
PHYSICAL REVIEW E VOLUME 49, NUMBER 1 JANUARY 1994

Non-Newtonian effects on immiscible viscous fingering in a radial Hele-Shaw cell

John E. Sader, Derek Y. C. Chan, and Barry D. Hughes
Department ofMathematics, University ofMelbourne, Parkville, 3052 Victoria, Australia

(Received 7 September 1993)

The displacement of a high-viscosity non-Newtonian fluid by a low-viscosity Newtonian fluid in a

Hele-Shaw cell is capable of producing ramified viscous-fingering patterns exhibiting fractal characteris-
tics. Recently, it was established that interfacial tension has little influence on the formation of these

fractal patterns. However, the precise mechanism behind their formation is not as yet fully understood.
In this paper, we consider the immiscible displacement of a non-Newtonian fluid in a radial Hele-Shaw

cell, and present a detailed analysis of the flow, thus exposing features which until now have not been re-

ported. In particular, we find an e6'ective length compression for the formation of viscous-fingering pat-
terns and accelerated growth rates, which upon consideration of recent experimental results, are con-
sistent with the formation of fractal viscous-fingering patterns.

PACS number(s}: 47.20.Gv, 47.50.+d, 68.10.—m, 47;53.+ n

I. INTRODUCTION

It is well known that the displacement of a high-
viscosity non-Newtonian fluid by a low-viscosity
Newtonian fluid in a Hele-Shaw cell is capable of produc-
ing aborescent viscous-fingering patterns exhibiting frac-
tal characteristics [1—15]. Numerous experimental stud-
ies have been conducted to date on the displacement, in

an attempt to quantify the effects of different material
and geometrical properties on the flow [1—15]. One par-
ticularly important observation was made by Van
Damme et al. [12],where they established that interfacial
tension does not inhibit the formation of fractal patterns
but only sets a length scale below which the patterns are
not fractal. This work therefore settled the point of con-
tention regarding the role of interfacial tension in the de-
velopment of fractal viscous-fingering patterns.

However, the theoretical investigation of this Aow

phenomenon for non-Newtonian fluids has been relatively
unexplored [5,8, 14, 16—18]. This is in contrast to the
classical displacement of a Newtonian Auid in a Hele-
Shaw cell, which has received both extensive theoretical
and experimental investigation [3, 19—39]. In general,
the flow of non-Newtonian fluids in Hele-Shaw cells has
been analyzed upon consideration of analogous physical
process [1,5,8,14], such as diffusion-limited aggregation,
due to the similarity of the resulting viscous-fingering
patterns and in some cases the governing equations.
However, apart from the work of Pascal [17] and Wilson

[18] very little activity has focused on a hydrodynamic
analysis of the flow to explain the phenomenon observed.
In this paper we investigate the immiscible displacement
of a non-Newtonian fluid in a radial Hele-Shaw cell, since
it has already been established that interfacial tension
does not inhibit the formation of fractal viscous-fingering
patterns [12]. We perform a linear stability analysis on
the hydrodynamic equations to quantify the influence of
non-Newtoman behavior on the formation of fractal
viscous-fingering patterns. In doing so, we discover
features and properties of the flow arising from the non-

Newtonian behavior of the fluid that clearly favor the
formation of fractal viscous-fingering patterns.

We note that the non-Newtonian nature of a Auid can
be quantified in terms of its elastic and viscous properties.
Recently, Wilson [18] performed a similar linear stability
analysis for the flow of a purely elastic and purely shear
thinning non-Newtonian fluid in a rectilinear Hele-Shaw
cell. From this analysis, he concluded that the fractal na-
ture of such viscous-fingering patterns is predominantly
caused by the effects of elasticity and zero interfacial ten-
sion, with shear thinning not displaying any interesting
effects. As we shall discuss, Wilson [18]considered a case
which does not appear frequently in practice and further-
more some of his conclusions appear to be inconsistent
with recent experimental findings.

Our analysis differs from that presented by Wilson [18]
in that we analyze the radial Hele-Shaw liow problem,
which exhibits features not present in the rectilinear Aow.
For instance, in the radial case there exists a minimum
radius below which no perturbations to the expanding in-
terface can grow [23]. Furthermore, as the radius of the
interface increases with increasing time, the cutoff wave
number above which no perturbations can grow also in-

creases [23]. Thus, in the radial case we are able to exam-
ine not only the relative change in the growth rates of the
individual perturbations due to the non-Newtonian
behavior of the fluid, but also the relative change in the
position of the fluid interface at which these perturba-
tions are able to grow. These features of the radial flow

geometry will be of fundamental importance in our ensu-
ing discussions on the influence of non-Newtonian
behavior on the viscous-fingering patterns.

Pascal [17] recently considered the radial displacement
of a shear thinning (power-law) fiuid by a different shear
thinning (power-law) tiuid in porous media. However, he
neglected capillary or surface tension effects, i.e., he as-
sumed surface tension to be zero. Since the inclusion of
surface tension is of fundamental importance to the
analysis of the immiscible displacement of a non-
Newtonian fluid in Hele-Shaw cell, the work of Pascal
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does not preempt our discussion, as the results we are to
present cannot be inferred from those of Pascal [17].

We shall commence by discussing some general physi-
cal considerations of the displacement experiments in ra-
dial Hele-Shaw cells, which wi11 provide the rationale for
the present theoretical model. This will be followed in
Sec. III by the main theoretical results of the analysis,
with all detailed derivations relegated to the Appendix.
Finally a detailed analysis and discussion of these results
in light of previous experimental and theoretical findings
will be presented in Sec. IV.

