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In the present paper we calculate exactly the average squared displacement (ASD) of a tagged bead of
a harmonic polymer chain in a system with random, layered convection flows. We show that the ASD
exhibits an anomalous behavior; its dependence on time is stronger for long than for short chains. We

present also an explanation for this effect.

PACS number(s): 36.20.— r, 47.55.—t, 05.60.+w

I. INTRODUCTION

Much theoretical and experimental effort has been put
recently in studying polymer behavior under external
flows. While considerable progress has been achieved for
systems in which the flows are nonrandom [1-8], the
behavior of polymers in random flows is essentially less
understood. The explanation of such spectacular effects
as turbulent drag reduction by polymer additives still
remains tentative and controversial [9-13]. This is not
surprising in view of the complex physics involved and
one is lead to begin with simplified models that include
only some of the basic characteristics.

Here we study polymers in the presence of random
convection flows; the model allows to evaluate explicitly
the characteristics of polymer dynamics. The convection
flows are those of the Matheron-de Marsily model [14],
i.e., the flow velocities in the system are all parallel to a
given axis while the direction of the flow velocity at each
point depends randomly on the other coordinates (see
Figs. 1 and 2). The polymer is represented as a collection
of beads connected by harmonic springs and its dynamics
is described by the standard Rouse model [15]. We em-
ploy this model, which is the usual starting point for the
analysis of polymer dynamics in different systems, being,

of course, aware of its limitations with respect to certain
types of flows [6,13]. The model is also quite simplified
because it disregards hydrodynamic effects [1,8]. Here
we calculate exactly the time dependence of the average
squared displacement (ASD) of a tagged bead of the poly-
mer chain, The obtained result is rather surprising—we
show that the ASD increases stronger with time for long
than for short chains. At intermediate times, associated
with the internal relaxation modes of the chain, the
motion of a tagged bead has a faster time dependence
than the motion of a single particle in such a system.
Also at longer times the displacement of this bead is
larger than the displacement of a single particle, due to
the prefactor in the time dependence. We present ex-
planations for these effects.

The paper is structured as follows: In Sec. II we define
the model. Section III is devoted to the evaluation of the
dynamical properties. Finally, in Sec. IV we conclude
with a summary and discussion of our results.

II. THE MODEL

Consider the dynamics of a polymer chain, represented
as a series of N beads linearly connected by harmonic
springs, in a three-dimensional (3D) convective fluid.

FIG. 1. Case A. The force orientation is a random function
of the X variable only and is constant within each layer.
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FIG. 2. Case B. The force orientation fluctuates both along
the X and Z directions.
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The chain’s position is defined by the set {R,(#)}, where
R, ()=(X,(2),Y,(2),Z,(t)) is the position vector of the
nth bead at time t; n=0,1,2,...,N—1. Ignoring
excluded-volume effects and hydrodynamic interactions
leads to the following system of N coupled Langevin-
Rouse equations [1,8,15]

dR,(t) _ 3U({R,(1)})
ar T 3R, (1)

+E&r(n,t), (1

where ¢ is the friction constant and the total elastic ener-
gy is

K N-—-1
> 3 [R,()—R, ()] )

n=1

U({R,(D})=

Here the spring constant equals K =37 /b?, with T being
the temperature measured in units of the Boltzmann con-
stant K and b is the mean distance between beads. The
random forces £z (n,t) in Eq. (1) mimic the collisions of
the beads with the fluid molecules. It is convenient to
represent the forces as a sum of two independent com-
ponents

Er(n,0)=fr(n,)+F(R,1) 3)

where the first term is the thermal white-noise process
and the second one defines the forces induced by the con-
vection flows. The thermal noise process is Gaussian
with zero mean, so that for each component, say X,

Fx(n,0)=0; fx(n,t)fy(n',t')=2£T8, 8(t—t') . 4)

The dash denotes here and in the following thermal aver-
ages, i.e., averages with respect to the realizations of the
Langevin random forces f(n,t).

