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In a recent paper we carried out a systematic expansion of the free-energy density of nematic liquid
crystals (NLC’s) in the director derivatives for planar director distortions and small director angles. At
any order of expansion, the director distortion is the superposition of a standard long-range bulk direc-
tor distortion and a very-short-range subsurface distortion. The bulk macroscopic distortion is found to
be the same as that which is obtained using the Frank elastic form of the free-energy density and an
effective anchoring energy function f; which implicitly contains the surfacelike elastic constant K3 and
all higher-order elastic constants. In this paper we generalize this theoretical result and extend it to the
case of large director angles using the Gibbs theory of interfacial phenomena. Furthermore we extend
the theoretical analysis to the more general case of nonplanar director distortions. An alternative
theoretical expression of the first-order free-energy density that does not present mathematical problems,
and allows us to study any kind of director distortion in NLC’s, is proposed. In the nonplanar case, both
of the surfacelike elastic constants K;; and K,, are shown to make explicit contributions to the first-
order free-energy density. Recent theoretical and experimental results concerning the elastic behavior of
a NLC sample enclosed in a cylindrical cavity are reanalyzed in terms of the present theoretical pro-
cedure. Rough estimates of the surfacelike elastic constants K; and K4 are obtained from the analysis
of the experimental results. A surface orientational transition, which makes it possible to measure the
K |5 surfacelike elastic constant, is predicted to occur at a critical value of the radius R of the cylindrical

MAY 1994

cavity.

PACS number(s): 61.30.Gd, 62.20.Dc, 64.70.Md

I. INTRODUCTION

According to Nehring and Saupe, the free energy of
nematic liquid crystals (NLC’s) is [1]

Fy=[f,dS+ [{fr+feu+K V- [n(V-n)]} dV
— [(Ky+Ky)V-[n(V-n)+nXVXn]dV
= [(frtfa)dV+ [(f+Fi+fr)dS (1)

where dV and dS are volume and surface elements, f,, is
the free-energy density due to external fields (magnetic or
electric), f is the standard Frank elastic free-energy den-
sity, f;3 and f,, are two surface elastic contributions,
and f is the anchoring energy at the interfaces. The ex-
plicit form of the elastic contributions is

fr=1K (V-0 +Kp(n-VXn)*+K5;(nXVXn)],

(2)
f13=K;3(k:n)(V-n) , 3)
and
f2a=—(K5+Ky)k-[n(V-n)+nXVXn], (4)

where K, K,,, K33, K3, and K, are elastic constants,
n is the director, and k is the unit vector orthogonal to
the interface. In Eq. (1) the bulk integral over the two
divergence terms has been transformed into the integral
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over the surface, exploiting the Gaussian theorem. We
wish to emphasize here that this procedure is correct if
there are no discontinuities in the director field within the
integration volume. In the following we will call the free
energy of Eq. (1) the Nehring-Saupe first-order elastic free
energy. The anchoring energy f; is a phenomenological
parameter which is assumed to be a function of the direc-
tor azimuthal and polar angles at the interfaces and is
minimized for one or more easy director orientations
(easy axes).

Let us consider a NLC sandwiched between two paral-
lel plates that induce an easy director alignment in the x-z
plane where z is the coordinate of the axis perpendicular
to both the plates. We consider planar distortions where
the director remains everywhere in the plane x-z and
makes an angle 6(z) with axis z. In this case, the elastic
contribution f,, in Eq. (1) vanishes and the free-energy
density only depends on the bulk and surface values of 6
and @' (@ is the first derivative of 6). The equilibrium
director angle 6(z) is obtained by minimizing the total
free energy of Eq. (1) with respect to any arbitrary varia-
tion of 80. By using the standard Euler-Lagrange varia-
tional procedure one finds the bulk director angle must
satisfy a second-order differential equation. It is well
know that the general solution 6(z) of a second-order
differential equation depends on two arbitrary integra-
tions constants a, and a, that, in principle, can be deter-
mined by substituting the general solution into fwo
boundary conditions. However, due to the presence of
K3, the surface free-energy density depends on surface
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angle 6, but also on derivative 6; of the surface angle at
the two interfaces of the NLC. Therefore, according to
Oldano and Barbero [2-5], the minimization of the sur-
face free energy with respect to the independent director
variations 86, and 86; gives two boundary conditions for
each plate. Therefore there are four boundary condi-
tions, while the bulk solution only depends on two arbi-
trary constants. It is evident that, in these conditions,
there are no values of the two arbitrary constants that can
solve simultaneously the four boundary conditions and
thus the mathematical problem is ill posed. According to
Oldano and Barbero [2-5], the equilibrium director field
must exhibit a discontinuity at the interfaces (6; =+ 0 ).
This unusual behavior is due to the fact that the
free energy per unit surface area due to K;; is
f13=1K,;sin(26,)0;, where signs + and — stand for
the upper and the lower interface, respectively. This sur-
face free energy is not minimized for any finite value of G;
and thus it favors an infinite value of the normal deriva-
tive 6; of the director angle at the interface. Therefore, a
discontinuity of the director field is expected to occur at
both the interfaces of the NLC layer. Obviously this
discontinuity is an artifact of the first-order elastic theory
of Eq. (1) due to the disregard of higher-order elastic
contributions. These higher-order contributions are ex-
pected to limit the values of subsurface derivatives and
the actual director field is expected to be a continuous
function which shows a sharp variation on a few molecu-
lar lengths close to the interfaces (see, for instance, Fig.
2). From the macroscopic point of view this sharp direc-
tor variation is fully equivalent to the discontinuity of the
director field which is predicted by the first-order elastic
theory [2-5].

The theoretical arguments above show that the prob-
lem of finding the correct director field in a NLC is not
mathematically well posed if the K, elastic constant is
different from zero and the first-order elastic free energy
in Eq. (1) is used. Obviously no mathematical problem
occurs if K{;=0. In a recent paper [6], Somoza and
Tarazona questioned the effective presence of the surface-
like elastic contribution in the free energy of NLC’s. In
particular, starting from the general expression of the
free energy of a NLC, they showed that second deriva-
tives in the expansion of the free-energy density can van-
ish if we make a suitable change of integration variables.
Their theoretical approach has been reanalyzed by Teix-
eira, Pergamenshchik, and Sluckin [7], who showed that
the proposed change of integration variables makes the
free-energy density a nonlocal function and thus it cannot
represent a physical density. Therefore, according to
Teixeira, Pergamenshchik, and Sluckin, no ambiguity in
the definition of surface elastic constants exists. Further-
more, microscopic calculations of elastic constants [1,7,8]
show that K, and K ,, are different from zero and are ex-
pected to be of the same order of magnitude as the other
Frank elastic constants.

To bypass the mathematical problems related to the
surfacelike elastic constant K,,, three different theoreti-
cal approaches are currently used in the literature.

(i) Some authors [9-11] have considered the discon-
tinuous behavior of the director field at the interfaces as
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an artifact of the elastic first-order theory. Therefore they
conjecture that higher-order elastic terms make the oc-
currence of strong director derivatives in the subsurface
layer impossible. According to this conjecture, the solu-
tion 6(z) of the first-order elastic theory must also be a
continuous function at the interfaces [limit for z—0 of
6(z)=06(0)]. This means that the surface director angle
6,=6(0) and the surface derivative 6,=6'(0) are no
longer independent parameters but must satisfy the bulk
Euler-Lagrange equation. The solution 6(z) of the
Euler-Lagrange equation is univocally defined once the
surface values 0, of the director angles at the two inter-
faces are given. Therefore, with this assumption, the
variations 86 of the surface director angles at the inter-
faces of the NLC and 86; are not independent parameters
and thus the minimization procedure of the surface free
energy can be shown to provide only one boundary condi-
tion for each plate and the mathematical problem be-
comes well posed [9]. The occurrence of spontaneous
macroscopic distortions is predicted in some cases using
this theoretical approach [12-14]. An experimental
value of K; has been measured by analyzing the experi-
mental data in terms of this theoretical approach [14].