II. PRELIMINARY DISCUSSION

In general, non-Newtonian fluids exhibit the effects
both of shear thinning and of elasticity. However, exam-
ples do occur for which one such effect has been
effectively removed, e.g. , Boger fluids [11],which are con-
sidered to be purely elastic. Furthermore, the Qow of
non-Newtonian fluids in Hele-Shaw cells is also
influenced by other factors, and thus care must be taken
in characterizing these fluids. For instance, if the flow is
slow enough that the Deborah number De (defined to be
the ratio of the elastic relaxation time tz to the fluid flow
time ts) is far less than unity, then the elastic properties
of these fluids will not be exhibited. This appears to be
the case in the radial Hele-Shaw displacement experi-
ments of Allen and Boger [11] in which purely elastic
Boger fluids were displaced by a low-viscosity driving
fluid. Boger fluids have a very high viscosity and an elas-
tic relaxation time in the range 0.5 5 tx S2 s [40]. Fur-
thermore, the very high viscosity and nonshear thinning
nature of these fluids limits the practical rate at which
they can be displaced in a Hele-Shaw cell. The result is
that the fiuid flow time is large, i.e., t„))1 s (the duration
of the experiments were of the order of many hours) [41]
and hence, in these experimental situations we have
De&&1. This provides an explanation for the observa-
tions of Allen and Boger [11]where the observed finger-
ing patterns for the elastic Boger fluids were similar to
those for Newtonian fluids of the same shear viscosity,
because the displacement was carried out at a low De-
borah number. Hence, the experiments of Allen and
Boger [11] on elastic fluids were effectively experiments
on Newtonian fluids.

It is clear from the above discussion that if a general
viscoelastic fluid were placed in a Hele-Shaw cell and dis-
placed at a rate which gave a very small Deborah num-
ber, then the elastic nature of these fluids would not be
exhibited, and the fluids would in effect behave as purely
shear thinning fluids. This is, of course, provided that
the flow was not so slow that the effects of shear thinning
would also disappear. Since the characteristic relaxation
time tz of general practical non-Newtonian fluids used in
Hele-Shaw experiments, such as [5—8, 11], is at most of
the order of seconds [40], and the time scale of the dis-
placement in most Hele-Shaw experiments greatly
exceeds this, as discussed above, it is clear that Hele-
Shaw experiments usually correspond to a regime where
De «1. This leaves only the effects of shear thinning to
be considered.

Injection of
displacing fluid

z=h—z=Q

FIG. 1. Schematic illustration of the radial Hele-Shaw cell,
showing injection of displacing fluid into region I and the conse-
quent displacement of the fluid in region II. Arrows around the
interface between regions I and II indicate the direction of flow.
The origin of the cylindrical coordinate system is taken at the
center of the bottom plate, with the z direction as indicated.

We should note that elastic effects can be exhibited in
flow in Hele-Shaw cells if elastic Quids are used which
also exhibit significant shear thinning, since this allows an
increase in the injection rate of the displacing fluid, and
hence gives a possible increase in the Deborah number.
It has been found in experiments using high-volume-
fraction colloidal fluids [12,13,42 —44] that flows in the
high-Deborah-number regime can lead to very interesting
effects, although it is unclear whether the patterns ob-
served in these investigations which exhibit fracturelike
characteristics are due to the elastic nature of the fluids
or the interaction of the colloidal particles. We shall not
elaborate on this point any further, since it is beyond the
scope of the present paper.

The above discussion gives the motivation behind the
choice of a purely shear thinning constitutive equation, to
be used in the ensuing analysis. In this paper, we present
a linear stability analysis of the immiscible displacement
of a purely shear thinning fluid in a radial Hele-Shaw cell
(see Fig. 1), and we choose the Ostwald —de Waele
power-law model [18,45] to describe the shear thinning
property of the non-Newtonian fluid. To simplify the
problem, we shall consider an inviscid displacing fluid,
such as air, so that we work in the limit of an infinite
viscosity ratio, where the viscosity ratio is defined to be
the ratio of the displaced fluid viscosity to that of the
displacing Quid. We note that the non-Newtonian fluid
model considered is also able to display the effects of
shear thickening, although this case is less likely to be en-
countered in practice.

III. MAIN RESULTS

In this section we present the main results from a
linear stability analysis which we believe to be of funda-
mental importance to the understanding of the immisci-
ble displacement of a non-Newtonian shear thinning
fluid, the power-law mode1, by an inviscid fluid in a radial
Hele-Shaw cell. For a complete derivation the reader is
referred to the Appendix.

We now summarize some notational conventions im-
plemented throughout this paper.

(a) The superscripts (0) and (1), respectively, refer to
solutions of the steady-flow problexn and perturbation
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correction due to fingering.
(b) We use the cylindrical coordinate system (r, 8,z),

hence the subscripts r, 0, and z, respectively, refer to the
r, (9, and z components of a vector. A similar standard
convention will apply to second-order tensors.

(c) With h the distance between the plates, fiuid is
confined to the region 0 & z & h (see Fig. 1), and X denotes
the depth-averaged value of the function X, i.e.,
X(r, 8)=h ' foX(r, 8,z)dz.

