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Suspensions of identical particles with hard-sphere-like interactions are studied at concentrations for
which the equilibrium state is crystalline. Dynamic light scattering measurements on these suspensions,
in their metastable amorphous states prior to crystallization, identify the kinetic glass transition (GT) by
the arrest of particle concentration fluctuations on the experimental time scale. This kinetic glass transi-
tion coincides with a spectacular change in the mechanism of crystallization from the formation of small
crystals, which appear homogeneously nucleated throughout the sample at concentrations below the
transition, to the growth, above the transition, of larger and highly asymmetric crystals whose shape and
orientation depend on the shear history of the suspension. The intermediate scattering functions are
measured over a time window spanning up to eight decades and for several wave vectors near the posi-
tion of the main structure factor peak. From an analysis of the data in terms of the idealized version of
mode-coupling theory, we conclude that both a and B processes are necessary to describe the slow
structural relaxation in the fluid near the GT. The superposition principle of the a process, for the col-
loidal fluid, and the factorization property of the B process, for the colloidal fluid and glass, are verified.
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I. INTRODUCTION

It is now generally accepted that, in principle, all ma-
terials are capable of undergoing a glass transition (GT).
The basic requirement for vitrification of a fluid is that
the rate of cooling or compression must be greater than
the intrinsic structural adjustment rate of the liquid [1,2].
While this is readily achieved for network forming
glasses, of which window glass is the most familiar exam-
ple, vitrification of some simple atomic fluids requires
cooling rates so large (of order 10" Ksec™!) that they
can only be attained in computer studies. Lengthening of
the structural relaxation time during the temperature or
density quench is manifested macroscopically by a corre-
sponding increase in the viscosity of the metastable fluid
and the operational GT is generally defined as that tem-
perature or density where the viscosity reaches about 10!’
Pas.

The variation of the viscosity with temperature de-
pends on both the material and quench rate. This has led
to the proposal of several mechanisms for the GT [1,2].
The description in terms of activated processes with con-
stant energy barriers gives the Arrhenius law which
characterizes the exponential viscosity variation with
density (or inverse temperature) of so-called strong glass
formers. In contrast, kinetic interpretations, where with
increasing density the dynamics are viewed in terms of
particles being trapped in increasingly persistent neigh-
bor cages, predict an increase in viscosity much sharper
than that of the Arrhenius law. The latter behavior is
characteristic of fragile glass formers [3].

Although the sudden change in thermodynamic prop-
erties, such as the specific heat and thermal expansivity
that accompany the freezing in of molecular degrees of
freedom at the GT, suggests an underlying second-order
phase transition [1,4], a consensus between the thermo-
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dynamic and kinetic approaches to the GT remains to be
established.

The debate concerning whether and the extent to
which the GT 1is a universal kinetic process has
intensified since the application of mode-coupling theory
(MCT) to the regime of very dense metastable fluids [5,6].
The main premise of this theory involves nonlinear cou-
pling between pairs of density fluctuations [7,8]. Increas-
ing the strength of this coupling, by decreasing the tem-
perature leads to a dynamic instability where the fluid
structure becomes permanently frozen, i.e., a sharp er-
godic to nonergodic transition occurs at a critical temper-
ature T,. The main predictions of the theory are that (i)
the approach to the transition, from the fluid, is accom-
panied by the emergence of two highly nonexponential
relaxation processes, the a and 8 processes, with critical-
ly diverging time scales; (ii) arrest of the fluid structure at
the transition is signaled by the vanishing of the a pro-
cess; and (iii) both processes exhibit time scaling proper-
ties and, for the B process, fluctuations in space and time
are decorrelated.

These predictions apply to the ideal GT. Coupling to
current fluctuations to account for phonon-activated hop-
ping motion, the mechanism responsible for the ultimate
restoration of ergodicity in molecular glasses, is not in-
cluded in the basic version of MCT [7,8]. However, even
in the best examples of fragile glass formers, such as
orthoterphenyl and some mixed ionic fluids, the variation
of viscosity with temperature changes from power law to
exponential as the GT temperature is approached [9].
The implied change in the underlying mechanism for flow
is apparent in computer simulation studies of supercooled
atomic fluids. These studies indicate that the nature of
the many-particle dynamics changes from that driven by
kinetic processes to that dominated by activated trans-
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port as the temperature is lowered [10,11]. The critical
temperature T, obtained from that part of the viscosity
versus temperature data which follows a power law, is
therefore generally higher than the operational GT tem-
perature. This has led to the suggestion that the basic
version of MCT applies only to the moderately super-
cooled fluid regime (with corresponding viscosities up to
about 10 Pas) [4,5].

Some years ago Pusey and van Megen showed that a
suspension of almost identical submicrometer spherical
particles has an equilibrium freezing-melting transition
consistent with that expected for the ideal hard-sphere
system [12]. They also found that beyond a certain
volume fraction (¢~0.56) crystallization was either
suppressed or became exceedingly slow [13,14]. At
roughly the same concentration structural arrest of the
metastable colloidal fluid was indicated by the appear-
ance of a nondecaying component in the intermediate
scattering function (ISF). Beyond the initial 10% of the
decay, associated with small-scale diffusive particle
motions, the ISFs measured at the wave vector corre-
sponding to the peak in the static structure factor were
well described by the B process [15]. Subsequent studies
of colloidal glasses have yielded quantitative agreement
between measured and predicted nonergodicity parame-
ters and verified the factorization property of the S pro-
cess [16].

Colloidal suspensions offer several advantages over
molecular fluids for both fundamental studies of the GT
and assessment of the detailed dynamics predicted by
MCT. First, the suspensions used in the above work can
be regarded as hard spheres in a structureless and in-
compressible liquid and they therefore constitute the sim-
plest experimental systems to show a GT. Second, the
particles exchange energy and momentum only with the
suspending liquid so that phonon-activated transport is
expected to be suppressed and the observed GT should be
illustrative of the ideal GT predicted by the basic version
of MCT. This assertion is supported by the ability to de-
scribe some eight decades of viscosity variation of col-
loidal suspensions by power laws [17]. [There is, howev-
er, some variation (from ¢=0.58 to 0.71), probably asso-
ciated with ambiguities in defining the effective hard-
sphere volume fraction, in the location of the divergence.]
Third, the dynamics of suspensions can be studied by dy-
namic light scattering (DLS). This technique is ideally
suited to explore the structure and dynamics on the spa-
tial scale (~10~7 m) and on the temporal scale which
ranges from about 10~ * sec, for the microscopic diffusive
particle motions, to about 10* sec, characteristic of the
slow structural relaxations near the GT.

This paper goes beyond previous studies [13,14,16] of
the GT in suspensions of hard spheres in several respects;
(i) we approach the GT in smaller concentration incre-
ments, (ii) ISFs are measured over a range of wave vec-
tors that span the static structure factor peak, and (iii)
the dynamic window covers over eight decades. Close
proximity to the GT and a wide dynamic window are
essential if the complete slow relaxation is to be exposed
and the crucial scaling predictions of MCT are to be test-
ed. As outlined in a previous Letter [18], our results
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show unequivocally that, in the metastable fluid close to
the GT, relaxation beyond the time scale of the micro-
scopic diffusive motion proceeds in two stages.
Significantly, we demonstrate that these slow relaxation
stages can only be fully described by a combination of
both a and B processes.

Further to Ref. [18] we present several important con-
sistency checks of the quantities obtained by a MCT
analysis of our data. These show that the basic version of
MCT describes the relaxation processes outside the mi-
croscopic transients, on suspensions at concentrations in
the vicinity of the GT, to an accuracy of 10-20 % using
effectively a single fitting parameter. We also pay partic-
ular attention to the procedures for acquiring reliable
ISFs close to the GT where the time scales of the slowest
fluctuations are comparable to the experimental time.
These more detailed studies allow us to confirm the ex-
istence of a mechanism, other than “hopping,” that is re-
sponsible for the very slow crystallization of colloidal
glasses.