Let us discuss next the form of the convection forces
F(R,t). We consider quenched random layered convec-
tion fields, a model introduced by Matheron and de Mar-
sily [14] (MdM) to describe transport in stratified porous
media. The geometry in the MdM model is as follows:
At any point of the system the force vector is parallel to
the Y axis and the X and Z components of F(R,t) are
equal to zero. The Y component of F(R,t) has a con-
stant absolute value |F(R,t)|=F, and is randomly
oriented along the Y axis, taking with equal probabilities
the values +F, and —F,. The orientation of the force
vector is a function of the position in the (X, Z) plane.

Suppose that our three-dimensional (3D) system can be
represented as a succession of distinct layers (Fig. 1 and
2) perpendicular to the X axis. Next, one can distinguish
between two possible situations. In the first case, the
force orientation is constant within each layer and varies
only when going from layer to layer, i.e., is a random
function of the variable X only. We will refer to this situ-
ation as case 4. In this case the vector F(R,t) is

F(R,t)=(0,F[X],0) . (5)

One normally takes F[X] to be a centered Gaussian ran-
dom variable, with { F[X]) =0 and the covariance

(FIX,|IF[X,])=Fy(I1X,—X,|) . (6)

The brackets in Eq. (6) denote averages over the stochas-
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tic state of the MdM convection fields (configurational
averages) and ¢ is a given function of the distance be-
tween layers. This function defines the correlations of the
flow field in the X direction. It is convenient to express it
as a Fourier integral

$(1X,—X,D= [ " doQ(wlexplio(X,~X,)] . (D

Choosing particular forms for the kernel Q(w) we can
model different types of correlations. For instance, a flat
spectrum

1
= — 8
Q,(w) . (8a)
corresponds to the original MdM model with 6-
correlated fields, while

lea—l

2T (a)cos(am/2) ’
where I'(a) is the gamma function, describes random lay-

ered fields with long-range algebraic correlations, as in-
troduced in Ref. 16:

Q)= 0<a<l, (8b)

1
(X, =X, )= . 9)
bl ==

In the second situation [16,17,19,20] we discuss, we let
the direction of the force vector depend randomly both
on X and on Z. We will call this case B and depict it in
Fig. 2. Now the force vector obeys

F(R,t)=(0,F[X,Z],0), (10)

with F[X,Z] being a Gaussian random field with mo-
ments

(F[X,Z])=0 (11a)

and
(F[X,Z,]F[X,,Z,])=Fyp(|X,—X,|)m1Z,—Z,]) .
(11b)

Here, 7( |Z|) describes the correlations of the convection
fields in the Z direction. For simplicity we will consider
only the case when the correlations in the X and Z direc-
tions are characterized by the same type of spectrum, i.e.,
we set n=¢.

Combining Eq. (1) with the definition of F(R,?) in Eqgs.
(5)-(11) we get a system of equations describing the
Rouse dynamics of a harmonic chain in the presence of
MdM convection fields. Regarding the suffix n as a con-
tinuous variable and considering first the case A we ob-
tain for the components of the position vectors:

axX, (1) 32X, (1)
¢ =K

12
3 an? +fx(n,t), (12a)
aZ,(t) _Kazz,,(r)+ (n1) (12)
§ at - anz fZ n,t),
and
aY, (1) 3%y, (¢)
¢ =K +F[X,(t)]+ fy(n,t), (12¢)
ot n?
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In the case B the function F depends also on Z, i.e., one
has F[X,(t),Z,(¢)] on the right-hand side of Eq. ( 120
Finally, the Rouse boundary conditions [15] to Egs. (12)
are
0X,(t) 9Y,(r) 0Z,(1)
on  d9m  on

=0. (13)
n=0,N

III. DYNAMICS OF THE MdM-CHAIN MODEL.

To fix the ideas we start from the dynamics of a single-
particle (trivial chain with N =1) subject to the MdM
fields. This is the original MdM model [14]. The dynam-
ics of the particle are then described by Egs. (12), with
K =0. The particle undergoes a conventional diffuse
motion between the layers (along the X axis) and in the Z
direction, so that the X and Z components of its position
vector R (t) are one-dimensional Wiener processes (WP),
X(1)=1/¢ ['d7 fx(r) and Z()=1/¢ ['d7 fz(7). In the
Y direction the particle experiences the action of the con-
vection force superposed on the diffusive noise

Y(t)——f dTF[X(r)]+ f dr fy(7) . (14)
We note here that in the Y dlrectlon the diffusive noise
produces only an additive contribution, characterized by
a slower time dependence than the contribution of the
convection force. To simplify matters we set the diffusive
noise fy to zero in the rest of the paper.