We will show present the main results of the linear sta-
bility analysis of the non-Newtonian Quid model under
consideration, the Ostwald —de Waele power-law model
whose constitutive equation is

v=2m (2e:e)'" " e,
where r is the extra-stress tensor, m is a constant, n is the
power-law index with 0 ( n (2, and e is the rate-of-strain
tensor. Note that a Newtonian Quid corresponds to
n =1, whereas a shear thinning fluid has n (1, and a
shear thickening fluid has n ) 1.

The Quid is assumed to be incompressible so that the
continuity equation for the velocity field u takes the form

g(8, t }=fk(t)cosk8,

where the amplitude function fk(t) is to be determined
and k is an integer henceforth referred to as the wave
number. To determine the amplitude function fk(t) we

apply a first-order perturbation method to the governing
and constitutive equations and upon consideration of the
pressure interface condition which takes into account the
surface tension y at the interface, we obtain

1

fk

G

P w2
1

c(k) y(k' —1)r"
k"- P1

(7a)

where Qo is the volumetric flow rate of displacing fluid

being injected. We denote the depth-averaged velocity at
the interface u„' '~„&by V.

We now examine the effects of perturbations to the cir-
cular expanding interface, and represent the perturbed in-
terface by

r = r(t)+g(8, t ),
where the perturbation g(8, t ) is assumed to be small, i.e.,

~g~ && r. We consider perturbations of the form

V u=o. (2a)
where

Inertia and body force effects are neglected from the
momentum equation, so that

c(k) 6
k rV

(7b)

V ~=VP, (2b)
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r
Gln —,n=1

r
(3a)

G 1

rn —
1

1
otherwise,~n —1r

1/n

(o)
Qq

r pl 1+n
- (n+1)/n

hX ~

2

(n+1)/n '

h
z

2
(3b)

Here G is a negative constant, r is the radial coordinate,
and h is the plate spacing (see Fig. I). The radius r(t) of
the interface at time t is given by

r(t) =I t '/2 (4a)

with

b=I2 V)'r=/'
mh

(4b)

where P is the pressure.
Throughout the analysis, it is assumed that the stream-

lines are parallel to the plates. We first consider the Bow
of the steadily expanding circular front. This will form
the base solution on which perturbations will later be im-

posed. The solution to Eqs. (1)—(2b), corresponding to a
constant volumetric injection rate of displacing Quid, is
obtained with the imposition of the usual no-slip bound-
ary conditions at the plates

1 n++(I —n) +—4k nc(k)=
2

(7c)

The solution of Eq. (7a) gives the amplitude function

f (t)—gt )/2[[k /c(k)] —i]
k

2y(k —1)X exp
(2 n)h4

—nP t(2 n)/2—
1

where A is an arbitrary constant.
Clearly, the perturbation will grow only if

(1/fk )(dfkldt) &0. It is clear from Eq. (7a) that there
exists a critical radius rz, such that for 9) rA. the pertur-
bation characterized by the amplitude function f„(t),
with k being the wave number, is able to grow. Further-
more, this critical radius is obtained from Eq. (7a) by set-
ting (1/fk )(dfk ldt) =0 and solving for r We must .em-

phasize that the critical radius r& is, of course, dependent
on k.

With the amplitude function fk(t) given by Eq. (8), we

can examine the effects of shear thinning or shear thick-
ening on the growth of perturbations. However, in order
to make sensible comparisons, it is essential to establish a
common length scale. We shall use the length scale asso-
ciated with the Newtonian fluid (n =1), which is a natu-
ral choice. The scaling is achieved by setting the critical
radius rI, , at which the lowest wave number k=kp is

able to grow, to be identical to the Newtonian value, for
all values of n Since (1/fk. )(dfkldt)=0 for ko=1 al-

ways, it is clear from Eq. (7a) that the minimum value for
kp is kp =2. For flow in general radial Hele-Shaw experi-
ments, the lowest wave number kp that is able to grow is
k„=2.However, with the imposition of geometrical re-
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strictions in the Hele-Shaw cell, such as induced anisotro-

py, this value of ko may change, as will be seen in the
next section. From the above discussion, we immediately
see that the appropriate scaling length "a" for the radial
coordinate r is identical to the Newtonian result [28,30]

myhr-a=
Qori

(9)

where g is the Newtonian viscosity and is related to m in
Eq. (1) by

3(ko —1) ko+1m=
ko —c(ko} 6

r

ko& Hyh'
2n +1 go~

(10)

Setting k=ko, we recover the Newtonian normalized
critical radius Rk ',

ko(ko+1)
Rk '=

6
(12)

as required.
The amplitude function fk (t) can be ex ressed in terms

of the mean normalized interface radius (related to 9by
R =9/a) using Eqs. (4a) and (9),

fk(R ) =BR exp
2 —n

1l 2

(13)

where B is an arbitrary constant, and

ka= —1
c(k) (14)

In the following section we shall examine the implica-
tions of these results.

Note that Eq. (9) differs from the Newtonian result
presented in [30] by a factor of n., because we have chosen
the starting normalized radius of the minimum possible
wave number ko=2, to be unity instead of nas in .[30].
The relations presented in Eqs. (9) and (10) enable us to
compare the displacement of a Newtonian fluid of viscos-
ity r) to that of a power-law fluid, with both fluids being
displaced by air in a radial Hele-Shaw cell.