In the following section of this paper we give an outline
of the MCT predictions essential for analysis of the ex-
perimental results. Experimental methods, encompassing
a description of the samples and a discussion of the light
scattering procedures, are given in Sec. III. Section IV
contains a presentation and discussion of the results; this
includes DLS results, a discussion which attempts to
reconcile the particle dynamics in the metastable col-
loidal fluids and glasses with observed crystallization pro-
cesses, and analysis of the DLS data in terms of MCT.
Concluding remarks are presented in Sec. V.

II. THEORY

An outline of dynamic light scattering theory is given
in Sec. III B along with a verification of the experimental
procedures appropriate to different suspension concentra-
tion regimes. Here we give an exiguous account of
mode-coupling theory, concentrating on those aspects
necessary for an interpretation of the DLS results. Two
recent reviews [7,8] give a comprehensive description of
MCT and appraise a large body of experimental data.

Since the dynamics of colloidal suspensions are
diffusive on all relevant time scales, we start with the fol-
lowing formally exact memory equation for the normal-
ized intermediate scattering function (or autocorrelation
function of number density fluctuations) f (g, 7):

fan+olg [fan-[Higr—f (gsds]|=0, W

where w(q)=Dyq%/S(q) is the frequency associated with
the smallest scale particle diffusion, D, is the free particle
diffusion coefficient, and S(q) is the static structure fac-
tor. Equation (1) may be obtained from the Smolu-
chowski equation by using standard projection operator
procedures [19]. Laplace transformation gives the formal
solution

flg,2)={z+w(q)[1—H(q,2)]} ! . )

Cichocki and Hess [20] have shown that the memory
function H (q,z) can be expressed in terms of an irreduc-
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ible memory function M (g,z) as follows:
H(q,z2)=M(q,z)/[1+M(q,z)] . (3)

It is then assumed that the function M (g,z) can be writ-
ten as [7,8,21]

M(q,z)=v(q)+w(qg)m(q,z) , (4)

where v(q) is a white noise term. Combining Egs. (2)-(4)
gives

flg,2)/[1—2zf(q,2)]=[1+v(q)+w(qg)m (q,2)]/w(q) .
(5)

The form for the memory kernel, or random force corre-
lator m (g, 7), which predicts at least the main qualitative
dynamical features observed around the GT is [7,8]

m(g,7)= Y Vig;q',q")f(q',7)f (¢",T) . (6)
99"

The vertices V' (q;q',q"’) depend only on the static struc-
ture factor S(q). While the choice of m(q,7) is uncon-
trolled, one arrives at Eq. (6) with the argument that fluc-
tuations in the random force should decay into pairs of
number density fluctuations and the approximation that
the average of products of density fluctuations factorizes
into products of averages [7,22].

On smoothly changing S (g), corresponding to increas-
ing the volume fraction ¢ (or reducing temperature in
molecular glass formers), the solution to these equations
shows a dynamic instability at a critical concentration ¢_;
for ¢ <¢,, f(q,7) decays to zero, while for ¢ > ., f(q,7)
saturates in time to a finite positive value f (g, « ). Physi-
cally, this instability has the signature of an ideal GT, a
transition from ergodic to nonergodic behavior. It must
be emphasized that the system does not exhibit any
anomaly in .S (q) as this instability is traversed.

Close to the GT and small z (i.e., long times) the
memory function becomes large and Eq. (5) reduces to

flq,2)/[1—2zf(q,z)]=m(q,z2) , (7

i.e., the slow dynamics near the GT do not depend explic-
itly on the microscopic dynamics characterized by the
quantities v(q) and w(q). Solutions in this asymptotic re-
gime, valid to order |o'|!/? in the separation parameter

o=col6—0,)/b, , (8)

where ¢ is a material-dependent constant, have been ex-
tensively studied [7,8] and, from an experimental stand-
point, are most interesting and challenging.

Here the theory predicts that beyond the time scale ¢,
[~(w~1(g))] of the microscopic motions the relaxation
of f(q,7) proceeds in two stages. These stages are
characterized by two time scales 7, and 7, which diverge
as the separation parameter approaches zero:

ro=tolo|"7, y=(1/2a)+(1/2b) (%)
TB=t0|0'\_8, 821/20 . (gb)

The nonuniversal exponents a (0<a <0.5) and b
(0<b <1) are related to the exponent parameter A as fol-

lows:
A=TX1—a)/T(1—2a)=T%14+b)/T(1+2b) , (10)

where I' is the gamma function. The dynamics during
the first of these slow relaxation stages, in the time re-
gime ¢, <<T <<T,, are governed by the /3 process where

flg,n)=fAq)+|ol'"*h(q)gs(r/Tp) . (11)

Here f.(q) is the nonergodicity parameter and represents
the amplitude of the arrested structure at ¢.. f.(g) as
well as the critical amplitude 4 (g) and the universal mas-
ter function g, (7) (where the subscript + denotes the
sign of o) are independent of concentration. Concentra-
tion enters the dynamics only through the parameter o
and the scaling times 7, and 75 [Eq. (9)]. The factoriza-
tion of the spatial and temporal variables, indicated in
Eq. (11), suggests that localized dynamics promote relax-
ation of concentration fluctuations to the value f.(g). On
the fluid side of the transition (o <0) the time 75 marks
the crossover to the second relaxation stage, the a pro-
cess, which describes relaxation of f(g,7) to zero. For
this process another scaling law, valid for 7>> 7, is pre-
dicted,

flg,7)=fq)G(q,7/7,) . (12)

The nonuniversal functions G(g,7) are independent of
concentration. In the glass (0 >0) the a process is
arrested but the B process persists and saturates at long
times to the value g , (17— 00 )=(1—1)" 12,

We state two limiting results:

gilr<<rg)=(7/1)"", (13)
g_(1p<<1<<7,)=—B(7/75)°, (14)
where B > 0.

These predictions may be given the following physical
interpretation [8]. The S8 process describes the dynamics
of localized particle clusters or cages and Eq. (13) indi-
cates that during the early part of this process the dy-
namics in the fluid (¢ <0) and glass (o >0) are indistin-
guishable; the algebraic form reflects the fractal nature of
the lifetimes of these metastable clusters. The a process
describes the breakdown of the particle cages leading to
large-scale particle diffusion and flow. The dynamics of
the particle cages on the verge of breaking up is shared
by both a and S processes and is described by the von
Schweidler law, Eq. (14).

Equation (7) can be obtained from either the Liouville
equation [8] or, as outlined above, the Smoluchowski
equation [21]. Thus the GT scenario, embodied in Egs.
(9)-(14), applies both to systems where the microscopic
dynamics is ballistic and to those where it is diffusive.
The material specific potential-energy function enters
only via the static structure factor. In particular, S(q)
determines the exponent parameter A which in turn
specifies g (7) and the other exponents through Eq. (10).
The connection between the time scales of the predicted
functions and the microscopic transients is made in Eq.
(9) with the time t,; the latter is in principle the only
presently undetermined parameter in the theory.
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FIG. 1. Universal master functions of the B process for the
hard-sphere system (drawn for A=0.758). The upper and lower
solid curves are the functions g (7) and g_(7), respectively.
The upper and lower dashed curves are the critical decay 7~ ¢
[Eq. (13)] and the von Schweidler law —B7® [Eq. (14)].