(ii) A completely different approach has been proposed
by Barbero, Sparavigna, and Strigazzi. They developed a
new expansion procedure of the elastic free-energy densi-
ty in terms of the director derivatives of any order [15].
Using this expansion procedure, they were able to obtain
a general expression of the free-energy density at the
fourth order in the director derivatives (second-order elas-
tic theory). The new expression of the free-energy density
is found to be bounded from below and a minimum of the
free-energy functional is attained. The bulk Euler-
Lagrange equation is, now, a fourth-order differential
equation whose general solution depends on four arbi-
trary coefficients while the minimization of the surface
free energy provides two boundary conditions for each
plate. This means that there are four arbitrary constants
and four boundary conditions and thus the mathematical
problem is well posed. Unfortunately the second-order
elastic free energy contains 35 new elastic contributions
and thus its use for general cases is impractical. Howev-
er, in the simplest case of small director angles (6 <<1),
only one new second-order elastic constant K* plays an
important role. In this simplest case, the director angle
6(z) is found to be the superposition of the macroscopic
bulk contribution 6,(z), which is coincident with that
predicted by the first-order theory, and a short-range
contribution, which is appreciably different from zero
only within two very thin interfacial layers close to the
interfaces. The thickness § of the interfacial layers is of
the order of a few molecular lengths [16-18].

The main drawback to this second-order elastic theory
is that the director derivatives in the interfacial layer as-
sume very high values and thus, in principle, all elastic
terms of an order higher than fourth order are expected
to make important contributions and should not be disre-
garded. Furthermore mathematical difficulties make the
analysis of director distortions with no small angles prac-
tically impossible.

(iii) Most authors bypass the mathematical problems
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related to the K ;; elastic constant by simply disregarding
this contribution in the free energy. In this case the sur-
face free energy becomes the Frank elastic form which
depends on the director angle alone and does not depend
on the normal surface derivative of the director angle.
Therefore the boundary conditions are reduced to two
alone and no mathematical problem arises in this case.
However, so far, there is no physical justification for this
procedure.

In recent papers [8,19], we analyzed certain conse-
quences of the theoretical procedures (i) and (ii). By us-
ing the theoretical test of surface torques [19], we showed
that the theoretical predictions of procedure (i) are in
contrast with the general principles of mechanics (GPM).
Therefore we infer that procedure (i) is not correct and a
director discontinuity must always occur close to the inter-
faces, in agreement with the theoretical analysis in
[2-5,16,17].

The theoretical test of surface elastic torques has also
been used to assess the internal consistency of procedure
(i1). This procedure is found to be consistent with the
GPM, although this result does not necessarily mean that
the second-order theory describes the actual behavior of
a NLC correctly. To understand the influence of higher-
order elastic contributions which have been disregarded
in second-order elastic approach (ii), we have used the
same expansion procedure as in [15] to obtain the expres-
sion of the elastic free-energy density at any order N in
the director derivatives [19]. We have considered the
special case of planar director distortions and very small
director angles. At a given order N =2n in the director
derivatives (with n an integer number), the bulk Euler-
Lagrange equation is a linear differential equation of or-
der N with N boundary conditions. Therefore there is al-
ways a definite solution to the mathematical problem for
any value of N.

At any expansion order N, the director distortion is
found to be the superposition of a short-range distortion
which occurs within a very thin interfacial layer of thick-
ness 8 close to the interfaces and a long-range bulk mac-
roscopic distortion. From the macroscopic point of view
the short-range subsurface distortion behaves as an ap-
parent discontinuity of the director field in close agree-
ment with the predictions of Refs. [2—5]. Therefore this
theoretical result still confirms that conjecture (i) cannot
account for the actual behavior of the director field close
to the interfaces, in agreement with the result of the sur-
face torque test. The actual shape of the short-range
director distortion is found to depend greatly on N and is
given by the superposition of (N —2) exponential func-
tions with complex arguments. The interfacial distortion
can be characterized either by real exponential functions
or by damped oscillatory functions [in the case of
second-order theory (N =4), only a real exponential de-
cay was predicted]. For N which tends to infinity, the
number of these interfacial functions tends to infinity and
thus the interfacial behavior is very complicated. How-
ever, at any order N, the macroscopic distortion can be
shown to be virtually the same as that obtained using the
Frank elastic free-energy density fr and a renormalized
anchoring energy f,y, in a qualitative agreement with the
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theoretical predictions of the second-order elastic theory.
For N — 0, the effective anchoring energy tends to a lim-
it value f;, which depends on all higher-order elastic con-
stants which are infinite in number.

The theoretical analysis above shows that second-order
elastic theory (ii), although it qualitatively accounts for
the main interfacial effects (strong subsurface director
distortions and existence of an effective anchoring func-
tion), cannot give an accurate quantitative description of
the actual director field in a NLC. Indeed any higher-
order elastic contribution greatly affects the subsurface
director field and the limit value f of the anchoring ener-
gy f,y for N— o can greatly differ from the second-
order value f,. Therefore the macroscopic bulk director
distortion predicted by higher-order elastic theories is
different from that predicted by the second-order theory
due to the different values of the anchoring energies. Our
theoretical results have important consequences as far as
the experimental measurement of the surfacelike elastic
constant K3 is concerned. According to higher-order
theories, the elastic constant only affects the subsurface
director distortion and the anchoring energy. Both the
subsurface distortion and the anchoring energy depend
on the K3 elastic constants together with all other sur-
facelike and bulk higher-order elastic constants. There-
fore, K 5 is not a measurable parameter if planar director
distortions are studied. In particular, the proposed mea-
surement methods of the elastic constant K ;3 [20], which
are based on the theoretical results of the second-order
elastic theory, cannot give correct values of K 5.

The main surprising consequence of the theoretical re-
sults above is a strong support for naive procedure (iii),
which is currently used in the literature to investigate
planar director distortions. From the macroscopic point
of view, the only distortion which has a macroscopic
relevance is the long-range bulk director distortion
characterized by the bulk director angle 6,(z) (see the
discussion in Sec. II). According to the predictions of
higher-order elastic theories in the limit N — o« and of
small director angles, this macroscopic distortion can be
always obtained using the Frank elastic free-energy densi-
ty and a surface anchoring energy f,, which implicitly
contains any effect due to surfacelike and bulk higher-
order elastic constants.

The theoretical results above were obtained by assum-
ing that the first-order and higher-order elastic constants
have constant values everywhere in the NLC sample. In
real NLC samples this assumption does not hold good
close to the interfaces where elastic anomalies are expect-
ed to occur [17,21-23]. The important contribution of
elastic subsurface effects to the anchoring of NLCs has
been already emphasized by Yokoyama, Kobayashi, and
Kamei in a very interesting paper [21], by Faetti et al.
[22,23], and by Barbero, Gabbasova, and Kosevich [17].
In particular, according to Yokoyama, Kobayashi, and
Kamei [21], any elastic anomaly which occurs in a thin
subsurface layer can be considered as a new source of
director anchoring. The different kinds of elastic
anomalies that can occur close to interfaces and affect the
surface anchoring are the following.

(a) Due to the breaking of the translation symmetry,
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the elastic constants close to the interface are expected to
become functions of the distance z from the interface and
of the director angle. Furthermore new elastic contribu-
tions [for instance, K,(V-n)], which are forbidden by
symmetry in the bulk, can play an important role close to
the interfaces [17,24].