The behaviors of the X and Z components are quite
transparent, while the properties of the Y component of
the particles’s trajectory R (t) are less evident. However,
the nice feature of the MdM model is that the ASD along
the Y axis can be computed directly. In fact the MdM
model can be mapped precisely onto two well-studied
problems [17]: the electron in a random potential and the
J

D~12372 for Q, (8-correlated fields)

<Y2(t)>oc?§

In Egs. (18) D denotes the diffusion constant for the con-
ventional diffusive motion in the X direction, D =T /§.

A slightly more involved analysis performed for the
case B (X-, Z-dependent fields), results in [16—20]

D~ 'tIn(¢) for Q,
D~%%2% for Q,, .

(19a)
(19b)

——— F,
(Yz(t)>°<?g

Consider next the dynamics of some tagged bead, say
the nth one, of a long chain. Our primary interest is to
compute the ASD along the Y axis and to see how the re-
sults in Eqgs. (18) and (19) are modified due to the fact that
now beads are connected in a chain. We start with the
case of an infinite chain, when this effect is most pro-
nounced, and consider finite-chains effects afterwards.

For X, () one gets from Eq. (12a),

D ~%/2t272/2 for Q. (long range correlations) .
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Edwards self-repulsive chain. Thus, various important
quantities, such as, e.g., all moments of the displacement
Y (), the return probabilities and the position of the aver-
age front can be obtained explicitly [17-20]. Here we are
interested only in the behavior of the second moment of
Y (2); for a single particle the configurational average of
Y2(¢) reads

(Y1)
2F
= de,f drzf de(w)
Xexp{iow[X ()
-X(r,]} . (15)

The average with respect to the realizations of the
Wiener process X (¢) follows readily from the evaluation
of the characteristic functional:

D(7), T;0)=explio[X (1)) —X(7,)]}

T(r,—1,)
=exp | 0P ———2 |, (16)
§
so that for a single particle one gets
(Y1)
2F
e f dr, [ar, [ " doQ(o)
2 T(Tl-fz)

Xexp | —

g
17)

The direct computation of the integrals in Eq. (17) yields
[14,16-20]

(18a)
(18b)

I
=Llrre o —
Xn(t)—gfodff_wdlfx(l,T)P(l—n,t 7, (20

where P(l;t) denotes the 1D free diffusion kernel
(Green’s function):

2
P(;0)= T% exp —1% 1)

The form of Z,(t) is similar to X, (¢); one has only to re-
place in Eq. (20) fx by fz. For Y,(t) one obtains from

Eq. (12¢).

1 re w ep—
Yn(t)—zfodff_wdl F[X,(1)IPU —n;t —7) . 22)

As in the single-bead case considered above, X, () and
Z,(t) are not influenced by the convection fields and the
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equation for Y,(¢) is a functional of the random process
X, (1) [and also of Z,(¢) in the case B]. The difference be-
tween the standard MdM model of a single particle and
the present situation is that for polymers the Y and X
components are coupled via Eq. (22) instead of Eq. (14)
and that X, (¢) is not the conventional WP.

The random process X,(t) is relevant to several
dynamical phenomena. For instance, Eq. (20), or,
equivalently, Eq. (12a), was used to describe the motion
of a tagged bead of a polymer chain in a fluid perturbed
by thermal fluctuations (the original Rouse model [15]),
and, also, the time evolution of the Edwards-Wilkinson
[21] (EW) surface in one dimension or the formation of
patterns of seggregated reactants in diffusion-controlled
chemical reactions with an external input of particles
[22]. In these models several types of noise processes
were used (for the EW surface it was a Gaussian noise,J

(Y1) =%f0’d7, fof‘drzfj’wdl,ffwdlzp(l,—n,t

To calculate the thermal average of { Y2(¢)) one has to
average the correlation function ¢ with respect to the
realizations of the process X, (1),