Mode-coupling theories for the GT have not yet taken
into account the hydrodynamic interactions which, in
concentrated suspensions, couple the diffusive particle
motions to the structure [23]. However, previous analy-
ses [15] have found the concentration dependence of ¢, to
be small in comparison with that of 7, and 7, indicating
that, at suspension concentrations near the GT, the slow-
ing of structural relaxation is strongly dominated by the
cage effect.

In comparing the dynamics of molecular glass formers
such as polymers and ionic systems with MCT, A is treat-
ed as a free parameter [8,24]. For the hard-sphere system
reasonably accurate approximations for S(q) are avail-
able for volume fractions up to freezing [25]. Extending
these approximations into the metastable fluid region has
allowed the evaluation of the exponents and the functions

G(q,7)

logio[7]

FIG. 2. Master functions of the a process shown for the
wave vectors indicated. R is the effective hard-sphere particle
radius. The location g,, of the main peak of the static structure
factor (see Fig. 8) for the hard-sphere fluid at freezing is given
by g..R =3.46.
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appearing in Egs. (9)-(14); in particular, ¢,=0.525,
a =0.301, b =0.545, A=0.758, and B =0.963 [26-28].
¢, depends sensitively on S(q) and the value ¢c;=1.2 or
1.4 is obtained for the Verlet-Weis or Percus-Yevick ap-
proximations, respectively [29]. The universal master
functions g (7) of the B process are shown in Fig. 1 and
the g-dependent master functions G (g,7) of the a process
are shown in Fig. 2 for three of the wave vectors for
which the ISFs have been measured.

This constitutes the basic version of MCT in which a
sharp transition from a fluid to an ideal glass is predicted.
Inclusion of particle current relaxations in the memory
kernel M (q,7), to allow for possible activated transport,
smears the sharp transition [30,31]. However, since the
motions of colloidal particles in a fluid are strongly over-
damped, it is improbable that a particle can acquire
enough energy to hop over barriers in the free energy
landscape. We expect, therefore, the basic version of
MCT to be applicable to colloidal suspensions.

III. EXPERIMENTAL DETAILS

A. Description of colloidal suspensions

The preparation and characterization of suspensions
used here have been described in detail in previous papers
[14,16]. Briefly, these suspensions contain poly-
(methylmethacrylate) particles, stabilized against irrever-
sible aggregation by thin (~10 nm) steric barriers of
poly-(12-hydroxystearic acid). The hydrodynamic radius
R;=205%3 nm and polydispersity (~4%) of the parti-
cles were determined by DLS on very dilute samples [32].
For the concentrated suspensions the composition of the
suspending liquid, a mixture of decalin and carbon
disulfide, was adjusted until the turbidity was about 0.2
cm~!. Thus the samples, prepared in optical cuvettes of
1-cm? cross section, appeared almost transparent and the
light scattering analysis (discussed below) assumes the va-
lidity of the first Born approximation.

The equilibrium phase behavior of these suspensions
mimics that of the ideal hard-sphere system [12,33,34].
Exploitation of this property allows expression of the sus-
pension concentrations in terms of effective hard-sphere
volume fractions ¢=Ed,/E,, where £ is the “core”
volume fraction (calculated from the weight composition
of the samples and literature values of the densities of the
components), &, the measured core volume fraction
where the colloidal fluid freezes, and ¢ r=0.494 the
volume fraction at which the perfect hard-sphere fluid
freezes [35]. The difference between freezing and melting
concentrations is sensitive to deviations from a hard-
sphere pair interaction [36]. It is therefore significant
that the experimental melting volume fraction
¢, =0.5421+0.003 is in agreement with the value
0.54510.002 established by computer simulation for the
hard-sphere crystal [35]. On the basis of this agreement
we regard these suspended particles as hard spheres.

The particles are easily redispersed or randomized
from either a gravitationally compacted sediment or a
crystalline state by tumbling the samples on a vertical
wheel rotating at about 1 Hz. The amorphous appear-



4210

ance of the samples and the fluidlike form of their static
structure factors, measured following this tumbling pro-
cess [14], suggest that suspensions at ¢ > ¢, are in a meta-
stable fluid state. In this sense the process of concentrat-
ing a suspension to a value ¢ > ¢, followed by tumbling
can be regarded as analogous to a density quench of a
hard-sphere fluid.

When left undisturbed following this quench, the sus-
pensions crystallize. The volume fractions of the samples
studied here and the times 7', when Bragg reflecting crys-
tals first become evident are listed in Table I. Detailed
descriptions of the observed crystallization have been
presented elsewhere [12,34,37]. The main features shown
by the suspensions used in this study are as follows: For
samples whose concentrations lie between the freezing
and melting concentrations, gravity separates an increas-
ing proportion of coexisting polycrystalline phase (at
volume fraction ¢,) from the fluid phase (at ¢;).
Beyond melting progressively smaller crystals, roughly
isometric and nucleated at randomly distributed sites,
grow and occupy the entire sample volume. These small
crystals are barely visible to the naked eye at ¢=0.574.
(Crystal growth in this sample was observed more quanti-
tatively by the development of a diffraction broadened
Bragg peak [14].) Remarkably, the sample for which the
concentration is only 1% higher (¢=0.581) develops
much larger and highly asymmetric crystals (average
largest dimension of about 1 mm). We also draw atten-
tion to the considerable increase in the crystallization
time (Table I, see also Ref. [38]) that accompanies this
small increase in concentration.

It appears, therefore, that at some concentration ¢,
(0.574 < ¢, <0.581) there is a change in the crystalliza-
tion mechanism from homogeneous nucleation and
growth to a much slower crystal growth on highly asym-
metric, plate-shaped nuclei [37]. We tentatively identify
¢, as the GT concentration. In Sec. IV A we attempt to
reconcile these observations with the particle dynamics
measured by DLS on the metastable fluids.

Apart from those samples with volume fractions close
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to the melting point (0.540 < ¢ <0.555), where the com-
bination of thermodynamic drive and kinetic mobility ap-
parently provide optimum conditions for crystal nu-
cleation and growth, T, was considered to be sufficiently
long to make meaningful DLS measurements on the
metastable fluids.

B. Dynamic light scattering

The optical arrangement and other details relevant to
dynamic light scattering experiments on colloidal fluids
and glasses have been described in previous papers
[14,16]; only an outline is given here. However, we ad-
dress in some detail the procedures employed to obtain
reliable estimates of the intermediate scattering functions
close to the GT, where the time scales of the slowest re-
laxation processes are comparable with the duration of a
single measurement.

In DLS one measures the time-averaged time correla-
tion function

g¥(g,7)=(1(g,0),1(q,7))r/{I(q))%

of the scattered intensity I(q,t). The magnitude of the
wave vector q is ¢ =(4mn /Ay)sin(6/2), where A, is the
vacuum wavelength of the radiation, n the refractive in-
dex of the medium, and 6 the scattering angle. In the
conventional operation of DLS [39,40] it is tacitly as-
sumed that, in the course of an experiment of some
reasonable duration 7, the N particles in the system (or
scattering volume V) access at least a representative frac-
tion of the full ensemble of spatial configurations, i.e., the
system is ergodic, so that the time average, denoted by
the brackets { ) in Eq. (15), is equivalent to the ensem-
ble average { ) ;. We express this property by

(15)

(2)

gl g, )=gPq, 1) . (16)

A consequence of a system’s ergodicity is that the ampli-
tude of the field scattered to a point in the far field

N
E(q,t)= 3, expliq-r;(1)]

j=1

a7

TABLE 1. Sample concentrations expressed as effective hard-sphere volume fractions ¢, sample
designation, crystallization time T, duration of a single DLS measurement T (in seconds), coherence
factor ¢, number of measurements M between tumbling of the samples, total number of measurements
K, and procedure (as discussed in Sec. ITI B) used to determine f (g, ) from g*)(g, 7).