Therefore, using Eq. (9} we are able to normalize the
results presented in Eqs. (2)—(8), from which we obtain
the following important results. For the remainder of
this paper, R refers to the scaled radial coordinate, i.e.,
R =r/a with "a" as defined in Eq. (9). The normalized
critical radius R„is then obtained from Eq. (7a), as dis-
cussed above,

k' —c(k) ko —1 ko ko+1
Rk=

ko —c(ko) k —1 kz 6

IV. DISCUSSION

A. General discussion of results

In the present section we shall mainly discuss results
displaying the effects of shear thinning behavior, as this is
the case of general practical interest. However, for com-
pleteness we shall also briefly discuss the effects of shear
thickening since this feature is naturally incorporated in
the present fluid model.

We begin by examining the dependence of the normal-
ized critical radius Rk on the power-law index n for per-
turbations with different wave numbers k. In particular,
we shall consider the case of k0=2 since this is the
minimum allowable value for ko. Plots of Rk vs n for
different wave numbers k are presented in Figs. 2(a) —2(d),
from which it is clear that a reduction in the power-law
index n produces a corresponding decrease in the normal-
ized critical radius Rk. As a numerical example, we com-
pare the behavior of the power-law model (with n =0.2)
to the Newtonian model (n =1). From Figs. 2(a) and
2(b}, it is clear that at a normalized mean radius of P =5
the highest wave number which is able to grow is k =5
for the Newtonian case whereas for the power-law model
(with n =0.2) it is k =9, thus demonstrating that a
reduction in n, which corresponds to shear thinning, pro-
duces a large reduction in Rk for a given wave number.
Note that Rk for k =ko=2 is constant for all n, due to
the manner in which we have chosen to compare the
power-law fluid to the Newtonian fluid, i.e., by using Eqs.
(9) and (10), and implementing the same scaling length in
all cases. It must also be noted that similar effects on Rk
were obtained for other choices of ko.

We now examine the effects of the power-law index n
on the growth rates of the perturbations, as characterized
by the amplitude function fk. It must be noted that in-
stead of presenting f„asa function of time t, it will be
presented as a function of the mean interface radius 9 or,
more precisely, as a function of the normalized mean in-
terface radius k From Eqs. (4a) and (9) and taking the
scaling for time t to be t -a/u„' '~

„„

it can be easily
shown that R =2T, where T is the normalized time. In
Figs. 3(a)—3(d), plots are given of f&(R)/R vs P for
different values of n and k, with k0=2. Note that the
normalization of fk(P) is purely arbitrary and we have
chosen to present results with f„(R„)/R„=l,for all
values of k. Furthermore, we present results only for
R )Rk, because this is the regime in which the perturba-
tions can grow. As is clear from Figs. 3(a)—3(d), decreas-
ing the power-law index n dramatically increases the
growth rate of individual perturbations. The dramatic
increase in growth rates with decreasing power-law index
n, is more evident if one notes the very different range of
the abscissa in Figs. 3(a)—3(d).

To examine the overall effect of the above-mentioned
properties, we shall produce viscous-fingering patterns of
the fluid interface and monitor the effect of varying the
fluid characteristics and other properties such as anisot-
ropy induced in the Hele-Shaw cell, on their evolution in
time. We can produce these viscous-fingering patterns in
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the following manner. We begin with an initially circular
interface which is steadily expanding under a constant
volumetric injection rate of displacing Quid. When its
normalized radius R reaches the smallest critical radius
Rk of which the perturbation with the smallest wave

0

number kQ can grow, a perturbation with this wave num-
ber is initiated on the circular interface with a certain
magnitude and phase. The interface then continues to
expand, together with the imposed perturbation, until its
normalized mean radius R reaches the next smallest nor-
malized critical radius Rk for which a second perturba-
tion with wave number k can begin to grow. A second
perturbation to the interface with this wave number is
then initiated with a certain magnitude and phase. This
process continues, with the interface accumulating more
perturbations as it expands, thus producing a growing
viscous-fingering pattern. We emphasize that we have
only carried out a linear stability analysis which tracks
the development of small-amplitude perturbations
(

~ fi, ~
&&9) about an initially circular interface. It is clear

from the above discussion, that apart from the first per-
turbation, all subsequent perturbations are added to an
interface which is noncircular. However, if the noncircu-
larity of the interface is small than it is reasonable to ex-
pect an accurate result for fk of the second and subse-
quent perturbations, derived under the assumption of an
initially circular interface. Therefore, there exists a time
period in the initial growth of fingers where a linear sta-
bility analysis is valid. To quantify this and demonstrate
the above-mentioned properties, we present in Fig. 4 the
root-mean-square value of the sum of all perturbations
obtained from the linear stabilit analysis which are able
to grow, normalized by, henceforth denoted

[gk fk/R ] „

for differing values of n Note tha. t each
perturbation in Fig. 4 has been set to have an initial value
of v'2 at its inception, i.e., fk(Rk )=i/2, since this con-
veniently sets [gk f„/R], , to be unity at R =1 and al-
lows a simple linear rescaling of the diagram for difFerent
choices of fk(Rk ). The jump discontinuities in Fig. 4 are
the result of the introduction of perturbations with in-
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FIG. 4. rms value of sum of all perturbations over the nor-
malized mean radius P, i.e., [gk fk /P ],as a function of P for
power-law indices of n =0.2,0.5, 1, 1.5.

creasing wave numbers. The results in Fig. 4 demon-
strate that decreasing n decreases the length of the initial
growth period for which the linear stability analysis can
be used to predict the shape of the fluid interface. This
initial growth period is controlled by the noncircularity
of the interface and the constraint

~ fk ~
&&r, which can be

both inferred from [gk fk/P], . Furthermore, this de-
crease in the initial growth period is also accompanied by
a reduction in Rj, and an increase in growth rates. Thus,
we would expect viscous-fingering patterns obtained by a
linear stability analysis to be valid in the regime
[gk fk/P ],~, &&1. This region of validity can be found
from the results presented in Fig. 4 and proves to be use-
ful in assessing the validity of the following results.