¢(X]2(7'1)_X12(7'2))

zf_” doQ(o)exp(io[X; (1))—X, (1)1}, (25)

which again amounts to the computation of the charac-
teristic functional

(1,157, Ty0)=explio[ X, (1)) =X, (1)1} . (26)

Now & is somewhat more complex since it depends also
on the beads’ numbers. Nonetheless, this characteristic
|
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for which the covariance decreases as a Gaussian func-
tion of the distance). The differences, however, turn out
to be unimportant at large scales and at large times.
Since X, (1) is a linear functional of Gaussian noise, any
of its characteristics, such as, e.g., its moments to arbi-
trary order or the measure of trajectories [23], can be
computed explicitly. These have a quite distinct form
than that of the conventional WP. In particular, one can
readily obtain from Eq. (20)

X2(t)=b(Dt)'?, (23)
which differs from the WP dependence, X Z(t)x Dt, so

that the process is spatially more confined.

Let us consider next how the properties of X, (¢) affect
the behavior of Y,(t). The configurational average of
Y2(t) is

_T])P(lz—n,t—72)¢[X11(7'1)—'X12(7'2)] . (24)

i
functional can be evaluated exactly. For 7, <7, it equals

_ 0’T
CD(ll,lz;'rl,'rz;w)—exp —WM(II,IZ;TI,TZ) >
(27)
with
M(1,,1;7,m) =22+ (21,12
K 172 .
—4 fg— "dr P, — 1y,

+r,—2r) . (28)

Eventually, one gets for the ASD along the Y axis

-y 2F T o o o
(Y,f(t))=§_2°fofd7-1f0 1dq—zfﬂcdllfiocdlzP(l,—n,t-—1'1)P(l?_—n,t—7‘2)f_°€da)Q(a))<l>(ll,12;7-1,7'2;@) . 29)

The calculation of the integrals in Egs. (27) to (29)
looks like a formidable task. However, the dependence of
(Y2X(t)) on the dimensional parameters and on time can
be easily extracted. Using the following dimensionless
variables:

n=1/t, M =1,/t, N,=T7,/t,
p,=(E/4K)V |, p, =(E/4KDV?,
Yv=T"Xt /K )0 , (30)

we arrive at the following results for the behavior of the
ASD in the Y direction. Omitting numerical factors,
given by the dimensionless multiple integrals in Eq. (29),
we get for the case A

Fy

D V232Kt /E)V* for Q,
2 —_—
<Y,,(t)> o« §2 X D~—a/2t2—a/2(Kt/§)a/4 for er

(31a)
(31b)

[
and for the case B
(32a)

(32b)

F D IK1V2372 for 0,
(Y20« X1 a2 a ar?
n §2 D % (Kt/§) for er :

Comparing our results Egs. (31) and (32) with the cor-
responding results for a single bead, Egs. (18) and (19), we
reach the following conclusion, which at first glance
seems to be rather astonishing.

In the MdM system the ASD of a tagged bead of an
infinite harmonic chain grows stronger with time than
the ASD of a single particle. In the case A the ASD of a
bead differs from that of a single particle for &-correlated
fields by a factor of ¢!/ and for long-range correlations
by a factor of t%/%. In the case B the effect of the chain is
even more pronounced; the additional factors are t!/?
and 19’2 for & correlated and for algebraically correlated
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fields, respectively.

So far we have been considering the dynamics of a
tagged bead in an infinitely long chain. Let us next dis-
cuss the situation for a finite chain. The standard solu-
tion in Egs. (12), for n defined on the interval 0<n <N,
can be expressed using the normal modes [1,8,15]

pmn

X,(t)= 3 cos N

p=—o

X(p,t), (33a)

Y, ()= i cos

p=—o0

pmn

N Y(p,t)

(33b)

with

pmn’

I N, '
X (p,t)= N deT fo dn’fy(n',T)cos N

_pr’K(t—1)

N (34a)

Xexp

and

pmn’
N

B S L L
Yipn=(y J dr [ dn'F1X,(7)]cos

—EZTTZK(I—T)
EN?