(b) The scalar order parameter S close to the interface
can greatly differ from the bulk value [25] and thus the
Frank elastic constants which are approximately propor-
tional to S? are expected to be greatly affected by the in-
terfacial nematic order [21,22].

(c) Finally, the surfacelike and the higher-order elastic
constants can make important subsurface elastic distor-
tions [17,19]. All these different kinds of elastic
anomalies are expected to make an important contribu-
tion to the subsurface interfacial free-energy density and
to the anchoring energy of a NLC.

The theoretical results in [19] have been obtained by
considering a planar director distortion and by making the
simplifying assumption of very small director angles.
Furthermore any elastic anomaly such as those in points
(a) and (b) was disregarded in our analysis. However, ac-
cording to the theoretical discussion in Sec. II, our main
theoretical result concerning the existence of an effective
anchoring function, which fully accounts for anomalous
subsurface elastic effects, remains correct for any value of
the director angles. Therefore, planar director distortions
can always be correctly studied using procedure (iii). In
Sec. II we will justify this point of view in terms of the
Gibbs approach to interfacial phenomena. In Sec. III we
extend our analysis to the more general case of nonplanar
director distortions and we propose a new theoretical ex-
pression for the first-order elastic free energy. There are
no mathematical problems involved in this new expres-
sion and it allows us to obtain the equilibrium bulk direc-
tor distortions for any general case. The expression of
the elastic free energy proposed here depends explicitly
on the bulk Frank elastic constants and on the two sur-
facelike elastic constants K |3 and K ,, (in the general case
of nonplanar director distortions). Therefore both the
surfacelike elastic constants K;; and K,; can be mea-
sured, in principle, by investigating suitable nonplanar
distortions. Section IV is devoted to analysis of certain
nonplanar director distortions that occur in NLC sam-
ples enclosed in cylindrical cavities. Recent experimental
results obtained in this confined geometry are reanalyzed
in terms of our model and a rough estimate of both the
surface elastic constants K |3 and K,, is given. Section V
contains our conclusions.

II. THE GIBBS THEORY OF INTERFACES
AND THE ANCHORING ENERGY

In the preceding section we showed that simple
theoretical reasoning predicts that the main effect of the
surfacelike elastic constant K,; is the occurrence of a
sharp director distortion close to the interfaces of NLCs
[2-5]. This theoretical reasoning is entirely confirmed by
the elastic surface torques test [19] and by the analysis of
higher-order elastic contributions within the limit of
small director angles [16—19]. Analogous subsurface dis-
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tortions are also predicted to occur if elastic anomalies (a)
and (b) are taken into account [17,21-23]. In this section
we will show that, according to the Gibbs theory of inter-
facial phenomena, any director distortion which occurs
in a thin layer of a thickness comparable with that which
characterizes the surface interactions must be considered
as a new source of director anchoring and must be en-
closed in the phenomenological expression of the anchor-
ing energy. In this way we are able to generalize the
theoretical results of higher-order theories obtained for
small director angles, disregarding subsurface elastic
anomalies (a) and (b).

Let us consider the interface between a semi-infinite
NLC (z >0) and an other semi-infinite medium (z <0) as
shown schematically in Fig. 1. At a great distance from
the interface the system has a translational symmetry and
thus the local physical parameters of the NLC (mass den-
sity p, scalar order parameters S, director n, free energy
density, and so on) do not depend on position r in space.
Furthermore no easy direction exists for the director in
the bulk in the absence of external orienting fields. Near
the interface, however, the translational symmetry is bro-
ken and the local parameters depend on distance z from
the interface and one (or more) easy directions exist for
the director at the interface. Figure 1 schematically
shows a possible z dependence of the free-energy density
near the interface z =0. We note that the actual free en-
ergy density (full line) is different from that expected in
the absence of surface effects (horizontal dashed lines).
According to Gibbs’s thermodynamic approach, we can
express the free energy per unit surface area (total area
below the full line) as the sum of a bulk contribution (free
energy corresponding to the area below the dashed line)
and an interfacial contribution Yy, Which is called the
excess of surface free energy per unit area (shaded area in
Fig. 1) and is given by

© 0
YNMT fo [Fn(z)—Fyp]dz + f_ [Fpy(z2)—Fyyldz,

" (5)
where Fy(z) is the free energy density in the NLC at dis-
tance z from the interface and Fy, is its asymptotic value
in the bulk (z— «); Fy(z) is the free-energy density in
the second medium (substrate) and Fy, is its asymptotic

»5 F(au.)

2.0 excess of free

1.54 energy

1.0

0.5 0 NLC
0.0 : —

T .
4 2 0 2 4 72/8

FIG. 1. A possible dependence of free energy density F on re-
duced distance z/8 from the interface between a NLC (z >0)
and another medium (z <0). & is the characteristic interfacial
length. The unit on the vertical axis is dimensionless. The full
line denotes the actual z dependence of the free-energy density.
The horizontal broken lines in the z <0 and z >0 regions
denote the extrapolation of the bulk free energy in the medium
and in the NLC, respectively. The shaded regions denote the
surface excess of free energy.
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value in the bulk (z— — ). Note that Fy(z) in Eq. (5)
accounts for any interfacial interaction. In particular
Fy(z) can be written as the sum of an internal contribu-
tion F,,(z) due to nematic-nematic interactions and an
external contribution F,(z) due to the interactions be-
tween NLC molecules and the substrate.

At equilibrium and in the absence of external torques,
profiles p(z), S(z), and n(z) in the interfacial layer are
those that minimize the surface excess of free energy ¥ ym
in Eq. (5). Far from the interface these functions ap-
proach the bulk equilibrium uniform values, while large
spatial variations are expected to occur within a very thin
interfacial layer with a thickness 8 of the order of the
range of intermolecular interactions (8=:50 A for van der
Waals forces [30,31]). This thickness is usually much
smaller than the characteristic length £ associated with
bulk distortions (6=1-100 pm). In particular, the direc-
tor orientation in the interfacial layer is characterized by
the polar and azimuthal angles 6(z) and @(z) that rapidly
approach two constant values 6, and @, just above the in-
terfacial layer (z >>8). The two angles 6, and ¢, mini-
mize the excess of surface free energy and represent the
macroscopic easy director angles at the interface. Note
that the macroscopic easy angles can greatly differ from
the actual director angles at z =0.

If an external magnetic field is applied on the NLC, a
macroscopic director distortion occurs in the bulk of the
NLC, as shown schematically in Fig. 2. The characteris-
tic thickness & of this distortion is much greater than the
thickness 6 of the interfacial layer. For z >>£ the direc-
tor is uniformly aligned along the magnetic field while the
values of director angles 8 and ¢ just above the interfacial
layer are given by two new values 6, and ¢,. Note that,
due to the great separation of the scale lengths £ and &,
the director angles 6, and @, are virtually coincident with