¢ Designation T, T (sec) c M K Procedure

0.494 F2 NA 1000 0.98 5 5 (i)

0.528 Fé6 30 min 500 0.98 3 6 @)

0.535 H9 12 min 500 0.20 1 10 (i)

0.542 H10 <10 min

0.546 Hl11 <10 min

0.551 H1 <10 min

0.558 H3 20 min 500 0.20 1 10 (ii)

0.567 HS 100 min 1000 0.20 4 40 (ii)

0.574 H6 120 min 1000 0.20 4 40 (i)

0.581 H7 6h 1000 0.20 15 180 (ii)
0.98 15 15 (iii)

0.587 HS 10h 1000 0.20 15 180 (i1)
0.98 15 15 (iii)
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is a complex Gaussian random variable with zero mean.
Here E(q,t) applies to N identical spherical particles lo-
cated at r;(¢) in an optically homogeneous background.
(Possible effects of the small spread in the particle size
distribution are discussed below. The particle scattering
amplitude has been omitted because it cancels through
normalization.) E(q,t) represents the spatial Fourier
component, of wave vector q, of particle concentration
fluctuations

E(g,)=8p(g,)= [ 8p(r,nexp[ig-r()ldr .  (18)

The normalized (ensemble-averaged) autocorrelation
function of the scattered light field or ISF, f(q,7), the
central quantity of interest, is related to g\*(¢,7) by the
standard Siegert relationship [40]

g,(;2)(q,1')=1+c[f(q,f)]2 , (19)

where c, the coherence factor, is determined by the ratio
of the coherence area (or speckle size) to the detector
area. The ISF is given by

f(q,7)=F(q,7)/F(q,0), (20)
where
F(q,7)=(E(q,0)E*(q,7)) g (21)

and F(q,0)=S(q) is the static structure factor. In view
of Eq. (18) the ISF, f(q,7), represents the normalized au-
tocorrelation function of particle concentration fluctua-
tions.

For metastable colloidal fluids at concentrations ap-
proaching the GT, the time scale 7, of the slowest
structural relaxations diverges. In principle the duration
T of the measurement could be increased so as to capture
a representative sample of these slow fluctuations provid-
ed that there is no macroscopic change in the system dur-
ing the measurement. However, since the objective here
is to study the particle dynamics in the metastable col-
loidal fluid, the maximum duration of a single measure-
ment is limited, at least, by the crystallization time T,.
We therefore proceeded as follows: First, the scattering
volume was enlarged, by using an unfocused laser beam
and an increased detector aperture, to give a coherence
factor of ¢ =0.2. With this arrangement the detector ac-
cepts about five coherence areas of the scattered light
field, corresponding to five independent spatial Fourier
components of the particle concentration fluctuations.
Second, for every sample a total of K measurements were
made each of duration T (which in most cases was 1000
sec); a sample was tumbled every M (M < K) measure-
ments. In addition, between each measurement the sam-
ple was moved relative to the laser beam so that a
different region was illuminated. To be confident that the
measurements applied to the metastable fluid and that
they were not affected by crystallization, both T and M
were limited to ensure, first, that MT < T, and, second,
that there was no systematic variation over the M data
sets obtained after tumbling the samples. The measure-
ment duration T and numbers M and K are listed in
Table I.

4211

From the K measurements of the (unnormalized) time-
averaged intensity correlation function (I(g,0)I(g,7))‘’
and the time-averaged intensity (I(¢))% (j =1,K) esti-
mates of the (normalized) ensemble-averaged intensity
autocorrelation function were obtained from

S (1(q,0)I(g, )%

g (g r)=1= — . 22)

i (I(g){

j=1

ISFs were then calculated by using Eq. (19) from the
average of the K /m estimates of g,(f(’m)(q,f). Clearly as
m—w, gi% (q,7)=g#(g,7). However, one sees from
Fig. 3(a), where estimates of f(q,7) based on g,‘;z()m,(q,r)
for m =1, 4, 10, and 40 are shown for the most concen-
trated sample below the GT (¢=0.574), that provided
m 2 10 we obtain results free from distortions which may
occur as a result of inadequate sampling over the slowest
fluctuations. Thus, at this concentration a combination
of time averaging (over 1000 sec) and ensemble averaging
(over about m /c =50 independent spatial Fourier com-
ponents) is required to capture a statistically significant
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FIG. 3. Intermediate scattering functions versus the loga-
rithm of the delay time 7 for (a) $=0.574 and (b) $=0.535 es-
timated from Eqgs. (16) and (22) using different numbers m of in-
dependent measurements of time-averaged intensities and inten-
sity autocorrelation functions. See Sec. III B for details. The
ISF’s shown here and in subsequent figures are normalized so
that f(q,0)=1.



4212

sample of the slowest relaxation processes whose time
scales are of order 1000 sec. However, at the lower con-
centration, $=0.535, the fact that the estimated f(q,7)
is independent of m (=1) indicates that 7, <<1000 sec
[Fig. 3(b)].

For the nonergodic glass phase Pusey and van Megen
[41] have proposed a model which leads to a procedure
for estimating the ISF from the measured time-averaged
intensity autocorrelation function that is more straight-
forward than that just described for very concentrated
metastable fluids. The model assumes that the particles
are able to execute only restricted (Brownian) excursions
about an amorphous distribution of fixed average posi-
tions and that correlations in these excursions decay to
zero in the course of a measurement. The relationship
between the ISF and the measured time-averaged intensi-
ty autocorrelation function g{?)(¢,7) is [41-43]

flgn)=1+Ur/Ip){[gf(g,7)—g1(g,0)+1]'2—1} .
(23)

I;={I(q))r is the time-averaged intensity and is given
by the average number of photon detections accumulated
during a particular measurement. I;=(I(q))g is the
ensemble-averaged intensity and, as described in Ref.
[16], may be determined from the photon counts accumu-
lated while the sample is moved gently at constant speed
in the laser beam. Equation (23) applies only for a point
detector, i.e., the coherence factor ¢ =1. This require-
ment is achieved in practice by making the detector area
much smaller than one coherence area.

To recapitulate, the relaxation time 7, of the slowest
structural relaxations relative to the measurement time T
determines which of the following three procedures is
most appropriate for estimating the ISFs of metastable
colloidal fluids and glasses.

(i) T>>7,: The experimental duration significantly
exceeds the time scale of the slowest concentration fluc-
tuations. There is no doubt about the system’s ergodici-
ty, Eq. (16) applies, and f(g,7) can be calculated from a
single measurement of the time-averaged intensity auto-
correlation function with Eq. (19).

(ii) T ~r,: The time scale of the slowest fluctuations in
the suspension is comparable with the experimental time.
In these cases the ensemble-averaged intensity autocorre-
lation function g{*'(q,7) is estimated from the sum of m
independent measurements of the mean intensities and
(unnormalized) intensity correlation functions [Eq. (22)].
Equation (19) is then employed to determine f (g, 7).

(iii) T <<7,: Part of the concentration fluctuations is
effectively arrested on the experimental time scale and
f(q,7) is calculated from a single measurement of the
time-averaged intensity autocorrelation function g{*)(¢,7)
and the ensemble-averaged intensity (I(q)); with the
use of Eq. (23).