It is well known [1,8,15] that the behavior of the sys-
tem depends on the magnitude of the time of observation
¢t and on the so-called Rouse time tz =(N2/mK; ty
defines the largest internal relaxation time of the harmon-
ic chain. If t <<ty the sums in Egs. (33) can be converted
into integrals, which then using Eqgs. (34) leads to the rep-
resentation given by Egs. (20) and (22). Hence our re-
sults, Eqs. (31) and (32), describe in the case of a finite
chain the intermediate time behavior (¢ <<tz) of the
ASD along the Y axis. For t>>t; the influence of the
modes with p > 0 is negligible and the motion of the bead
is described only by the zeroth mode, which gives the po-
sition of the center of mass of the chain,

Xn(t)mzlﬁfotdf [l fytnyr

X exp (34b)

(35a)

1 t N, ,
Y, (1)« g_NfodT J dn'FIX,m)] . (35b)
Equation (35a) describes conventional diffusive motion
with a, however, renormalized diffusion constant. The
mean-square displacement of the tagged bead in this time
regime follows X“(¢)=(D /N)t, where D is the diffusion
constant of a single particle. We conclude, therefore,
that for ¢t >>t; the ASD of the bead is given by Egs. (18)
and (19) with a renormalized diffusion constant,

D —D/N. Explicitly
, N'\2D=V2322 for @, (36a)

2 —_
(Yr() = g2 |NeDpe22e22 for 9, (36b)

and for the case B
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F ND " 'tIn(¢) for Q, (37a)
(Y1)« 2 x e

¢ " |NeDTe e for (37b)

In this time regime the displacement of a tagged bead
again turns out to be larger than the displacement of a
single particle; the enhancement in the bead’s ASD is due
to the appearance of powers of N in the prefactors of Eqgs.
(36) and (37).

IV. DISCUSSION AND CONCLUSIONS

To summarize, we have calculated exactly the average
(over the realizations of disorder) squared displacement
of a tagged bead of a harmonic polymer chain in the pres-
ence of random layered convection flows. We have
shown that the ASD exhibits a rather spectacular
behavior: It increases more with time for long rather
than for short chains.

The effect of the enhancement of the bead’s ASD with
the chain length has a transparent explanation and, in
general, is to be expected on physical grounds. To see
this, we return to the MdM model for a single particle
and recall the physical mechanism responsible for anoma-
lous results in Egs. (18) and (19). For simplicity we con-
sider only case A with §-correlated fields. The particle’s
displacement in the Y direction, Eq. (14), can be formally
rewritten as

Y= [ " NXOF(XaX 38)

where N (X,1)= [[dt'8[ X —X(¢')] is the number of times
the layer at position X has been visited by the particle up
to time t. Consequently, the ASD along the Y axis has
the form
(Y == [~ dax Nax,p) (39)
&) e
A heuristic estimate of the ASD in Eq. (39) in the case
when the particle performs a convectional diffusive
motion along the X axis is as follows [18-20,24]. The
number of visits of a given layer is proportional to the
elapsed time ¢ divided by the number of distinct layers en-
countered by the particle during ¢. The latter grows for
conventional 1D diffusion as (D?)'/? and, hence, the num-
ber of visits grows as (¢/D)'/2. The integration over all
layers gives an additional multiplier, which grows with
time as X(¢) < (D¢)!/2. Combining these expressions one
obtains ( Y*(z)) <D ~1/2t3/2 je., the result of Eq. (18a).
Let us note that the ASD is inversely proportional to D '/?,
where D is the diffusion constant for the motion along the
X axis. Such a dependence is rather evident—with an in-
crease of D both the mean-square displacement along the
X axis and the number of distinct layers visited increase.
Correspondingly, N (X,t) decreases, which, due to the
form of Eq. (39), leads to a decrease of the ASD along the
Y axis due to the decrease of the prefactor. This explains
the enhancement in the bead’s displacement in Eqs. (36)
and (37).
After having seen how the change in D modifies the
ASD along the Y axis let us examine now how the ASD is
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influenced [19,20] by the change in the time dependence
of X2(¢); for this we consider a random process X (t),
characterized by a mean-square displacement growing as
t# with B<2. In this case the behavior of the ASD can
be estimated along the same lines as in the case of con-
ventional diffusive motion. The number of distinct layers
visited grows as t#/? and, therefore, the number of visits
of a given layer grows in proportion to t'#/2, The in-
tegration over all layers gives a factor t#/2. Thus, we find
that in this case the dynamical exponent is changed,
(Y2(t)) <t27B’2 The exponent 8 measures the compact-
ness of the trajectory X (¢). With an increase of 8 the
range of X (¢) grows and, therefore, the number of layers
visited by X (t) grows, resulting in a decrease of both
N(X,t) and the ASD along the Y axis. Conversely, with
the decrease of B the trajectory X (¢) becomes more com-
pact and the number of distinct layers visited decreases,
while the number of visits to a given_layer gets larger.
Consequently, for <1 the ASD ¢ Y%(#)) shows a
stronger time dependence than for f=1 and a weaker
time dependence for 8> 1. In our model the mean-square
displacement of a tagged bead along the X axis is given by
Eq. (23), i.e., it exhibits subdiffusive behavior with 8 =%.
Compared to the trajectory of a WP the bead’s trajectory
in the X direction is more confined; thus, the number of
distinct layers visited is less than that for the WP. As a
consequence, the bead’s ASD in the Y direction is larger
and follows ( Y*(¢)) <2 7A2 with 2—B/2=1.