FIG. 2. Typical behavior of the polar angle of the director
versus distance z from the interface. The characteristic length
of the bulk distortion is £=5 um and the characteristic thick-
ness of the interfacial layer is =5 nm. 6* denotes the actual
surface polar angle while 6; denotes the macroscopic surface
angle that corresponds to the limit of the bulk director angle for
z—0. A detail of the subsurface interfacial distortion is shown
in the inset. Note the very different scales in the main figure
and in the inset. The dashed line (in the inset) denotes the extra-
polation of the bulk director field at interface z =0.
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the limit angles for z—0 of the bulk macroscopic distor-
tion (see the inset in Fig. 2). Therefore, from the macro-
scopic point of view, 6; and @, correspond to the “surface
director angles,” although the actual surface angles
0*=0(0) and ¢* =@(0) can differ greatly from 6, and ;.
The actual shape of the subsurface director distortion will
depend on the nature of the interactions between the
NLC molecules and the substrate, on the intermolecular
interactions between the NLC molecules in the subsur-
face layer, and on the values of the director angles 6, and
@, outside this layer. The interactions between NLC
molecules are strictly related to the elastic contributions
to the free-energy density and thus the director distortion
in the subsurface layer will depend directly on the elastic
behavior in the NLC interfacial layer. For given values
of the macroscopic surface angles 6; and @ just above
the interfacial layer, a well defined director field will min-
imize the surface excess of free energy in Eq. (5). The
director angles in this subsurface layer will be represented
by two functions 6=06(z,60,,¢,) and ¢=¢(z,0,,¢,) that
satisfy the boundary conditions =0, and @¢=¢, for
z/8— o and minimize the surface excess of free energy
in Eq. (5). We wish to emphasize here that this theoreti-
cal result holds good because the characteristic scale
length of the macroscopic bulk distortion is much greater
than the interfacial thickness. In this assumption, the
director field in the interfacial layer is not affected by de-
tails of the bulk director field but only depends on the
two angles 6, and ¢,. Then, for a given NLC sample, the
free-energy density in the interfacial layer will be a func-
tion F(z,0,,¢,), which depends solely on z and on the
two macroscopic surface angles 6, and ¢,. This means
that, according to Rapini and Popoular, the excess of sur-
face free energy per unit surface area in Eq. (5) is a func-
tion of these two macroscopic surface angles only:

YNM(OS’(pS)=7NM(60’¢0)+fs(GS"pS) ’ (6)

where  yam(Op@o) is the equilibrium value of
Ynm(Os,@s) in the absence of external fields and corre-
sponds to the work which must be done to increase by a
unit the area of the interface at constant temperature,
volume, and composition. f((0s,pg) is the anchoring
function in Eq. (1) that corresponds to the work which is
needed to rotate the director (above the surface layer)
from the equilibrium axis to that characterized by the
two angles 65 and @g. Note that the only important as-
sumption which has been used to obtain Eq. (6) is the
great separation of scale lengths § and 8, while no as-
sumption was made as far as the values of 65 and @y are
concerned. Therefore any strong subsurface director dis-
tortion which occurs in a thin interfacial layer, such as
that due to K;; and to others subsurface elastic
anomalies, can be entirely accounted for by defining a
suitable phenomenological anchoring function. This
analysis is in complete agreement with the main predic-
tions of the higher-order elastic theories [19] and allows
us to extend them to the case where the director angles
are not small and the subsurface distortion is also pro-
duced by the elastic anomalies (a) and (b).

Some authors [26,27] have proposed that the surface
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excess of free energy can be written as a function which
depends on the macroscopic “surface” director angles
and also on the normal director derivatives of these an-
gles. These derivative-dependent contributions are intro-
duced to account phenomenologically for the variations
of the macroscopic director angles in the interfacial layer
[A6=~(860/3z)8 and A@p=(d¢/3z)8). If these
derivative-dependent contributions are included in the
expression of the anchoring energy, we have the same
kind of mathematical problems which characterize the
K |, elastic constant [2—-5]. On the basis of the aforegoing
discussion, the assumption of a surface free energy which
explicitly depends on the normal director derivatives is
not compatible with the Gibbs approach. Indeed, the
Gibbs approach is based on the assumption of a nearly
vanishing value of the interfacial thickness 8. This means
that the macroscopic director field is virtually uniform
across the subsurface layer and the values of the director
angles 6, and @, above the interfacial layer are practical-
ly coincident with the limit angles of the bulk macroscop-
ic distortion for z—0 (see the inset in Fig. 2). Then,
any variation AG~(06/3z)6 and Ap=(dp/dz)d of the
macroscopic director angles across the interfacial layer
must be disregarded in this macroscopic approach
[A6=~(360/3z)6—0 and Ap=~(8¢/8z)5—0 for 5—0]. If
this variation is not negligible, one cannot substitute the
actual values of the director angles above the intcrfacial
layer with their limit values for z—0 and the shape of the
director distortion in the interfacial layer becomes sensi-
tive to details of the bulk distortion. In this case, bulk
and surface contributions cannot be separated in two in-
dependent contributions and a much more complicated
approach should be used to describe the actual behavior
of the system.

In order to shed further light on this very important
point, we can consider, for instance, the theoretical pre-
dictions of higher-order elastic theories. In particular we
consider the simplest case N =4 (second-order thec ) fo
a NLC layer subjected to a magnetic field [18] #.crord-
ing to the second-order theory, the director field is - yund
to be the superposition of a short-range interfacial d_..or-
tion of characteristic thickness L;,, and a lung-range
macroscopic distortion of characteristic thickness L.
The theoretical expressions of these characteristic lengths
are [18]

1 5
L= IVl 77 > )
, 172 52
1+ 1—'& 1+—
g &
282
1
Lmac= ) 172 172 iz 1/2 » (8)
L e
2
Y™

where § is a characteristic length of the order of a few
molecular lengths while £ is the ordinary magnetic coher-
ence length £=(K /x,)"/?/H. In the limit case §—0, the
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interfacial distortion becomes completely insensitive to
the presence of the magnetic field [§ /£—0 in Eq. (7)] and
the bulk characteristic length L,  is reduced to the stan-
dard magnetic coherence length &, as predicted by the
first-order Frank elastic free energy. Therefore, in this
case (8/£—0), bulk and interfacial phenomena are com-
pletely decoupled and the macroscopic effect of the inter-
facial distortion can be shown to be fully equivalent to a
renormalization of the anchoring energy [18,19]. On the
contrary, if thickness § is not completely negligible with
respect to magnetic coherence length &, the total free en-
ergy of the system cannot be separated into two indepen-
dent surface and bulk contributions and thus the Gibbs
approach cannot be used. In particular, in this case, the
bulk distortion is no longer represented by the Frank
form with the standard characteristic length &, but it is
directly influenced by the presence of the subsurface dis-
tortion [see Eq. (8)]. The same kind of conclusions are
obtained by using elastic theories of a higher order
(N >4). Therefore, if there is no complete separation of
characteristic scale lengths, the effect of the finite value of
the interfacial length 8 cannot be accounted for by only
including surface director derivatives along the axis or-
thogonal to the interface in the interfacial anchoring en-
ergy. Indeed, due to the interplay of interfacial and bulk
effects, both the short-range distortion and the macro-
scopic distortion are modified if § /£ is not negligible [see
Eqgs. (7) and (8)].

According to the analysis above, we then expect the
effects due to a non-negligible value of the ratio 8/& be-
tween the interfacial and bulk characteristic thicknesses
not to be accounted for by introducing phenomenologi-
cally director derivatives in the expression of the anchor-
ing energy. In this case (6§ non-negligible with respect to
&) the correct director field can only be obtained by a
direct minimization of the exact free energy of the sys-
tem:

F=[fmav, O

where f(r) is the exact free energy density at point r,
which is a nonlocal functional that depends on the direc-
tion orientation in all the other points of the NLC (see,
for instance, Refs. [24,28-32]). We wish to emphasize
here that, even with the choice of very simple intermolec-
ular potentials, the problem of finding the correct direc-
tor field which minimizes Eq. (9) is a very complex prob-
lem which can be solved only by using complex numeri-
cal minimization procedures [30,31]. In conclusion, the
Gibbs macroscopic theory of interfacial phenomena re-
quires the two length scales £ and 6 to be well separated
(8/6—0) and thus any explicit contribution of macro-
scopic surface derivatives cannot be present in the expres-
sion of the surface free energy. This is, in our opinion,
the main physical reason for the occurrence of
mathematical problems when surface derivatives are in-
troduced in the phenomenological expression of the sur-
face anchoring energy.