We can now produce "time lapse" plots of the
viscous-fingering patterns. In Figs. 5(a) —5(c) we show
such patterns for different values of power-law index n.
In order to compare results for different values of n, all
perturbations are introduced at an initial magnitude of
fk =0.01 and zero phase, and only perturbations involv-
ing cos28, cos38, cos48, etc. , are considered, correspond-
ing to the onefold symmetry case. It is clear from Figs.
5(a)—5(c), that decreasing n dramatically decreases the
time at which a given viscous-fingering pattern is ob-
tained, even though perturbations initially begin to grow
at the same time, i.e., for k =ko. As an example, we note
that the final patterns presented in Figs. 5(a) and 5(b) are
very similar. However, the pattern obtained in Fig. 5(a)
corresponding to a power-law fiuid (with n =0.5) was ob-
tained at a normalized mean interface radius of R = 12.9,
whereas the pattern in Fig. 5(b) corresponding to a
Newtonian fiuid (n =1) was obtained for 1=57. This
demonstrates that decreasing n provides an effective
"length compression" of the growth of viscous-fingering
patterns. We found that if we continue to use the results
of the linear stability analysis to evolve the fluid interface
to large times, certain points on the interface will eventu-
ally have a velocity directed towards the injection point.
We have used this unphysical result to set the upper
bound to the applicability of the linear stability analysis.
In all cases presented, we found that the largest viscous-
fingering pattern obtained corresponds to a rms value for
the sum of all perturbations to be -0. 1 of the normalized
mean interface radius. This is certainly within the limita-
tions of the linear stability analysis. We can obtain pat-
terns similar to those obtained in Figs. S(a)—5(c) by using
different values for the initial magnitudes of the perturba-
tions. However, increasing the initial magnitude of the
perturbations decreases the range of applicability of the
analysis, as is clear from Fig. 4, but the patterns clearly
grow faster, thus resulting in similar patterns. As we
shall see, the value of fk =0.01 for the initial perturba-
tion amplitude was chosen since it gave patterns in good
agreement with those obtained experimentally, although
this choice is quite arbitrary.

The accelerated growth patterns we obtained are also
seen with perturbations possessing other symmetries. In
Figs. 6(a) —6(c), we present the growth of the interface for
perturbations with fourfold symmetry, i.e., only perturba-
tions involving cos40, cos80, cos120, etc., are included.
A11 perturbations are onset at an initial amplitude of
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f„=0.01 and zero phase. These patterns agree well with
the initial patterns obtained experimentally where the
same fourfold anisotropy has been introduced to the
Hele-Shaw cell by etching the cell walls in two orthogo-
nal directions [29]. Note that we have only shown pat-
terns for which all points on the interface possess a posi-
tive velocity away from the injection point, which as dis-
cussed above, is the limitation of our analysis.

Finally, we present results of the initial viscous-
fingering patterns where no anisotropy has been included.
To accomplish this we introduce perturbations of arbi-
trary magnitude and arbitrary phase. The initial ampli-
tude fk(Rk) is chosen randomly in the range of 0—0.01,
whereas the phase is chosen randomly between 0 and 2~.
The interfacial patterns corresponding to such random
perturbations are presented in Figs. 7(a) —7(c), for
different power-law indices n. Again note the effective

length compression and accelerated growth rates in these
patterns for decreasing values of n. These patterns are
also in excellent agreement with those found in the litera-
ture [23,30] for short times after the initial onset of
fingering. These patterns were again allowed to grow
provided that all points on the interface possessed a posi-
tive velocity away from the injection point.

Thus we may summarize the above results as follows:
(a) Shear thinning has the effect of providing a length

compression and accelerating growth rates of fingering
patterns in comparison to Newtonian fluids, thus leading
to viscous-fingering patterns being developed much more
rapidly.

(b) In contrast, shear thickening has the opposite effect,
thus leading to an effective length "expansion" and
viscous-fingering patterns being developed much more
slowly relative to Newtonian fluids.

20
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(b)
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—10-
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-2500-

I

-2500
I

2500 5000

FIG. 5. Growth of interface pattern for a onefold symmetry case with the initial interface at R =1. X and Y are the Cartesian
components of the normalized cylindrical coordinate system. {a) n =0.5, and interfaces are at intervals of R =1.7; {b) n =1, and in-
terfaces are at intervals of R =8; {c)n = 1.5, and interfaces are at intervals of R =450.
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(c) Initial viscous-fingering patterns can be constructed
from the linear stability analysis for reasonably long
periods of time, and these show good agreement with ex-
perimental results in the literature;

(d) The fingering patterns can also be constructed for
different anisotropies introduced into the Hele-Shaw cell.

The physical implications of these results are truly
significant in the formation of fractal viscous-fingering
patterns, as we shall now discuss in detail.

B. Discussion of fractal pattern formation

It is well known, as we previously stated, that the dis-
placement of a non-Newtonian fluid by a low-viscosity
Newtonian Auid in a Hele-Shaw cell is capable of produc-
ing aborescent viscous-fingering patterns exhibiting frac-
tal characteristics. The aim of this paper is to establish
the mechanism behind this behavior for the immiscible
displacement of a purely shear thinning non-Newtonian
fluid in a radial Hele-Shaw cell. However, we must em-
phasize that the results presented in the preceding section
were obtained from a linear stability analysis of the Aow
and therefore fractal patterns at large times are clearly
unattainable from the analysis. Nonetheless, a great deal
can be learned about the Aow and the mechanism in-
volved in the formation of viscous-fingering patterns
upon consideration of these results.