Although we have recently given an extensive
verification of Eq. (23) for colloidal glasses [16,42], one
might still question its validity very close to the GT; at
what stage (or suspension concentration) does 7, become
so large (relative to T) that it can be regarded as infinite?
We address this issue in Fig. 4 where we compare esti-
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FIG. 4. Intermediate scattering functions for the lowest con-
centration glass ¢=0.581. Estimates obtained by the “brute-
force” procedure (ii) are shown by the triangles and squares
based on the indicated m independent measurements of the
time-averaged intensities and intensity autocorrelation func-
tions. Estimates based on Eq. (23) are shown by the crosses and
plus signs.

mates of f(g,7) obtained by procedures (ii) and (iii) for
our lowest concentration colloidal glass (the first sample
in which homogeneously nucleated crystallization is
suppressed). Note first that for 72 10° usec f(g,7) satu-
rates to an almost constant value. We discuss this
structural arrest fully in Sec. IV and, for now, only men-
tion that the g dependence of the amplitude of the arrest-
ed structure in the glass phase, indicated by the long-time
plateau value of f(q,7), varies in harmony with the static
structure factor S(q) [16,26]. The feature in Fig. 4, per-
tinent to the present discussion, is that as we increase the
number (m/c) of independent spatial Fourier com-
ponents used in procedure (ii), the estimate of the ISF
converges to that obtained by procedure (iii). Below the
position g,, of the peak in S(g), where about 50% of the
concentration fluctuations is arrested [f.(gR =2.68)
~0.5; see Sec. IVC], it appears that about 75 (m =15
and ¢ =0.2) independent spatial Fourier components are
sufficient to obtain a reasonable estimate of the ensemble
average over the arrested structure. However, near gq,,,
where f.(gR =3.42)~0.8, it appears that more than 900
independent spatial Fourier components are required to
cover the ensemble of this Fourier component (g ~gq,, ) of
the concentration variations. [A quantitative statistical
analysis of this “brute-force” procedure (ii) will be the
subject of a future publication [44].] We therefore con-
clude that even for the lowest concentration colloidal
glass in this study (¢=0.581) the less tedious procedure
(iii) leads to reliable estimates of f (g, 7).

IV. RESULTS AND DISCUSSION

A. Light scattering results

As mentioned in Sec. IIT A, except near the melting
concentration ¢,, =0.545, crystallization of the suspen-
sions after tumbling was sufficiently slow (see Table I) to
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permit reproducible DLS measurements in the metastable
fluid phases. The coexisting equilibrium fluid phase at
freezing (#,=0.494) plus seven metastable colloidal
fluids, spanning a concentration range from ¢=0.528 to
0.587, were studied at several wave vectors in the region
of the position g,, of the primary peak of the static struc-
ture factor. The procedures used to estimate the ISF
from the measured time-average time correlation func-
tions are listed for each sample in Table I.

Our basic results for the ISFs are shown in Fig. 5 for
three different wave vectors; complimentary results at
other wave vectors are shown in Fig. 1 of Ref. [18]. The
wave vectors are expressed in dimensionless form as gR,
where R =199 nm is the effective hard-sphere particle ra-
dius, obtained by matching the positions of the structure
factor peaks of the colloidal suspension and ideal hard-
sphere fluid at their respective freezing concentrations
[14,16]. If we define, for the purpose of a qualitative dis-
cussion, the overall decay time of the ISF as that where
f(g,7)=0.5, one sees from Fig. 5(b), for example, that an
increase in suspension concentration from very dilute
(¢~0) to the freezing concentration (¢,=0.494) is ac-
companied by a lengthening of the overall decay time by
slightly less than two decades, from about 10° to 10° usec.
Increasing the concentration further, from ¢, to
¢=0.574, incurs an increase in decay time by another
four decades, from about 10° to 10° usec, and three relax-
ation stages become apparent.

The decay of correlations of concentration fluctuations
associated with the smallest scale diffusive motion is
given by exp[—D(q)g*r]; D(q) is the wave-vector-
dependent short-time diffusion coefficient obtained from
the initial slope of f(g,7) [23,45]. To prevent overcrowd-
ing of the figures the quantity exp[—D (q)g>r] for the
freezing concentration is only included in Fig. 5(b). It ap-
pears, however, that this small-scale diffusive motion ac-
counts for approximately the first 5% of the total decay
of f(q,7) and extends to just below 10* usec. The follow-
ing two relaxation stages are most clearly delineated for
¢=0.574 where an inflection point, in f (g, 7) versus 7, at
7~ 10* usec suggests a crossover from relaxation associat-
ed with the microscopic motions to a second relaxation
process. Another inflection at 7~10" usec points to a
second crossover to a third process. Interestingly, these
crossover times appear to be independent of the wave
vector. At lower concentrations the two slow relaxation
processes merge and contract to shorter times.

For the volume fraction ¢=0.574 the slow but pro-
nounced downward curvature of f(g,7) at long times im-
plies that the time scale of the slowest concentration
fluctuations is comparable to the duration (7 =1000 sec)
of the measurement. (We came to a similar conclusion
for this sample in Sec. III B.) However, when the concen-
tration is increased by merely 1%, from 0.574 to 0.581,
f(g,7) approaches an almost constant value at long
times. Thus at ¢=0.581 the time scale of the slowest
fluctuations lengthen to the extent that they are
effectively arrested during the course of a single measure-
ment.

The above observations indicate the occurrence of a
kinetic GT at a concentration ¢, (0.574<¢, <0.581).
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FIG. 5. Intermediate scattering functions for three wave vec-
tors [(a)—(c)] around the structure factor peak. The symbols
refer to the experimental data for suspension volume fractions
indicated in (a). The solid curves are the MCT fits to the data,
as discussed in Sec. IVC. The additional curves in (b) are
exp[—Dygq27] (—-—--) and exp[ —D(q)g*r] (-—-), where D,
is the free particle diffusion coefficient and D(gq) is the short-
time collective diffusion coefficient for the colloidal fluid at
freezing (§=¢,) at gR =3.42.
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Here large-scale diffusion ceases and the fluid structure,
at all wave vectors, becomes effectively frozen.

B. Crystallization and the glass transition

The arrest of concentration fluctuations in the metasta-
ble colloidal fluid coincides with the spectacular change
of the crystallization mechanism, described in Sec. IIT A,
in these suspensions when they are left undisturbed for
long periods after tumbling [37]. The concentration ¢,,
where homogeneously nucleated crystallization becomes
suppressed, coincides with the value ¢, where a fraction,
indicated by the long-time limiting values of f(q,7) in
Fig. 5, of the concentration fluctuations is arrested.
These observations suggest that homogeneous nucleation
demands the kinetic assistance of full structural relaxa-
tion, i.e., large-scale particle diffusion.

In previous work [16] we speculated that the large ir-
regular crystals observed throughout the bulk suspen-
sions at concentrations just greater than ¢, were grown
epitaxially on traces of contaminants. We also suggested
that, for ¢ > ¢, the small remnant decay of the ISFs at
long times was associated with the small ( ~4%) spread
in the particle size distribution and a trace concentration
of very small but mobile particles with the freedom to
roam in the predominantly arrested structure of average-
sized particles. As a result of this more detailed study we
now offer an alternative explanation which reconciles the
slight reduction of f(g,7) at long times (7> 10® usec)
with the nucleation and slow growth of irregular crystals.

We suggest that these highly asymmetric and large
crystals grow on plate or needle shaped nuclei that are
shear induced by the tumbling procedure used to ran-
domize the particle positions. (These shear-induced mi-
crostructures parallel to the flow direction have been re-
vealed by the appearance of isolated intensity maxima in
light diffraction studies of suspensions in Couette flow
[46]. Their formation is also manifested by a reduction in
the shear viscosity [17].) This explanation is supported
by the observation that the size, shape, and orientation of
the crystals, which develop at suspension concentrations
in excess of ¢,, depend on the shear history, for example,
slow tumbling on the vertical wheel, sonication, or sub-
jecting the sample to a small-amplitude regular rocking
motion of several hertz. After tumbling the sample at
¢,=0.587, for instance, seemingly randomly orientated
crystals, with a largest average dimension of about 3 mm,
become evident after about 24 h, whereas much smaller
needle-shaped crystals, mostly parallel to the cuvette
walls, develop within minutes of commencing a regular
rocking motion [37].