Our considerations above show that, within the Gibbs
theoretical approach, any elastic subsurface anomaly
which favors a short-range subsurface distortion can
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greatly affect the excess of surface free energy. Obviously
any macroscopic approach (higher-order elastic theories
too) is unable to predict the correct subsurface director
distortion and thus the correct anchoring energy because
all physical parameters (order parameter, density, elastic
constants) are expected to depend in a very complex way
on the distance from the interface and elastic contribu-
tions of any order play an important role. Therefore,
within a macroscopic approach, the anchoring energy
must be considered as a phenomenological macroscopic
parameter, which, in principle, can only be obtained by
microscopic calculations [28-32] or by experimental
measurements.

III. A GENERAL THEORETICAL APPROACH TO
STUDYING NONPLANAR DIRECTOR DISTORTIONS

In Sec. II we showed that the main physical effects of a
subsurface director distortion which occurs within a scale
length of the same order of magnitude as the interfacial
layer can be entirely accounted for by defining a suitable
anchoring energy function. Therefore these theoretical
results confirm and generalize the predictions of higher-
order elastic models as far as the K ;; elastic constant and
small amplitude planar director distortions are con-
cerned. In particular, for planar director distortions, the
correct macroscopic bulk distortion can be obtained by
minimizing the Frank elastic free energy and a standard
phenomenological anchoring energy, which implicitly ac-
counts for any subsurface elastic anomaly [procedure
(iii)].

In this section we discuss the more general case where
the director distortion depends on two or three different
spatial coordinates and the interfaces may be curved. To
understand the physical behavior of the system in this
general case we shall make use of an important theoreti-
cal result which has recently been obtained by Per-
gamenshchik [9]. He shows that, in the general case of
three-dimensional director distortions and curved inter-
faces, the surface elastic free-energy density f3 and f,,
in Egs. (3) and (4) can be separated into two different con-
tributions. The first contribution, which only contains
the K ,; elastic constant, depends on the normal director
derivative along the local axis orthogonal to the interface,
while the second contribution, which contains both K,
and K4, only depends on tangential director derivatives.
Furthermore, only the first term (normal derivatives)
gives rise to mathematical inconsistencies while the
second term does not produce any mathematical prob-
lems [9,15]. According to our theoretical analysis, the
first contribution cannot be explicitly introduced into the
elastic expression of the first-order free-energy density
since it produces a strong variation of the director field in
a thin interfacial layer and thus only affects the interfa-
cial behavior. As shown above, the macroscopic effect of
this contribution is expected to be a mere renormaliza-
tion of the anchoring energy function f;. On the con-
trary, the tangential contribution f,,, is a macroscopic
contribution which must be retained in the general ex-
pression of the first-order elastic free energy. Therefore
we propose here that the correct macroscopic behavior of
the director field in the general case of three or two-
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dimensional director distortions and curved interfaces
must be obtained using the following expression for the
free energy:

F1=FF+Fext
= [(fr+fo)dV+ [ (Fung+f5)dS (10)

where fr is the Frank elastic energy density of Eq. (2), f;
is the phenomenological anchoring energy which depends
only on the macroscopic surface director angles and im-
plicitly also contains the effects of elastic subsurface
anomalies, and f,,, is the tangential contribution due to
the surface-like elastic constants K3 and K,,. In the
most general case of nonplanar interfaces f,,, is [9]

ftang= _(K22+K24 W
Ki3—Ky—Ky
Ve

+F,

+

£

SS

2
X 1n%3;V g3+ 3 n;0,

s=1

ng

1/2} ]
(11)

where g;; is the metric tensor of an orthogonal curviline
coordinate system (x,x,,x3;) in which the interface coin-
cides with the coordinate surface x;=const, d; denotes
the derivative with respect to the coordinate x; at the in-
terface, g3 =g182;, and g =g181,833. J is defined as

1 — JE— co— —
J= V"‘-g—‘["%‘/gzzas\/gll +n g\/gnaa\/gzz

—(1,V 8010, 1,V 823V gany)] . (12)

The tangential elastic free energy f\,,, in Eq. (11) can be
also written in terms of director n and unit vector k or-
thogonal to the interface, in the vectorial form

fiang =K 1;3(n-k)[V-n—(k-V)(n-k)]

— (K, +Ky )k [n(V-n)+nXVXn]. (12)

The director field which minimizes the functional of Eq.
(10) is obtained by using the standard variational pro-
cedure. According to [9] and [15], a surface free energy
which contains only tangential director derivatives does not
give any mathematical inconsistency. In particular, the
variation §f,,, is found to be only dependent on the
variation 8n; of the surface director field and does not
depend on the director derivative variations 89;n,.

The bulk Euler-Lagrange equation for the director field
is
— aftot

1
£33, n,)

aftot a
on k \/g m

+A,m, =0, (13

where A,=A,(r) is the volume Lagrange factor and
Sfiot =St fex 18 the total bulk free-energy density which
is given by the sum of the Frank free-energy density in
Eq. (2) and the free-energy density f.,, due to external
fields. The boundary conditions for the director at the in-
terfaces in the case of smooth interfaces are (for details of
the calculations see the Appendix to Ref. [9])
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ot , Ofs | Oftang
6(a3nk) ank ank
_ 1 — aftang _
Ve 3, [\/g3 3., ) +A,n, =0, (14)

where A, is the surface Lagrange factor. A more general
expression for not smooth interfaces is given in the Ap-
pendix to Ref. [9].

We emphasize here that, for planar interfaces and for
director distortions where the director only depends on
X3, fiang =0 and the elastic free energy is reduced to the
Frank form. In the opposite case both the surfacelike
elastic constants give an important explicit contribution
to the macroscopic free-energy density. Therefore it
should be possible to obtain both these constants in ex-
periments where nonplanar director distortions are inves-
tigated. We note that in recent years a number of au-
thors have investigated the physical consequences of the
elastic constant K,, [33-45] and estimates of the value of
K,, have been made [37,38,42,43]. Due to the mathemat-
ical difficulties connected with the problem of K |3, so far,
authors have disregarded this contribution retaining the
K,, contribution only. This procedure is obviously unsa-
tisfactory and can lead to incorrect theoretical predic-
tions while the theoretical approach which we propose in
this section allows us to account for any macroscopic
effect of both the surfacelike elastic constants.

IV. NONPLANAR PROBLEMS

In this section we shall consider certain kinds of non-
planar director distortions which occur when a NLC is
enclosed in a cylindrical cavity [37-50] of radius R and
we shall analyze them using the theoretical approach pro-
posed in Sec. III. This geometry has been extensively in-
vestigated in the literature without accounting for sur-
facelike contributions [46—50] and by including the K,,
elastic contribution but disregarding K,; [42-46]. Ex-
perimental values of K,, obtained by making experiments
on these systems have been reported in Refs. [42,43]. The
bulk Euler-Lagrange equation for the director field does
not depend on surface elastic constants and thus the gen-
eral solutions for the bulk director field which have been
published by Allender and co-workers [42,43] are still
correct in our case. Therefore, in this section we will
make a systematic use of the theoretical results which
have already been reported in Refs. [42] and [43] by
showing how these theoretical results are modified if one
accounts for the effects of the surfacelike elastic constant
K ;. To avoid any confusion, it is important to em-
phasize that the authors of Ref. [43] used a different nota-
tion for the surfacelike elastic contribution f,, in Eq. (4)
in the present paper. In particular the elastic constant
K,,+K,, which appears in Eq. (4) was replaced by
K,, /2 in Refs. [42] and [43].

The main conclusions of the following theoretical
analysis are the following.

(a) The surfacelike elastic constant K,; appreciably
modifies the quantitative predictions of the theory. In
particular the experimental values of K,, which have
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been obtained by disregarding K ,; must be revised.