It is well known that increasing the tip velocity of the
interface, in particular the leading front of a finger, in-
creases the tendency for tip splitting and thus leads to
more ramified fingering patterns. It was shown in the
preceding section that decreasing the power-law index n

dramatically increases the growth rates of the perturba-
tions to the interface and provides an effective length
compression for the formation of viscous-fingering pat-
terns, thus enabling viscous-fingering patterns to develop
much more rapidly. Thus, decreasing the power-law in-
dex n should lead to greater tip splitting and hence more
ramified viscous-fingering patterns. As noted above, our
results were obtained from a linear stability analysis, and
hence effects such as tip splitting clearly cannot be exhib-
ited. However, it is clear froin Figs. 2(a) —2(d) that de-
creasing n also decreases the critical wavelength
A, , =:2~R /k (where k is the maximum wave number
which allows growth) for a given normalized radius R,
which will in turn lead to more ramified patterns. How-
ever, these results are not suScient to conclude that the
effects of shear thinning will result in viscous-fingering
patterns exhibiting fractal characteristics. %'e therefore
refer to the experimental results of Chen [30] and May
and Maher [32], where it was shown experimentally that
fractal viscous-fingering patterns form in the immiscible
displacement of Newtonian Auids in Hele-Shaw ce1ls
when many stages of tip splitting have occurred. %e also
note the recent work of Jasnow and Yeung [39], who
offered numerical evidence that under a constant
volumetric injection rate Qo, radial Hele-Shaw patterns
for Newtonian fluids are not asymptotically fractal.
However, as they stated [39], this does not preclude the
possibility of a range of data which exhibit effective frac-
tal properties. Since we have established that the dis-

placement of a shear thinning Auid will lead to viscous-
fingering patterns being developed much more rapidly
than the displacement of Newtonian Auids, then with the
knowledge of the effects in Newtonian Quids [30,32] and
that of tip splitting, we can conclude that the displace-
ment of shear thinning fluids will lead to viscous-
fingering patterns exhibiting fractal characteristics being
developed at a much earlier stage (or smaller normalized
radius) than that of the displacement of Newtonian Iluids.
In contrast, the displacement of shear thickening fluids
should delay the onset of viscous-fingering patterns ex-
hibiting fractal characteristics in comparison to the dis-
placement of Newtonian fluids.

%e shall now comment on some previous analyses of
the displacement of non-Newtonian fluids in Hele-Shaw
cells which are apparently inconsistent with the results
we presented and with recent experimental findings.

Recently, Wilson [18] conducted an analysis of the dis-
placement of both purely elastic and purely shear thin-
ning non-Newtonian Auids in a rectilinear Hele-Shaw
cell, from which he attributed the formation of fractal
viscous-fingering patterns to the effects of elasticity and
zero interfacial tension. However, we note that in gen-
eral experimental situations [1—12], the non-Newtonian
Auids involved appear to be predominantly shear thin-
ning, as was discussed by Wilson [18] for the clay pastes
in [9,10,42], and this is in line with our discussion of this
topic in Sec. II. Wilson [18] actually considered the re-
gime of De ~ 1, i.e., where elastic effects are important in
the flow. In contrast, we have considered the general
practical regime for flows in radial Hele-Shaw cells where
De&&1. Thus elasticity need not be considered as it
clearly has no effect, as we discussed previously. Also, as
was speculated by Nittmann et al. [6] and shown experi-
mentally by Van Damme et al. [12], interfacial tension
does not inhibit the formation of fractal viscous-fingering
patterns but simply sets a length scale below which the
viscous-fingering patterns are certainly not fractal. This
is in contradiction to the conclusion of Wilson [18] who
stated that interfacial tension is a predominant factor in

the formation of viscous-fingering patterns exhibiting
fractal characteristics. Thus, with elasticity and interfa-
cial tension removed as major influences in the formation
of fractal viscous-fingering patterns in general practical
situations, the only property of a non-Newtonian Auid
left to contribute to the formation of fractal fingering pat-
terns is shear thinning. Wilson's conclusion [18] that
shear thinning has no significant effect on fractal finger-
ing formation must be treated with care, since it is only
valid when De+ 1 and this is not usually the case of in-
terest for radial Hele-Shaw flows.

Daccord and Nittmann [8] presented a semitheoretical
argument which led to the conclusion that the displace-
ment of purely shear thinning fluids does not exhibit in-
creased growth rates in viscous-fingering pattern forma-
tion in comparison to Newtonian fluids. They were led to
this by first concluding that shear thinning Auids show
more tendency for growth on the tips of the fingers than
in the bulk, which seems to be valid since it was obtained
with only the assumption of streamlines parallel to the
plates. However, their calculation of the pressure distri-
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bution was obviously obtained for a purely radially sym-
metric flow, such as is the case in the steadily expanding
circular front, which is strictly not applicable when large
fingers have already formed. Thus, their conclusion that
to first approximation shear thinning does not change the
growth rate of viscous-fingering patterns, we feel must be
treated with caution.

