description of
materials such as DOBAMBC (for which all parameters
have been determined). But Eq. (1) is not a system-
atic expansion in the order parameters to given order (it
omits terms of the same order as those retained) and it
is therefore unreasonable to expect the theory to explain
quantitatively all phenomena; indeed the fits to the pitch
are only semiquantitative.
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III. THE CASE OF ONE ORDER PARAMETER

We consider the simple case with only one order pa-
rameter, choosing P as in Ref. [17]; the free-energy den-
sity is

A B 2 C 3
F= S (P24 + T (B 4B + T (P4 P

dP,\?® (dp,\?

+D, [(E—) + (E)
dP, dP,

~Dx (Pw—z"’vz)
dP dP,

— 37"y _p3z2)_p.

Ds (Pz S dz) P-E. )

A similar expression was studied in our previous work
on magnetic-field unwinding [4,5], where we expanded
naturally in n. The coefficients differ of course from
those in Eq. (1). Equation (2) appears to describe
the DOBAMBC samples of Ref. [7], where the pitch de-
creases with decreasing T (or the maximum occurs un-
observably close to T¢.), but not the DOBAMBC samples
of Refs. [9,10,2,22] and others.

In the one-harmonic approximation (valid at high T),
we write P, = Pcosqz+ Py, P, = Psinqz and minimize
the free energy with respect to the parameters g, P, and
Py; E is parallel to the z axis. Reference [17] showed that
it is a good approximation to take the induced polariza-
tion Py to be independent of z, but strictly Py depends
on z even if the electric field is uniform [29]. Because the
problem is nonlinear, Py is not necessarily proportional
to E, as sometimes assumed [7,14].

In the constant-amplitude approximation (valid at low
T and used frequently [1,18,21,14]), we assume that
P = P[cos¢(z),sinp(z)], and look for the constant P
and the function ¢(z) which minimize the free energy.
Standard calculations (such as those for the unwinding
of cholesterics [30]) give the wave number g and the crit-
ical field F, as

_ D, 3D; ,
q_z—Dl(szP), 3)
w2 2
Ec—_—?Dqu ) (4)

with P? given by A + BP? + CP* = 0. Equation (3)
is familiar from Refs. [20,4,5]; if P and n are propor-
tional, then Eq. (4) follows also from the relation [1]
E. = (v%/16)K3n%q?/P .

Equation (4) may be valid also when n and P are not
proportional. From the solutions n(z) and P(z) of the
Euler-Lagrange equations for the density of Eq. (1), it is
always possible, in principle, to express n as a function of
P. Elimination of n from the density will give a functional
depending only on P (and its derivatives). Because of the
symmetry, the new functional will have the same form as
Eq. (2) (with maybe other terms, but their presence will
not change the conclusion) with an important difference:
the coefficients (which were previously supposed to have
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a negligible temperature dependence, except A) are now
functions of T and also E. This will not change the result
of the constant-amplitude approximation and the critical
field is still given by Eq. (4), if the dependence on FE is
weak.

A plot (Fig. 1) of E./n against ¢ for the DOBAMBC
and p-octyloxybenzylidene-p’-amino-2-methylbutyl-a-
methyl-cinnamate (OOBAMBMC) samples of Ref. [7]
confirms the validity of Eq. (4) and also our assumption
that P o< n for these samples; note that we plot E./n,
not E./P. Another point is that the constant-amplitude
approximation seems to be valid over a large tempera-
ture range, except for T 2 T.(E) — 1 K; see also Figs.
3 and 4 below. Figure 2 plots E. against Pq? for the
DOBAMBC samples of Refs. [9] and [10]. The observed
linear relation [as predicted by Eq. (4)] means that the
coefficient D, is practically independent of T'; this result,
which cannot be predicted theoretically, permits the use
of Eq. (4) even in cases where the simple derivation given
above does not apply.

We discuss next the numerical solution of the Euler-
Lagrange equations for the density of Eq. (2); there are
six parameters (and also the unknown temperature Tp),
but scaling the polarization, the length scale, and the free
energy reduces this number to three. Since we are inter-
ested here only in the qualitative features of the phase
diagram in the E-A plane, we have used an illustrative
parameter set (B = 200, C = 3000, D; =1, and D, = 2,
with D3 = 0 or 10 or —10). We note that the chiral D,
and D3 terms in the free-energy density can either co-
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FIG. 1. Plot of E./n vs ¢® for two compounds studied
by Martinot-Lagarde et al. [7]: (a) DOBAMBC and (b)
OOBAMBMC.