(b) The presence of the K, elastic constant gives rise
to new phenomena and thus the qualitative behavior of
the system is also affected by this elastic constant. In
particular, for positive values of K5, a new orientational
transition is predicted to occur when the critical radius of
the cylindrical cavity becomes lower than a critical value
R.=2K3/W,, where W, is the anchoring energy
coefficient [51] [see Eq. (15)]. The experimental investiga-
tion of this transition makes it possible to obtain the sur-
face elastic constant K ; directly and provides a unambi-
guous test for the validity of the elastic theory proposed
here.

A. The planar-radial configuration

Let us consider a NLC confined in a cylindrical cavity
of radius R and length I, >>R. The easy director align-
ment at the cylindrical interface is assumed to be homeo-
tropic. In these conditions, the equilibrium configuration
of the director field is not uniform due to the competition
between bulk and surface contributions in the free ener-
gy. According to Allender and co-workers [42,43], four
different stable (or metastable) director fields can be pre-
dicted, as shown schematically in Figs. 3-6. These
configurations are denoted as the planar-radial (PR),
planar-polar (PP), escaped-radial (ER), and escaped-
radial-with-point-defects (ERPD) configurations. The
first three kinds of distortions can be demonstrated to
correspond to a relative minimum of the free energy
while the fourth configuration corresponds to a metasta-
ble state. According to Ref. [43] we assume the anchor-
ing energy given by the Rapini-Popoular expression [51]:

W, sin?
flg =2 1s)
2

where W, is the anchoring energy coefficient and ¥, is
the surface angle between the local director and the radi-
al axis at the cylindrical interface. According to our
theoretical analysis of Secs. II and III, the anchoring en-
ergy coefficient also accounts implicitly for any elastic
subsurface anomaly and, in particular, for the contribu-
tion of the surfacelike elastic terms that depend on nor-
mal director derivatives. Here we use a cylindrical refer-
ence system with the z axis coincident with the cylinder
axis. The three curviline coordinates x,, x,, and x; in-
troduced in Sec. III will correspond here to 6, z, and r, re-
spectively. Therefore g,,=r% g, =1, g33=1, (g3)*=r,
and (g)!/?=rin Egs. (11)-(14).

The PR configuration is shown schematically in Fig. 3.
The director is radial everywhere and a line singularity
exists along the cylinder axis. This singularity is usually
treated as a cylindrical defect of radius p of the order of a
typical molecular length which is excluded from the in-
tegration volume. In this geometry the surfacelike elastic
constants K;; and K,, and the anchoring energy
coefficient W, do not contribute to the total free energy
because the surface contribution f Stang @S at the inner
surface r =p cancels with that at » =R. Therefore, the
free energy per unit cylinder length is [43]
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FIG. 3. Top view of the cylinder showing the director field
in the planar-radial (PR) configuration. The full circle at the
center denotes the disclination line.

FPR=7TK11 ln +F(COI‘C) N (16)

where F(core) denotes the free energy of the isotropic
core of the axial disclination line. A more accurate ex-
pression of the free energy for this case has been obtained
by accounting for variations of the local scalar order pa-
rameter close to the defect [52,53].

The PR configuration has no practical interest since
one can easily show that the PP configuration corre-
sponds to a lower free energy except in the case of very
small cylinder radii and thus this latter configuration is
energetically favored, in agreement with experimental ob-
servations [42].

B. The planar-polar configuration

The PP configuration is shown schematically in Fig. 4.
To investigate the PP and the other director fields, we
will make use of the approximation K ;; =K ;3 =K, which
allows us to greatly reduce mathematical difficulties
without substantially modifying the main features. For
typical NLCs far from a nematic-smectic transition, the
values of these two elastic constants are close to each oth-
er (the relative difference between K; and K3; is usually
lower than 30%). Therefore, the use of the average value
K =(K,;+K33)/2 is expected not to greatly change the
theoretical results. The director field in the PP
configuration is

o o o o e e e e e e
PP T — NN N
/////‘_5\\\\\
tr7s=TSNNANN
777NN

FIG. 4. Top view of the cylinder showing the director field in
the planar-polar (PP) configuration for a finite positive value of
the effective anchoring energy coefficient. A rather different
shape of the director field is obtained for a negative effective an-
choring energy (see Ref. [46]).
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n=cosyt +sinyf , W)

where ¥=1(r,0) is the local angle between the director
and the radial direction which depends on r and @ alone.
The surface elastic free energy per unit surface area f,,,
in Eq. (11) is

_ KyptKy 97, Ky o
fmg— R 1+ 30 + R cos“
K3 of ()
+ R 30 (18)

where f(¢,)=(sin2¢,)/4+1,/2. The total free energy
per unit length due to the surface contributions is ob-
tained by integrating the surface free energies f,,, and
[ over the 0 angle. We obtain

2T
Fsurfzfo R(ftang+fs)d9

27 WOR .
=1TK13+f0 T Ky |sin’p,d6 . (19)
To obtain Eq. (19) we exploited the condition

¥, (27)—4,(0)= —27, which is satisfied because no dis-
clination is present at the cylinder axis. Note that K,,
does not enter in the total free energy of the PP
configuration since V-[n(V:-n)+nXVXn]=0 in this
case. Apart from the inessential constant contribution
7K |5, the K5 elastic constant makes a surface contribu-
tion which is of the same kind as that due to anchoring
[see Eq. (19)]. In particular it simulates an apparent an-
choring energy coefficient:

2K |,
RW, |’

WE=w,|1— (20)

Therefore the main effect of the K,; elastic constant in
the PP configuration is an “apparent” change of the an-
choring energy coefficient. However, we must emphasize
that this latter effect, although qualitatively similar to
that discussed in Sec. II due to director derivatives along
the axis orthogonal to the interface, is very different from
the previous one. Indeed, the presence of normal direc-
tor derivatives produces a strong subsurface director dis-
tortion which only modifies the interfacial layer of thick-
ness § << R. Therefore, according to our analysis in Sec.
II, this effect must be considered as a true source of sur-
face anchoring energy which is undistinguishable from
other anchoring contributions. In particular, the result-
ing anchoring coefficient is completely independent of
geometrical parameters such as, for instance, the curva-
ture radius of the interface. On the contrary, the surface
free-energy contribution K |, sin?y,, which appears in Eq.
(19), comes from the integral of the bulk elastic free ener-
gy in the whole cylindrical volume and thus it is a bulk
effect. In particular, the elastic contribution to the an-
choring energy in Eq. (20) depends explicitly of curvature
radius R and thus it is not an intrinsic surface parameter.

According to Eq. (20), the main effect of K3 in this
geometry is an increase in the effective anchoring
coefficient if K ;3 <0 and a decrease if K3 >0. In particu-



lar, for K3 >0, an orientational transition is expected to
occur if radius R of the cylinder approaches the critical
value:

(4 Wo

(21)

For R > R, the easy surface director orientation is ¥, =0,
which corresponds to the homeotropic alignment, while
the planar alignment ¥, = /2 is favored for R <R..

The bulk Euler-Lagrange equation for the director field
and the boundary condition at the interface » =R can be
obtained by minimizing the total free energy in Eq. (10)
with respect to any variation 8¢ of the director angle.
The Euler-Lagrange equation for the director angle is

2 2
r2 96> r or  or?
with the boundary condition
Wt
2 sinz¢s+K%’f—=o , 23)

where the derivative [in Eq. (23)] is calculated at interface
r =R. Equation (24) is reduced to that used in Ref. [43] if
the apparent anchoring coefficient is replaced by anchor-
ing coefficient W,,. The general solution of Eq. (22) that
satisfies the boundary condition (23) is

T Rityr?
¥ 5 tan” ' [tan(8) p— , (24)
where
2K
=sgn(B)NB+1)2—B, B= , 25
v =sgn(B)B B, B Wik (25)

where sgn(B)=+1 for >0 and sgn(B)=—1 for 5<0.
Coefficient ¥ becomes negative if f<0. In this case
(y <0) one can easily show that the director field in Eq.
(24) coincides with the planar-bipolar structure described
in Ref. [45]. The free energy per unit length of cylinder is

Fpp=7K —1n(23y)+1—;?’— K, . (26)

Equation (26) is reduced to the form given in Ref. [44] for
K;=0. Note that the director field in Eq. (24) and the
free energy per unit length Fpp do not depend on K.
Therefore, by studying the director bulk distortion in this
case one can measure the other surfacelike elastic con-
stant K ;. In particular, if K5 >0, a very simple and ac-
curate experimental method should consist in measuring
the critical radius R, for the homeotropic-planar transi-
tion. At R =R_, the effective anchoring energy vanishes
and the director alignment is everywhere uniform in the
bulk.