V. CONCLUSION

Recently, it was established that the immiscible dis-
placement of a high-viscosity non-Newtonian fluid by a
low-viscosity Newtonian fluid is capable of producing
aborescent viscous-fingering patterns exhibiting fractal
characteristics. In this paper, we presented an analysis of
the immiscible displacement of a purely shear thinning
non-Newtonian fluid in a radial Hele-Shaw cell, in order
to quantify the mechanism involved in the formation of
these ramified patterns. As a consequence, we found that
the displacement of shear thinning fluids has the follow-
ing properties in comparison to the displacement of
Newtonian fluids:

(i) Decreasing the power-law index n enables perturba-
tions to the interface with higher wave numbers to com-
mence growing earlier.

(ii) Decreasing the power-law index n increases the
growth rates of individual perturbations to the interface.

(iii) As a consequence of (i) and (ii), viscous-fingering
patterns are able to develop much more rapidly, i.e., simi-
lar viscous-fingering patterns are able to be produced for
the displacement of shear thinning fluids for a lower nor-
malized radius than the displacement of Newtonian
fluids.

In contrast, the displacement of shear thickening fluids
has the opposite effect, however these fluids are not of
great practical significance, as we discussed. Further-
more, upon consideration of recent experimental results
on fractal pattern formation using Newtonian fluids and
our conclusion (iv), it is clear that the displacement of
shear thinning fluids will produce fractal viscous-
fingering patterns earlier than Newtonian fluids, whereas
shear thickening fluids will in fact delay the onset of frac-
tal pattern formation.

for the Ostwald —de Waele power-law model [18], whose
constitutive equation is presented in Eq. (1).

Before continuing with the analysis we note that when
n ( 1 the power-law model exhibits the characteristics of
shear thinning, whereas for n & 1 it exhibits the charac-
teristics of shear thickening, although as noted earlier the
latter case is less likely to be encountered in practice. To
proceed with the analysis, we initially consider the
steady-flow problem, i.e., the expanding circular front.

Clearly in this case the velocity vector possesses only a
radial component u„which is furthermore radially sym-
metric, i.e., no angular variation. Then from the con-
tinuity equation it is clear that

u0(z)
(A2}

where u0(z} is purely a function of z. Furthermore, we
emphasize the fundamental restriction for flow in a
Hele-Shaw cell [21]:

r))h . (A3)

QD
7 =2m

r z
e. (A4)

From the fundamental restriction given in Eq. (A3), it is
clear that the true length scale "a" for the radial coordi-
nate r is far greater in magnitude than that for the z coor-
dinate which is simply the plate spacing h. However, we
need not define a but simply note the property

a»h . (A5)

Then, upon substitution of Eq. (A4) into Eq. (2b}, it can
be easily shown for a constant volumetric injection rate
of displacing fluid, that the solution to the steady-flow
problem is

r
Gln —,n=1;

This restriction will be of fundamental importance in the
ensuing analysis.

Therefore, from Eqs. (A2) and (A3) it can be easily
shown in a similar manner to [45] that Eq. (1) is well ap-
proximated by

n —1
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p(0)
G 1 1

otherwise,
n —

1 n —1r

(A6a)

APPENDIX

u=0 at z=0 and z=h, (A1}

In this appendix, we present the formal detailed deriva-
tion of the results presented in Sec. III. The relevant
coordinate system implemented is as shown in Fig. 1.

The governing equations for the flow are the continuity
and momentum equations defined in Eqs. (2a) and (2b),
which are to be solved with the imposition of the usual
no-slip boundary conditions at the plates, i.e.,

ua(z)
Q„

r

1 G
r m

' 1/n
n

1+n

X.
(n +1)/n

h

2

(n +1)/n
h

z
2

(0) ~(0)—+rr +88

(n —1)/n
2mQD G

z
m+1 m

(A6b)

(A6c)



430 JOHN E. SADER, DEREK Y. C. CHAN, AND BARRY D. HUGHES

G
7-z =(p)

I

h
z

2
(A6d) u „(r,0,z, t) = u(z)fi(t)c(k) , r

r

—c(k)--1

sink 0,

with the extra-stress tensor ~ being symmetric and all
other components of ~ being identically zero. Further-
more, G is a negative constant which is related to the
volumetric flow rate of injected fluid, as we shall show
shortly, and r is the interface radius, which upon con-
sideration of conservation of volume can be easily shown
to be related to time t by

{A11b)

where fk(t) =dfI, Idt It. remains to determine u (z}
which is a function purely of z and c (k) which is a func-
tion of k. Then upon substitution of Eqs. (Alla) and
(Al lb) into Eq. (A9), the following expressions follow
directly:

--c(k) —
1

r{t) =bt"-',

where

b =
I 2V r I

'i

{A7a) 1, rr'„„'(r, 0,z, t }=r,(z)—ft. (t)

1, r
r'qII (r, 0,z, t)= r(z) ft',.(—t)

—c(k) —
1

cosk 0, (A12a)

cosk 0, (A12b)

2n

2n +1

1/n ( n + 1 ) /n ' 1/2
G h

Pl 2 r'„(,(r, 0,z, t ) =r, (z)—f„'(t) sink&, (A12c}

(A7b)

r =r(t)+g(0, t), {A8ap

where V denotes the depth-averaged velocity at the inter-
face u„'

~
and Qo is the volumetric flow rate of

displacing fiuid being injected. Hence Eq. (A7b) gives the
relation between Qo and G. Note that Eq. (A6a) has been
presented with the condition that P' '=0 at the interface,
since changing the pressure by an additive constant has
no effect on the flow.