It is possible, by means of the rocking motion, to in-
duce needle-shaped crystals in all suspensions at concen-
trations larger than 0.550. Presumably, at lower concen-
trations the structural relaxation rate is greater than the
local shear rate. On leaving samples with concentrations
in the range 0.55 <¢ < ¢, undisturbed the shear-induced
crystals mostly dissipate and are eventually replaced by
the more symmetric homogeneously nucleated crystals.
However, for ¢>¢g, the needle-shaped crystals remain
predominantly intact.
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Similarly for samples with concentration below ¢,,
prepared on the rotating wheel, the highly asymmetric
and therefore thermodynamically unstable shear-induced
structures dissipate by large-scale diffusion. However, for
# > @,, these structures remain frozen in the structurally
arrested metastable fluid.

We now conjecture that infrequent small-scale collec-
tive motions, which occur as particles arrange themselves
into registration on the shear-induced nuclei, provide a
mechanism for the slow growth of the asymmetric crys-
tals as well as the source of the small remnant decay ob-
served in f(g,7) at long times. To support this conjec-
ture we show, in Figs. 6 and 7, intensity traces I (¢) with
their corresponding time-averaged intensity autocorrela-
tion functions g1*)(¢,7) for two separate measurements on
the same sample (¢=0.581). Recall that in the glass
phase the fluid structure is arrested and only small-scale
particle motions about a fixed amorphous distribution of
average positions are possible. This behavior, expected
for an ideal glass, is consistent with that indicated by the
lower trace (b) in Fig. 6. Here the intensity versus time
exhibits small fluctuations, associated with the local par-
ticle motions, on a constant component, associated with
the fixed average positions. The corresponding intensity
autocorrelation function [curve (b) in Fig. 7] decays to
background [(g{*(g,7)=1] just beyond 10° usec. (The
intensity fluctuations on time scale <10° usec are dis-
guised since the actual intensities are plotted only every 2
sec.) The large majority, of nearly 200 separate measure-
ments made in different regions of this sample at the
same angle, were similar to that just described. They
showed the expected reduction in gi*/(g,0) and variation
in (I(q))  for measurements in different regions of the
sample. However, for about 10% of the measurements
the intensity trace showed, in addition to rapid fluctua-
tions, much slower fluctuations or a steady drift in the
mean intensity, as illustrated by the upper trace (a) in
Fig. 6. The presence of these slow fluctuations is
reflected in the intensity autocorrelation function, curve
(a) in Fig. 7, which shows a slow long-time tail. This
behavior for ¢=0.581 is easily distinguished from that

" 400 | 600 800 1000
Time (sec)

0 200

FIG. 6. Relative instantaneous intensity I(¢)/{I)r versus
time, measured in different regions of the same colloidal glass
(#=0.581). The upper trace (a) has been raised by one unit.
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FIG. 7. Time-averaged intensity autocorrelation functions.
Circles and triangles respectively correspond to the upper and
lower intensity traces of Fig. 6.

for $=0.574 ( <¢,) where all intensity traces show both
rapid and slow fluctuations but systematic drifts in 7(z)
are never seen. These occasional slow and irregular vari-
ations in I(¢) for ¢>¢, seem consistent with the oc-
currence of infrequent collective particle rearrangements
that lead to the growth of large irregular crystals, dis-
cussed above. The results for f(g,7), shown in Fig. 5,
constitute an average over many individual measure-
ments (see Table I).

As one goes deeper into the colloidal glass phase the
large crystals no longer appear to be nucleated in the
bulk of the sample but grow very slowly, over many days,
from the meniscus and cuvette walls (see Fig. 1 in Ref.
[12]). At these higher concentrations slow structural
rearrangements are less frequent and, as shown in our
earlier study of colloidal glasses [16], at long times f (g, 7)
saturates to a value that remains constant over several
decades. It appears that all particle motion and crystalli-
zation cease at the random-close-packing concentration
¢=0.64.

Although large polydispersities can effect the form of
f(g,7), we suggest that for the suspensions studied here
the polydispersity is sufficiently small (~4%) that its
direct effect on the dynamics around the GT is
insignificant. (However, there are other effects which we
discuss in the following subsection.) Clearly, if a
significant number of small mobile particles was present
one would expect it to be uniformly distributed implying
that all correlation functions, measured in all regions of
the colloidal glass, should show a similar remnant decay
at long times. It is interesting to contrast our suspensions
of nearly monosized hard particles with the polydisperse
suspensions of soft polystyrene particles used in similar
studies by Bartsch et al. [47]. It is plausible that in the
latter work the polydispersity (14—16 %) may have been
a significant factor contributing to the long-term restora-
tion of ergodicity of the glass phase.

C. Comparison with mode-coupling theory

In the preceding subsections we located the GT con-
centration ¢,=¢, (0.574<¢,<0.581) as that where

both homogeneously nucleated crystallization and large-
scale particle diffusion cease. We therefore identify ¢,
with the critical concentration where the basic version of
MCT predicts the ideal GT [7,8].

Although in principle the scaling time ¢, is the only
quantity not specified by the theory for the hard-sphere
system, in practice there are other quantities that cannot
be stated exactly. In particular, due to the experimental
uncertainty ( ~0.5%) in ¢, and ¢, the physical separation
parameter (¢—¢_.)/d. is approximate. However, the
best MCT fits for the ISFs, obtained by using just 7, and
o as free parameters, showed deviations of more than
10% [on a log,o(7) scale] from the experimental results.
The critical volume fraction ¢.=0.525 predicted by
MCT [26,27], for the hard-sphere system, differs from
our experimental result by about 10%. Errors of this
magnitude in ¢., also expected in other quantities pre-
dicted by the theory [29,48], are possibly a consequence
of errors in the approximations used for the static struc-
ture factor of the hard-sphere fluid in the metastable re-
gime. The calculations of Fuchs ez al. [29] give some in-
dication of the sensitivity of f.(gq) and ¢, to S(q). Fur-
ther to this, differences of 5—10 % between the measured
and predicted nonergodicity parameters for hard-sphere
glasses were found in earlier work [16,42].

It appears therefore that at least one parameter in ad-
dition to the separation parameter and a scaling time is
required to allow for the uncertainties in both the data
and the numerical results of the theory. Thus, on the
fluid side of the transition, ¢ <¢, (o <0), we attempt an
analysis of the ISFs, shown in Fig. 5, in terms of a com-
bination of the a and B processes in which we allow the
time scale 7,, the separation parameter o, and the noner-
godicity parameter f,(q) to vary. Because 7, depends on
both ¢, and o, 7, is used as a parameter in preference to
to. The fitting was performed as follows. First, the scal-
ing time 7, and amplitude f.(q) were estimated from the
best fit of the ISF for the a process, given by Eq. (12), to
the experimental ISF at long times. Second, the so-
determined a process was then superposed with the S
process, given by Eq. (11), with the master function
g (r)=g_(r)+B+* for the B process alone. (The von
Schweidler law [Eq. (14)] was subtracted from the func-
tion g _(7) to achieve this.) In this step o was varied to
obtain the best fit of the combined a and B processes to
the data. Note that the time scale 74 is fixed by o and 7,
[Eq. (9)] and the critical amplitude 4 (q) is determined by
its ratio to f,(q), which is fixed by the theory. We em-
phasize that in performing these fits we comply with the
constraints of MCT in that both f_.(q) and h(q) are in-
dependent of concentration and ¢ is independent of wave
vector (see Sec. II). The scaling time 7, was treated as
the only unconstrained parameter and it therefore ab-
sorbs most of the random and systematic errors in the
data.