4224

300t

200}

Ec(V/mm)

100

+

0 5 10 15
Pq2 (108C /m*%)

FIG. 2. Plot of E. vs Pg® for the DOBAMBC samples of
Takezoe et al. [10].

operate (D2D3 > 0) or compete (D;D3 < 0), favoring
helices with the same sense of rotation or opposite senses
respectively, with consequences for the phase diagram.
Figure 3, which gives the results of numerical solution
of the Euler-Lagrange equations for D3 = 0 and D3 = 10,
shows that the critical electric field depends monotoni-
cally on T. The D3 term merely displaces the transition
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FIG. 3. Phase diagram in the E-A plane for the Landau
density of Eq. (2), with parameters B = 200, C = 3000,
D, =1, D; = 2, and D3 = 0 (solid line) and 10 (dashed line).
The smectic-C* (Sm-C*) and smectic-C (Sm-C) phases oc-
cur at low and high fields, respectively. The e’s are multicrit-
ical points separating second-order transitions at high and
low temperatures (instability and nucleation types, respec-
tively) from first-order transitions at intermediate tempera-
tures. The o’s and x’s are the results of the one-harmonic
and constant-amplitude approximations for D3 = 10.
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to larger electric field (since D2 D3 > 0); in a magnetic
field, on the other hand, the D3 term makes the Sm-
C* phase reentrant [4,5]. The two approximations used
together provide an excellent description of the phase di-
agram for D3 = 10; see also Fig. 4 below.

Figure 4 shows the phase diagram for the same parame-
ter values, except that D3 = —10. The D, and D3 terms
compete, the first winning at high T where n is small
and the second at low T (but this region may not be
experimentally accessible due to the appearance of other
phases). The helix reverses sense at some T less than T,
(the wave number vanishes and the pitch diverges), giv-
ing the doubly reentrant sequence Sm-C —Sm-C*—Sm-
C —Sm-C* with decreasing T (for a range of fields).
Compounds such as PACMB [7], in which the helix un-
winds completely with decreasing T and then rewinds in
the other direction (at zero field), should show a phase
diagram like Fig. 4.

In all three cases (D3 = —10, 0, and 10 in Figs. 3
and 4), the transition at high T is second order (insta-
bility type), switches to first order, and then to second
order (nucleation type). This is the only case known to
us where both main types of second-order transition oc-
cur on the same phase boundary; the first-order segment
is necessary to separate them. The upper multicritical
point was predicted in Ref. [17]; on the second-order line
above this point, the Sm-C phase becomes unstable to a
ripple. At the lower multicritical point, the interaction
between discommensurations changes from attractive to
repulsive [5,31].
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FIG. 4. Phase diagram in the E-A plane for the Landau
density of Eq. (2), with parameters B = 200, C = 3000,
D, =1, D, = 2, and D3 = —10. The helices of the
smectic-C* phases in the two regions have opposite senses.
The o’s are the multicritical points; the other points are the
results of the one-harmonic approximation (o’s), and the con-
stant-amplitude approximation (x’s). The figure should de-
scribe qualitatively the phase diagram of PACMB [7] and
other compounds with divergent pitch at zero field.
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IV. PHASE DIAGRAM OF DOBAMBC

This section compares the theoretical E-T phase di-
agram of DOBAMBC [obtained by numerical solution
of the Euler-Lagrange equations corresponding to the
density of Eq. (1)] with experiment. Unfortunately,
DOBAMBC samples can have very different properties
when prepared in different laboratories and the two avail-
able sets of parameters (the “A” set of Ref. [22] and the
“Carlsson set” [32]) differ markedly, in cases by several
orders of magnitude, although both sets gave good fits
for n(T), P(T), and the ratio P/n, and semiquantitative
fits for the pitch; E-T phase diagrams were not used to
estimate the parameters and in fact were not determined
for these samples. No full sets of parameter values are
available for the samples used to determine the phase di-
agrams. The Carlsson set gives better agreement with
experiment, but we have no other evidence to prefer it.
Only an incomplete parameter set is available for DOBA-
1-MPC [33].