It is important to emphasize here that the experimental
analysis of the dependence of the apparent anchoring
coefficient W§ on cylinder radius R may provide a direct
test for the validity of our theory. Indeed, the standard
approach utilized in Refs. [42,43] predicts no dependence
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of this parameter on R [see Eq. (20) with K ;;=0] while
our theory predicts the dependence given in Eq. (20).

C. The escaped-radial configuration

The ER configuration is shown schematically in Fig. 5.
This configuration has been investigated in Refs. [47-50]
without accounting for the surfacelike elastic constants
and in Ref. [43] by accounting for K,, but disregarding
K 3. The director field in this case is

n=cos0Z+sinQT , 27)

where Q=Q(r) is the angle between the director and the
cylinder axis that is assumed to depend only on the radial
coordinate r. As in the previous case we use the approxi-
mation K;;=K;;=K. An analytical solution for the
bulk director field in the case K;;7K3; is given in [43].
The surface free energy per unit length due to fy,,, and

fyis
2
Fsurf= fO (ftang+fs)R do

WI
= [ cos’2, )R dO+ 7K, , 28)

with Q,=Q(r =R) and where we have defined the ap-
parent anchoring energy coefficient

W= 1—— 29
0=Wos RW, (29)

and the effective surface elastic constant
KS=2(K13_K22_K24) . (30)

Apart from the constant contribution 7Kg, which is
inessential for the determination of the equilibrium direc-
tor field, in this case too the main effect of the surfacelike
elastic constants is an apparent variation of the anchor-
ing coefficient. If K, >0, an orientational transition from
planar (Q,=0) to homeotropic easy orientation
(Q,=m/2) is expected to occur when the cylinder radius
exceeds the critical value
K,

Ri=Zr - 31)
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FIG. 5. Lateral view of the cylinder showing the director
field in the escaped-radial (ER) configuration.
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However, as will be shown below, this transition does not
occur because it is preceded by another transition at a
greater value of the cylinder radius. The Euler-Lagrange
equation for the director field is

sin2Q |, dQ d*Q
2r dr r dr?

0, (32)

with the boundary condition
da _ sin(2Q)[W,R —K;—K]
dr 2KR ’
where the derivative is calculated at » =R. Equation (33)
with K, given in Eq. (30) is reduced to that already given
in [43] if we put K ;; =0 and if we substitute 2(K,, +K,;)

with K,, in Eq. (30). The general solution of Eq. (32) that
satisfies the boundary condition (33) is

(33)

_, | rtan(Q/2)
1=2tan _, (34)
R
where
_ s
Q,=cos” ' |— |, (35)
o
with
_RW, K. _RW; | 6
o X X R . (36)

Solution (34) holds for o > 1. If o <1, the general solu-
tion is a uniform alignment along the z axis (=0 every-
where). It is important to note that the uniform align-
ment is reached at a greater critical radius than that in
Eq. (31). Therefore the transition from homeotropic to
planar easy alignment predicted in Eq. (31) cannot be ob-
served.

The total free energy per unit length in the two cases
o>lando<lis

N

Fep =K
ER 7. K

3+

for o> 1 37

and
Fgr=mWy,R foro<1. (38)

In this geometry, the only effect of K; is a variation of
the effective surface elastic constant K;. Therefore K,
does not modify the qualitative behavior of the system
but only the quantitative behavior. This means that the
experimental investigation of the ER structure alone is
not a good test for the validity of our theory.

D. The escaped-radial-with-point-defects configuration

The ERPD configuration is shown schematically in
Fig. 6. This configuration is characterized by a director
angle Q which depends on both the radial coordinate
and the z coordinate. Two point defects occur at z =0
(radial defect) and z =L (hyperbolic defect), as shown in
Fig. 6. According to Ref. [43], an analytical solution can-
not be found for the ERPD configuration. A detailed nu-
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FIG. 6. Lateral view of the cylinder showing the escaped-
radial-with-point-defects (ERPD) configuration. A radial point
defect occurs close to the bottom of the figure, while a hyperbol-
ic defect occurs close to the top of the figure at the distance L
from the radial defect.

merical analysis of this configuration has been given in
Ref. [50] together with a discussion of its stability. A
different kind of ERPD structure is predicted to occur
for weak director anchoring [50]. In principle, the
ERPD configuration would relax to the energetically
favored ER configuration, but the boundary conditions at
the ends of the cylinder repel point defects and thus the
ERPD cannot relax. Therefore the ERPD configuration
appears to be a metastable state which is usually observed
for high values of cylinder radius R while at lower values
of R the ERPD configuration is replaced by the PP.
Crawford, Allender, and Doane [43] showed that, in the
case where o >1 and the distance L between point de-
fects is lower than 2R, a suitable trial solution which
satisfies the boundary conditions is

ar

Q=tan"! (39)

for r<R and 0<z=<L. In the region r=R and
—L <z<0 angle Q at point z is the supplement of that
given by Eq. (39) at —z{Q(—z)=nm—Q(z)}. This ap-
proximate solution agrees satisfactorily with the numeri-
cal solutions of the Euler-Lagrange equation [50].

Although Fggpp > Fggr, the point defects are unable to
relax by going to the ends of the cylinder and an array of
more or less equally spaced defects occurs along the z
axis of the cylinder. The value of L /R is expected to be
sample dependent and has been found to be L /R =1.5-2
in the case of the NLC 4'-pentyl-4-cyanobiphenyl (5CB)
enclosed in nucleopore membranes [43]. The only
configurations which have been observed in the experi-
ments are the PP configuration for small cylinder radii
and weak anchoring and the ERPD configuration for
higher radii or strong anchoring.

E. Analysis of experimental results

From the theoretical discussion above it is clear that
both the surfacelike elastic constants K ;3 and K,, can be
obtained, in principle, by investigating the behavior of
NLCs enclosed in a cylindrical cavity. In particular,