It is evident from Fig. 5 (and Fig. 1 of Ref. [18]) that,
beyond the influence of the microscopic transients
(rz10* usec), MCT fits to the data are possible over a
matrix of wave vectors and suspension concentrations.

At gR =2.68 [Fig. 5(a)] there are systematic
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differences between the data and the optimum MCT fits.
Here the amplitude S (g) of the (unnormalized) coherent
ISF, F(q,7)=S(q)f (q,7) [see Eq. (20)], is roughly one-
fiftieth of its peak value at ¢ =¢,, and, as suggested in
previous work [16,42], contributions from both in-
coherent scattering, associated with the small (~4%)
spread in particle size, and multiple scattering may be ex-
pected. Multiple scattering may also contribute at larger
wave vectors (gR R 4.1) where the minimum of the single
particle form factor is approached. In order to obtain the
fits shown in Fig. 5(a) and Fig. 1(c) of Ref. [18] for
gR =2.68 and 4.10, respectively, we required values for
the ratio h(q)/f.(q), as shown in Fig. 8, which differ
from those imposed by the theory by about 20%.

We now present several consistency checks for the pa-
rameters obtained in the above fitting process.

(1) The first and possibly the most significant consisten-
cy check is the fact that the “experimental” scaling times
T, seen in Fig. 9, show no systematic wave-vector depen-
dence. This verifies the predicted a scale universality.

(i) Figure 10 shows a comparison of the nonergodicity
parameters f.(q) and critical amplitudes 4 (g) required to
obtain the above fits to the data, with the corresponding
quantities predicted by MCT for the hard-sphere system
[27]. Significantly, the values for the nonergodicity pa-
rameters obtained here are in agreement with direct mea-
surements of this quantity [16,42].

In the colloidal glass, ¢ > ¢., we assume that the a pro-
cess is arrested and accordingly we analyzed the data in
terms of the B process only. A detailed discussion is
given elsewhere [16], but we include sufficient results here
to contrast the behavior on either side of the GT. Due to
statistical errors, possibly as a result of infrequent
structural rearrangements associated with the slow
growth of the large irregular crystals (discussed in Sec.

2.5 —

h(q)/f(a). S(a)

FIG. 8. Ratio h(q)/f.(q) of the critical amplitude to the
nonergodicity parameter; the solid curve is the MCT result and
the squares refer to the values obtained from the MCT fits to
the data, shown in Fig. S, for 0 <0 (open triangles apply to
MCT fits to data for ¢ <0.528 and therefore warrant less
significance than the squares). The dashed curve is the Percus-
Yevick static structure factor for the hard-sphere fluid at
¢=0.575 reduced in magnitude by a factor of 2.
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FIG. 9. Scaling times 7, obtained from the best MCT fits to
the data of Fig. 5. The dashed lines indicate average values.

IV B), small variations in f,(q) and h(q) from those
found for o <0 had to be tolerated to obtain the MCT fits
to the data shown in Fig. 5. The resulting amplitudes are
also shown in Fig. 10.

(iii) For o <0 the scaling times 75 for the B process
were calculated from Eq. (9) and for o >0 they were ob-
tained directly from the fit of Eq. (11) to the experimental
ISFs (see Ref. [16] for details). Equation (9) was also used
to determine the microscopic transient time #,. The cal-
culated times absorb not only the uncertainty in 7, (or 74
for 0 >0), but also the small variation (about 5%) in o
that could be tolerated without significant departure of
the optimum MCT functions from the data. The three
time scales are plotted as functions of the separation pa-
rameter in Fig. 11. For completeness and also to indicate
consistency between different suspension preparations, re-
sults for 75 from a previous study [16] are included. The

f(q), h(q)

0.0 T T T T T
0.0 2.0 4.0 6.0

gqR

FIG. 10. Nonergodicity parameters f.(g) (closed symbols)
and critical amplitudes 4 (g) (open symbols). Circles refer to the
fluid side (o <0) and triangles refer to the glass side (o >0) of
the GT. The solid and dashed curves are the MCT predictions
for f.(g) and h (q), respectively, for the hard-sphere system.
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theoretical curves for 7, and 74 [Eq. (9)] are calculated
with the average value t,=10° usec for the microscopic
transient time. Thus the comparison between experiment
and theory, shown in Fig. 11, involves no further adjust-
able parameters and the agreement therefore represents
another consistency check of MCT.

The uncertainties in ¢, are such that a weak concentra-
tion dependence, as a consequence of hydrodynamic in-
teractions, is not precluded. Also, there is no rigorous
criterion for the range of validity of the asymptotic MCT
predictions used in these analyses; the concentration
¢=0.494, for which we obtain the separation parameter
o =0.2, is probably too far from the critical point for this
analysis to be applicable.

Note that the times 7, and 75 show the predicted diver-
gence and separation as o approaches zero from below;
for 0=-0.1, 7,/73~8, while for o=-—0.0035, the
smallest negative separation from the GT used in this
work 7,/7g~180. In addition, the concentration depen-
dence of the crossover time 74 is consistent with the pre-
dicted symmetry about the GT. We point out, however,
that 75 should not be interpreted as a characteristic time
associated with a particular physical relaxation process.
Indeed such interpretation is precluded on the basis of
the fractal decay indicated by the power law predicted for
the early part of the B process. It follows from Egs. (9),
(11), and (13) that this stage of the relaxation can be writ-
ten as

flg,n)=f(@+h(g)7/ty)" . (24)

According to MCT 74 represents the crossover from the B
to the a process; the latter describes structural relaxation
towards equilibrium, characterized by the time scale 7,,.
Below ¢, structural relaxation slows with increasing ¢ so
that 7, and also 74 increase. In the glass phase the a pro-
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FIG. 11. Scaling times 7, (open squares) and 75 (closed
squares) versus the separation parameter o, obtained from MCT
fits to the data. See Sec. IV C for further details. Results for 75
from Ref. [16] are shown by the closed triangles. The micro-
scopic times ¢, are indicated by the open triangles. The dashed
and solid curves represent MCT predictions for 7, and 74, re-
spectively.

4217

cess is arrested and here 7 marks the crossover from the
above ¢-independent power law to the plateau

flg,0)=fq)+|a|"?h(g)(1—1)"1/2, (25)

Thus the reduction in 74 with increasing ¢ (or o) is a
consequence of the concomitant increase in the asymp-
tote f (g, o).

(iv) A fourth and final consistency check of the theory
is contained in a plot of the separation parameter versus
volume fraction shown in Fig. 12. A linear least-squares
fit to these results [see Eq. (8)] which excludes the point
at the lowest concentration (for reasons mentioned above)
gives ¢.=0.571 (£0.003) for the critical concentration
and ¢, =1.27 for the constant that connects the theoreti-
cal and physical separations [Eq. (8)]. The latter result is
consistent with that (1.2 <cy;<1.4) estimated by MCT
for the hard-sphere system [29].

The ability to fit the MCT functions, given by Eqgs. (11)
and (12), to the experimental data immediately verifies
the factorization property of the B process and the super-
position principle of the a process. However, it is in-
teresting and instructive to explicitly demonstrate these
features.

The times 7, can be used for a conventional test of the
superposition principle of the a process by plotting the
ISFs in terms of the rescaled time 7/7,, shown in Fig. 13
(and for two additional wave vectors in Fig. 4 of Ref.
[18]). Where the ISF’s are consistent with this principle,
approximately from 74 [for ¢$=0.574, log,o(75/7,)~ —2]
they also follow the master functions [given by Eq. (12)]
for the a process. However, one also sees from Fig. 13
that for times less than Tga significant fraction, equal to
1—f£.(q), of the ISFs does not scale.