Figure 5 compares the phase diagram predicted by the
Carlsson set with the experimental results of Ref. [10].
We emphasize that the theoretical phase diagram was
obtained from numerical solution of the Euler-Lagrange
equations for the density of Eq. (1), using no adjustable
parameters, only published values obtained from fits to
experimental results (which do not include the phase di-
agram). Experimental values of the field at the left nose
are £ = 64 V/mm [10], ~70 V/mm [11], ~58 V/mm
( [13], decreasing field), and ~79 V/mm ( [13], increas-
ing field), in good agreement with our numerical value of
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FIG. 5. Phase diagram in the E-T plane as predicted by
the Landau density of Eq. (1) with the Carlsson set of pa-
rameter values [32] for DOBAMBC. The solid circles are the
multicritical points discussed in the caption for Fig. 3. The
o’s are the experimental points from Fig. 13 of Takezoe et al.
[10]. One experimental point at large field is not plotted; the
transition temperature at zero field was not measured, and
we have adjusted the experimental points so that the highest
one lies on the theoretical curve.
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69 V/mm (at T — To = —1.8 K). The right nose (which
occurs at £ = 172 V/mm, T—T, = —0.31 K numerically)
and the upper branch were not observed in any of the ex-
periments on DOBAMBC [10,11,13], apparently because
measurements very near 7. are too difficult. Also, the
phase boundary at low T turns downward experimen-
tally [10] but upward numerically, perhaps due to sam-
ple differences (between those of Refs. [10] and [32]) or
(less likely) due to terms omitted in the Landau theory.
Apart from these qualifications, the overall agreement is
satisfactory, considering that (a) the experimental prop-
erties vary greatly (and so do the parameter values), (b)
parameter values are not available for the samples used
to determine the phase diagram, and (c) the available
parameters give only semiquantitative fits.

The transition is predicted to be second order except
between the multicritical points. The first order segment
is probably unobservable because it occurs in the diffi-
cult high-T' region; more generally, the commensurate-
incommensurate transition in systems of the Lifshitz-
invariant class, when first order, is only weakly so, with
little hysteresis. The order is difficult to determine ex-
perimentally, but a second-order transition is not incon-
sistent [34] with the results of Ref. [10]. The hysteresis
observed in some experiments [12-14] suggests a first-
order transition (in disagreement with the theory), but
may be due to sample geometry, or difficulty in reaching
equilibrium [35].

We determined the phase diagram also for the “A”
parameter set of Ref. [22]. The double reentrance occurs
for this set as well; the left and right noses are at (E,T —
To) = (21 V/mm, —0.12 K) and (2.5 V/mm, —3.0 K), in
poor agreement with the available E-T phase diagrams.

Parameters for weakly chiral DOBAMBC samples were
obtained by fitting to the H-T phase diagram [35]; val-
ues of three of the six adjustable parameters differ sig-
nificantly from those obtained previously, partly because
the earlier fit [32] was to chiral samples. The fit at low
T was good, but not in the difficult high-T" region; also,
Ref. [35] did not examine whether other properties are
well described by these parameters. Similar calculation
of the H-T phase diagram of chiral samples using the
chiral set [32] would be of interest.

The left nose of the E-T phase diagram, but not the
right nose or the upper branch, can be understood sim-
ply from a relation giving the critical field in terms of
measured quantities:

w2 P,
c R 0D/’ (5)
32 P;/E

where P, and P; are the spontaneous and induced po-
larizations, the latter being assumed linear in the field
E. Applications to DOBAMBC and DOBA-1-MPC are
given in Ref. [14] where Eq. (5) was first given; it is ob-
tained on combining Egs. (25), (44), and (45) of Ref.
[18], apart from a factor of w2/8.

The double reentrance in DOBAMBC under electric
field [9-11,13] is unusual, as is the Sm-C* reentrance un-
der magnetic field [2], deserving a few comments. A non-
racemic mixture of chiral molecules is obviously neces-
sary, but not sufficient.
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A. Electric field

In the cooperative case DsD3 > 0, the double reen-
trance, like the maximum in the pitch, requires both the
chiral D3 term and the achiral Q term. In colloquial
terms, the Q term creates the right nose, making the
Sm-C phase reentrant, and the D5 term creates the left
nose, making the Sm-C* phase also reentrant. But the
Q term alone can give a reentrant Sm-C phase without
a reentrant Sm-C* phase, as shown in Fig. 6. In the
competitive case DaD3 < 0, only the D3 term is needed
for the double reentrance.