With all results for the steady-flow problem thus col-
lected, we turn our attention to the investigation of the
effects of perturbations to the steadily expanding circular
interface. We therefore introduce a perturbation g(0, t)
to the initially circular interface. Hence, the equation for
the interface becomes

', -c(i')--1

r'„.' (r, 0,z, t)=r4(z), fk(t)1, r cosk0,

rIt", (r, 0, z, t)=r,(z), ft(t)
r r

-- c(k) —
1

sinks,

(A12d)

(A12e)

where r, (z), r~(z), . . . , r~(z) are functions purely of z and
are yet to be determined. Then upon substitution of Eq.
(A9) into Eq. (2b) and consideration of Eq. (A5), it can be
easily shown that the momentum equation reduces to

gp( I) BW,, '

(A13a)
Br Bz

where

g(0, t ) =fk(t)cosk0, (A8b)

gp
r 00 dz

(A13b}

with the amplitude function f&(t) to be determined; k is

an integer also referred to as the wavenurnber. Further-
more, it is assumed that gI ((r.

Then by performing a first-order perturbation analysis
on the constitutive equation Eq. (A3a), it can be shown in

a straightforward manner, upon consideration of Eq.
(A5), that the first-order constitutive equation is

(1)
lo&In x (x)+[ 1 j

"z (oI
I'2 (p)

Upon consideration of the kinematic condition at the in-
terface that

{A10)

and the assumption of streamline parallel to the plates, it
is clear from Eqs. (2a) and (A8b) that a solution is

—c(l') --1

Bz

From Eqs. (A12) and (A13) it is then clear that
—c( I')

P'' (r, 0,z, t)=P1 g(t) r
coskO,

(A13c}

{A14}

where g (t) and P, are yet to be determined. It must at
this stage be noted that at the interface there are two con-
tributing factors for the perturbed pressure: (i) the un-

perturbed pressure which gives rise to a term of order g,
as is clear upon substitution of Eq. (Aga) into Eq. (A6a);
and (ii) the actual perturbation to the pressure which is to
be determined from the present perturbation analysis.
These two factors must be taken into account in the eval-

uation of g(t). Then upon consideration of Eqs. (A6a),
(A12}—(A14), it can easily be shown that

1g(t)=
P, [I—c(k) —n j

u„"'(r,0,z, t)=u (z)f„'(t)
r

coskO, (A11a) nGfi, . (t } dr4"(z)
X }- -+r -fi(t) '

dz
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However, from Eqs. (A12d) and (A13a) we immediately
see that

nGf„(t)
g (t)= +"rfk(t) .

P, [1—c(k) —n]r
(A17)

=P, [1—c(k)—n] .
dz

(A16)

Therefore, upon substitution of Eq. (A16) into Eq. (A15)
we obtain

Hence to complete the determination of g (t), P, is clear-
ly required, and we now evaluate it. Substituting Eq.
(A9) into (A13), we find that

1 —c(k)—n

T
n —1

' (n —1)/n
6
m

h
Z

2

' ~2„())
+ ——z

n Bz 2 Qz
(A18a)

P t—ank 8=k (1) m

T n —1

(n —1)/n
h

Z
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—1/n
1 n()u e— h

(1)

+ Z
n ()z 2

g2 (1)
Qg

(lz2
(A18b)

nu(z)= A) n+1

(n +1)/n
lt h

Z
2 2

(n +1)/n

Then from Eqs. (A12}, (A14), and (A18), it can be easily
shown in a similar manner to Wilson [18] that

from the presentation.
All that remains is the evaluation of the amplitude

function fk(t). This is obtained upon consideration of
the stress interface condition which is derived in an
analogous manner to that in [18]:

with

(A19a} 1 —k
r" "" r2

(A23)

c(k)= 1 n+'(/—(1 n) +4—k n

2
' (1—n)/n

k GA1= P
c(k)m ' m

(A19b)

(A19c)

where y is the interfacial surface tension. However, from
Eqs. (A9), (A14), and (A21) it can be easily shown upon
consideration of Eq. (A5} that

(A24)

To obtain P, , the kinematic condition Eq. (A10) is con-
sidered, from which we obtain

u(z)=1 . (A20)

From Eqs. (A19) and (A20) we immediately obtain the
solution

c(k) G

k 9V
(A21)

Thus upon substitution of Eq. (A21) into Eq. (A17) and
consideration of Eqs. (A7b) and (A19b) we find

It should also be noted that a similar result is obtained
for ~&&', although this term is clearly not present in Eq.
(A23).

Therefore, using Eq. (A24), Eq. (A23) becomes

1 —k(, ) Gg y 1 —k
n 2

(A25)

Following substitution of Eqs. (A8b), (A14), and (A21)
into Eq. (A25), the governing equation for fk(t) directly
follows and is

g (t) = Vfk(t)+ rfk(t), (A22) 1 df„
fk dt

6
P19

c (k) y(k —1P"
k'

which is very similar to the Newtonian result given by
Bataille [21].

From Eqs. (All), (A19a), and (A19c), all first-order
stress components may be calculated directly using the
first-order constitutive equation Eq. (A9), in a very
straightforward manner. However, this is of no real
value in the present analysis, since our primary concern is
the examination of the behavior of the amplitude func-
tion fk(t). Hence, these stress components are omitted

whose solution is

)/2{ [k /c(k)] —1)
k

2y(k —1)Xexp
(2 n)b4

—np t(2—n)/2
1

where A is an arbitrary constant. As the amplitude func-
tion is determined, the analysis is complete.
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