According to MCT the dynamics between the time
scale of the microscopic motions and that of the a pro-
cess is governed by the B process. This interval lies ap-
proximately between 10* usec and Tg, indicated by the
two inflection points in f(q,7) versus log,,(7) (seen in
Fig. 5). The results in Fig. 14 are therefore crucial in that

0.2 4o
o i
|
0.1 +
(]
0.0 T T . o
0.49 0.53 0.57

FIG. 12. Separation parameter o versus volume fraction ¢.
The line is the result of a linear regression. See text for further
details.
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they demonstrate the factorization property of the B pro-
cess for this time interval, i.e., where the quantity
[f(g,7)—f.(q)]1/h(q) [see Eq. (11)] is independent of q.
As expected, 75 and the temporal range over which the
factorization property is satisfied decrease when the con-
centration is reduced and recedes from the GT [compare

0.8 A

0.6

f(a.7/74)

R +
arR = 2
0.4
+++ ¢ = 0.494 L
000 ¢ = 0.528
aaa ¢ = 0.535
0.2 4 ooo ¢ = 0.558
xxx ¢ = 0.567
000 ¢ = 0.574
—— MCT  G(q,7/74) &
0.0 +———r—r—"v——+1+++ — O
-10 -8 -6 - -2 2

4
logio[ 7/ 74l

0.0
-10 -8 -6 -4 -2 0 2
10g10[7/7a]

T T

FIG. 13. Intermediate scattering functions, at the three wave
vectors ¢gR indicated in (a)-(c) as functions of the rescaled time
7/74 The symbols refer to the volume fractions indicated in (a).
The solid curves represent the functions [Eq. (12)] for the a pro-
cess with the amplitudes f.(q) shown in Fig. 10 and master
functions G (g,7/7,) shown in Fig. 2.

Figs. 14(a) and 14(b)]. In the time window where the fac-
torization  property is obeyed the functions
[f(g,7)—f.(q)]/h(q) trace the master function
lo|'"*g _(7/7p) of the B process.

Master functions for other values A=0.70 and 0.80 of
the exponent parameter were fitted to the data over the
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FIG. 14. Intermediate scattering functions scaled according
to Eq. (11). Thus [f(q,7)— f.(q)]1/h(q) is plotted as a function
of the logarithm of delay time. The symbols represent the ex-
perimental data at the wave vectors indicated in (a). (a) and (b)
are for suspensions on the fluid side of the GT at the separation
parameters indicated. (c) is for the suspension just above the
GT. The solid curves are the quantities |o|'/?gy(7/75) for
A=0.758 and scaling times 75 and separation parameters o
shown in Figs. 11 and 12. The same quantities are shown as
dashed curves in (a) for A=0.70 and 0.80 (see text for further
explanation). The vertical arrows indicate 7.
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above-mentioned time window by varying o. The results
of this procedure, shown in Fig. 14(a), indicate that a 5%
variation of the exponent parameter about the value
A=0.758 predicted for the hard-sphere system [27] is the
most that can be tolerated.

At times beyond 75 systematic deviations from the
master function of the B process, seen in Figs. 14(a) and
14(b), must then be attributed to the a process. These de-
viations, being negative for wave vectors (gR =3.42 and
3.77) near the position of the peak in S(q) and positive
for the other wave vectors, are consistent with the wave-
vector dependence of the first correction to the von
Schweidler decay due to the a process [28].

A comprehensive verification of the factorization prop-
erty of the B process for colloidal glasses is contained in a
previous paper [16]. However, again for completeness,
we include an illustration of this property [Fig. 14(c)] for
the lowest concentration colloidal glass (¢=0.581 and
o =0.0065).

The implication of the above discussion is that the
structural dynamics, beyond the microscopic transients,
in very concentrated metastable fluids cannot be de-
scribed by a process centered on a single characteristic
time, such as the stretched exponential function. In fact,
Bartsch et al. [47] have already shown that relaxation
data obtained for a system similar to ours cannot be satis-
factorily explained even with a sum of two stretched ex-
ponentials. However, the master functions G (g,7) of the
a process (shown in Fig. 2) can be approximated by the
stretched exponential [28], i.e., for 7>>74 Eq. (12) can be
expressed by

flg,m)=f.(qexp[—(r/7,)°] . (26)

MCT predicts that both the time scale 7, and the stretch-
ing parameter f3 are functions of the wave vector. Our re-
sults in Fig. 13 are consistent with these predictions in
that 7, varies with wave vector by almost one decade as
the position of the structure factor peak is traversed. Un-
fortunately, the noise in the data precludes conclusive
comment regarding the predicted subtle g dependence of

B [28].

V. CONCLUSIONS

Suspensions of nearly identical hard spherical particles,
used in this and previous work, appear to constitute the
simplest experimental systems to show a glass transition.
As far as experimental uncertainties in the definition of
concentration permit, a kinetic GT is located at the same
concentration where homogeneous crystallization is
suppressed. Although crystallization by homogeneous
nucleation does not occur beyond the GT concentration,
slow crystal growth still proceeds. Figures 6 and 7 pro-
vide further evidence consistent with our conjecture that,
in the colloidal glass, crystal growth occurs through
small-scale collective particle rearrangements on irregu-
larly distributed shear-induced nuclei. Despite this ap-
parent gradual restoration of ergodicity in colloidal
glasses, the simplicity of the interparticle interactions and
the absence of hopping motions suggest that sterically
stabilized colloidal suspensions provide a valuable refer-
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ence system for conventional, but invariably more com-
plex, glass formers and also for assessing the basic version
of MCT.

In the first DLS studies [14] of metastable colloidal
fluids and glasses the measured ISFs spanned a time win-
dow of up to five decades. The ISFs measured at the po-
sition of the primary structure factor peak g,, were ana-
lyzed quite successfully in terms of the B process only
[15]. Due to the large amplitude £, (q,,) of the a process
that pertains at g,, and the limited dynamic window, this
analysis was not unique and the ISFs beyond the micro-
scopic processes could also be fitted to a stretched ex-
ponential [29].

In the present work the GT is traversed in smaller con-
centration increments. This, combined with the accumu-
lation of relaxation data spanning an eight decade time
window and a significant range of wave vectors, allows us
to make significantly more specific comments on the pre-
dictions of MCT.

Our analysis shows that on the fluid side of the GT and
beyond the time of the microscopic transients, the ISFs
can be quantitatively described by the superposition of
the a and B processes; close to the transition the predict-
ed functions follow the data over a time frame of nearly
five decades. This immediately verifies the scaling prop-
erty of the a process and the factorization property of the
B process. In particular the factorization of correlations
in space and time, the essential signature of the 8 process,
is verified for a dynamic range of about three decades
close to the GT. Systematic departures from factoriza-
tion at long times signal the onset of a different process.
At these long times the ISFs can be scaled in time so that
they follow the master functions of the a process. How-
ever, only a (wave-vector-dependent) fraction of the ISFs
obeys this superposition principle. These findings lead to
the conclusion that neither the a process alone nor the B
process alone can account for the slow structural relaxa-
tion in metastable colloidal fluids as they near the GT.
Once the GT is crossed, the ISFs settle to a constant
value at long times signaling the arrest of the a process.
Furthermore, the consistency checks contained in Figs.
7-12 allow us to make the following summary of our re-
sults in terms of MCT: All our measured ISFs outside
the microscopic transients can be described by the basic
version of MCT to an accuracy of about 10% in the
neighborhood of g,,, where coherent scattering is strong,
and to an accuracy of about 20% away from g,,, where
coherent scattering is weak, using a single fit parameter
to. The error margins reflect to some extent our experi-
mental uncertainties but also systematic errors of the
theory. This description extends over four to five decades
in time, holds for a significant spread in wave vectors,
and for relaxation times that vary over five decades for
the eight concentrations analyzed.
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