B. Magnetic field

In colloquial terms, the Lifshitz point in magnetic field
plays the role of the right nose in electric field, giving the
phase boundary in the H-T plane a positive slope; the
D; term (in the cooperative case) enhances the Sm-C*
stability with decreasing T', and turns the curve around,
causing the reentrance. Compounds without a maximum
in the pitch can have a reentrant Sm-C* phase, as shown
in our previous work [4,5] [which omitted the © and 7
terms in Eq. (1)]; the reentrance may be more common
than realized and failure to observe the maximum should
not discourage experiments in magnetic field. Of course
a quantitative description of the phase boundary may re-
quire the Q term. The theory is quite clear on the relation
between the maximum in the pitch and the reentrance,
unlike some of the literature [35]; it is not the maximum
but rather the decrease of p with decreasing T', which is
connected to the reentrance.

V. SUMMARY

The following, together with Fig. 7, gives the expected
behavior under magnetic (H) or electric (E) field accord-
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FIG. 6. Phase diagram in the E-T plane as predicted by the
Landau density of Eq. (1) with the Carlsson set of parameter
values [32], except that D3 = 0.
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FIG. 7. Some possible behaviors of the pitch p as a function
of T' with the corresponding H-T and E-T phase diagrams.
Of the six cases showing reentrance, only two (line D under
H and under E) have been observed experimentally; the text
suggests compounds which may display the other four.

ing to the behavior of the pitch p with decreasing T'; we
use this quantity as a guide because it measures the sizes
of the crucial D3 and Q terms. We note the present
experimental situation, and suggest further experiments,
but caution that the appearance of other phases may pre-
empt the predicted reentrance. The list is not exhaustive:
more complicated behavior is possible, as are intermedi-
ate cases [such as MHPOOCBC (the chemical formula is
given in Ref. [28])].

(a) The pitch is constant. Both D3 and 2 are small;
neither the Sm-C nor the Sm-C™* phase is reentrant under
either H or E.

(b) The pitch decreases monotonically. Q is small; the
Sm-C* phase is reentrant under H; neither phase is re-
entrant under E. The DOBAMBC samples of Ref. [7] ap-
pear to belong to this class, but the H-T phase diagram
was not determined. Observation of Sm-C* reentrance
without a maximum in p would confirm the analysis at
the end of Sec. IV.

(c) The pitch increases monotonically. D3 is small;
neither phase is reentrant under H; the Sm-C phase is
reentrant under E. MHPOOCBC might belong to this
class, but the pitch tends to saturate after an initial rapid
increase [28], with a net increase of about 80% above the
value at T.. For comparison, the pitch for the results in
Fig. 6 increases by less than 20% at the nose; it does not
saturate. That is, the 2 term may be large enough in
MHPOOCBC to give reentrance.

(d) The pitch has a mazimum. Both terms are large;
the Sm-C* phase is reentrant under H, as observed in
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DOBAMBC [2]; both phases are reentrant under E, as
observed in DOBAMBC [9,10] and in DOBA-1-MPC
[14].

(e) The pitch diverges. This is the competitive case
D;D3 < 0, with |Ds| large; the Sm-C* phase is reen-
trant under H and both phases are reentrant under
E [as in case (d), but the physical origin is different
here, since the Q term is not required]. The com-
pound p-azoxy-cinnamate-methyl-2-butanol is an exam-
ple [7], but has not been examined under either mag-
netic or electric field to our knowledge. The pitch
appears to diverge also in the antiferroelectric Sm-
C% phase of 4-(1-methylheptyloxycarbonyl)-phenyl-4'-
octyloxybiphenyl-4-carboxylate [28], but the above Lan-
dau theory requires adjustment, and we cannot predict
reentrance under magnetic field.

In conclusion, Landau theory describes reasonably well

the phase diagram of DOBAMBC under electric field, an
addition to its already impressive list of triumphs in de-
scribing the unusual behavior of ferroelectric liquid crys-
tals. Determination of (1) the E-T phase diagram of sam-
ples with increasing pitch, (2) the H-T phase diagram of
samples with decreasing pitch, and (3) both phase dia-
grams of samples with diverging pitch, would further test
it.
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