from measurements in the PP geometry, the anchoring
energy coefficient and the surfacelike elastic constant K ;5
can be determined while the value of the effective surface
elastic constant K; in Eq. (31) and thus K,, can be ob-
tained from measurements in the ERPD geometry. The
effect of surfacelike elastic constants on the macroscopic
behavior of the NLC is expected to become important
when the cylinder radius is comparable with the extrapo-
lation length b =K /W,, which is usually much smaller
than 1 pm. For this reason measurements with nucleo-
pore membranes with cylindrical cavities of radii smaller
than 1 um seem to be very promising [41-45]. In Refs.
[42] and [43] the experimental behavior of the NLC 5CB
enclosed in nucleopore membranes was investigated by
using NMR. Cavities with radii ranging from 0.05 to 0.5
pm were investigated and the NMR method was shown
to be very sensitive to details of the director field. From
independent measurements the authors obtained both the
anchoring coefficient and the K,, surfacelike elastic con-
stant by disregarding the K; elastic constant in their
analysis. Both untreated nucleopore membranes (strong
anchoring) and membranes treated by applying a lecithin
surfactant (weak anchoring) were investigated. In this
latter case a transition from the PP to the ERPD struc-
ture was found for R =0.5 um. This latter case seems to
be the more interesting since both the surfacelike elastic
constants can be measured, in principle, by making mea-
surements in the PP and ERPD configurations, respec-
tively. The PP structure was observed at the radii
R =0.3 and 0.4 um while the ERPD structure was ob-
tained at R =0.5 pum. In principle both the anchoring
coefficient W, and the K,; elastic constant can be ob-
tained from the experimental results concerning the PP
configuration by substituting the experimental values
B(R =0.3) and B(R =0.4) in Egs. (25) and (20). Once
these two parameters are obtained, the latter unknown
elastic constant K,, can be obtained from the measure-
ment of the parameter o [see Egs. (36) and (29)] at
R =0.5 pm in the ERPD configuration. Unfortunately
the variation of the R radius in the two measurements
concerning the PP configuration is rather small (25%)
and thus both the anchoring coefficient and the K ,; elas-
tic constant can be found with a very large uncertainty
due to the experimental uncertainty on the B coefficient.
This uncertainty also produces much uncertainty con-
cerning the value of K,,. A greater precision should be
obtained by repeating the same kind of measurements us-
ing a wide range of cylinder radii. This should not be a
practical problem since nucleopore membranes are pro-
duced with radii ranging from 0.006 to 6 um.

Here we briefly reanalyze the main experimental re-
sults of Refs. [42] and [43] in order to obtain a first rough
estimate of the two surfacelike elastic constants K;; and
K,,. We start our analysis by using the experimental re-
sults obtained with untreated nucleopore membranes at
three different radii 0.05, 0.1, and 0.2 um. In this case,
the ERPD configuration is always observed and the K|
surface constant can be obtained by exploiting the experi-
mental values of o obtained at different cylinder radii.
By using the experimental values o(R =0.05
pum)=2.010.2, 0(R =0.1 um)=4.010.2, and o (R =0.2
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pm)=8.0+0.4 we obtain K;/K=-—1.01£0.6. By ex-
ploiting the experimental value 2K,, /K =0.8510.10 at
room temperature [54] [K =(K,,+K,3;)/2] and substi-
tuting it in Eq. (30) we find

(K24—K13)/K =0.081+0.40 . (40)

To obtain the two surfacelike elastic constants separately,
we make use of the experimental results in Refs. [42] and
[43] that were obtained using lecithin treated nucleopore
membranes. At R =0.5 um the ERPD structure was ob-
served and the parameter o=3.11+0.2 was measured
[59]. Substituting this value in Eq. (37) together with the
previous experimental value K, /K =—1.0%0.6, we find
W,/K =6.2+1.6 um~!. At the cylinder radii R =0.3
and 04 pm the authors observed a PP structure
and measured B(R =0.3 pum)=1.1+0.1 and B(R =0.4
pm)=0.8310.08. Since W,/K is known, and K ; elas-
tic constant can be obtained by substituting the experi-
mental values of B and W, /K in Egs. (25) and (20). From
the two measurements at R =0.3 and 0.4 pum we find
K,3/K =0.02%0.35 and 0.04%+0.40, respectively. The
average value of these two independent measurements is

K,3/K =0.03£0.30 . (41)
Substitution of Eq. (41) into Eq. (40) gives
K,4 /K =0.11£0.70 . (42)

In order to avoid any confusion we still wish to em-
phasize that the definition of the K,, elastic constant in
Eq. (4) is different from that utilized in Refs. [42] and
[43].

We see that the uncertainty on the experimental values
in Egs. (41) and (42) is rather large. We think that much
more accurate values should be obtained making new
measurements on the same system for a more extended
range of cylinder radii. In particular we expect to obtain
very accurate values of K if the surface transition in Eq.
(21) is observed.

V. CONCLUSIONS

In this paper, by using the general Gibbs theory of in-
terfacial phenomena, we have generalized the theoretical
predictions of higher-order elastic theories for planar
director distortions and small director angles. In particu-
lar we show that the main effect of surface derivatives
along the axis orthogonal to the interface is a mere an-
choring effect which can be entirely accounted for by
defining a phenomenological anchoring energy f,, which
depends solely on the director surface angles. This an-
choring energy implicitly accounts for any elastic interfa-
cial anomaly and depends, in principle, on all higher-
order elastic constants. Our theoretical approach allows
us to generalize our theoretical results to include the
more general case of nonplanar director distortions. In
this case the surface free energy can be separated into
two different contributions. The first contribution de-
pends on the normal derivatives of the director at the in-
terfaces and thus it can be entirely accounted for in the
phenomenological expression of the surface anchoring.
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The second contribution depends on tangential director
derivatives alone and thus it does not produce any
mathematical problems [9,15]. Therefore we propose
here a general expression for the first-order elastic free
energy. This expression is the sum of the standard bulk
Frank from fp, of a surface elastic contribution f,,,,
which depends on the two surfacelike elastic constants
and on the tangential director derivatives and, finally, a
phenomenological anchoring energy f;, which depends
solely on the surface director angles. This expression for
free energy does not present any mathematical problems.

On the basis of the present theoretical approach, we
find that both the surfacelike elastic constants K; and
K,, make important contributions to the director field in
nonplanar cases. In particular, in the case of a NLC en-
closed in a cylindrical cavity, we predict the existence of
a new orientational transition when the cylinder radius
approaches a critical value R,. This transition can only
occur if the contribution of K, is taken into account and
thus an experimental observation of this transition might
provide a strong support to our theoretical approach and
might make possible to obtain an accurate experimental
value for K ;.

The comparison of our theoretical results with the ex-
perimental observations in NLCs enclosed in nucleopore
membranes allows us to find a rough estimate of the sur-
facelike elastic constants K ;3 and K ,4.

Before concluding this paper, we note that the assump-
tion of isotropic elastic constants K;, =K 3; should be re-
moved if accurate values of the two surfacelike elastic
constants are required. In this case, numerical solutions
for the bulk director field must be utilized. Furthermore
we wish to emphasize that the surfacelike elastic con-
stants enter in the boundary conditions (14) together with
the phenomenological expression f,(6,,p,) of the surface
anchoring energy. The explicit functional dependence of
the anchoring energy on the macroscopic surface angles
0, and @, is not known. For an isotropic substrate the
more general expression of f, in the absence of polar sur-
face effects is [23,25]
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fs(es)z ion cosznes ’ (43)
n=0

where all the coefficients f,, can, in principle, be
different from zero. Equation (43) is reduced to the Ra-
pini form in Eq. (15) if f,, =0 for n > 1. At the present
time there is no physical justification for the use of Eq.
(15), while many experimental results have been obtained
in planar geometries showing that the actual behavior of
the anchoring function is more complex than that given
by Eq. (15). In particular, experimental results indicate
that at least the contribution f, cos*d, in Eq. (43) plays
an important role [5S5-58]. Furthermore a simple micro-
scopic model based on van der Waals interactions be-
tween molecules predicts a nonvanishing value of the f,
coefficient [24]. Therefore the use of the Rapini form to
obtain the experimental values of the surfacelike elastic
constants may be a further source of experimental uncer-
tainty, especially if the characteristic length R of the bulk
director distortion is close to or smaller than the extrapo-
lation length b =K /W,. In this latter case the theoreti-
cal predictions of the Rapini expression can greatly differ
from the actual surface behavior of the director field.
Therefore, in our opinion, accurate experimental mea-
surements of the surface elastic constants can only be ob-
tained by making measurements in the b <<R case or by
using an expression of the surface anchoring potential
which contains at least the first two contributions n =1
and 2 in Eq. (43). In this latter case a numerical integra-
tion of the Euler-Lagrange equations for the director field
is needed.
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