We note that the heuristic arguments presented here to
discuss the influence of anomalous diffusion along the X
axis on the ASD in the Y direction can be supported by a
strict analysis along the lines of Refs. 19 and 20. In Refs.
19 and 20 the following generalization of the MdM model
has been examined: Suppose that in the (X,Z) plane the
particle is allowed to move only in restricted regions,
which form a fractal substrate of dimension d;. The
diffusion of a particle on this substrate is anomalous and
is characterized by an exponent d; then the growth of
X%(t) and Z(t) follows ¢ /o, On the basis of the direct
calculation of N(X,t), performed for several examples
(Sierpinski gaskets and ultrametric spaces), it was found
[19,20] that the ASD along the Y axis grows as

2—d;/dw
t f

(Y1) , dy<d, . (40)

Keeping in mind, of course, that we consider the motion
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of a tagged bead of a polymer, while Refs. 19 and 20 con-
cern the motion of a single particle with anomalous
diffusion properties, we note that Eq. (40) reproduces our
results for Q; (8-correlated fields). In fact, for case A
d;=1 and d ,=4 [Eq. (23)] we recover Eq. (31a). If we
set for case B d, =2 and d ,=4, we arrive at Eq. (32a).

We complete this paper with two remarks.

The exponents which characterize the growth of the
ASD in our Egs. (31) and (32) are model dependent. It is
tempting to analyze the behavior of other systems in
MdM fields; as examples one may focus on models with
finitely extensible springs, models with internal viscosity,
or the Verdier-Stockmayer model with fixed interbead
distances. Although other behaviors of the ASD as a
function of time than our results Egs. (31) and (32) may
appear, we argue that our qualitative result, namely, that
the ASD of a bead grows stronger with time for long
rather than for short chains, will still hold. Also one can
expect that for models where the connections of the
beads into the chain are more rigid the effect of the
enhancement on the ASD would be stronger. To see this,
let us note that the ASD in Egs. (31) and (32) turns out to
be proportional to a power of K; K on the other hand is a
measure of rigidity in our model. Correspondingly, an
increase in K leads to a larger ASD of the bead.

The Rouse model used in the present work is quite
simplified because the beads are presumed to be subject to
independent forces, whereas in practice the different
parts of the chain will be coupled hydrodynamically [1,8].
Due to hydrodynamic effects the chain may move in an
inert fluid more like a solid ball rather than a coil [1,8].
On the other hand, it is well known that the presence of
externally applied flows results in the stretching of a
chain. Hence, the competition between these effects and
their influence on the polymer motion in layered random
flows represents an open problem, worth further investi-
gations.
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FIG. 1. Case A. The force orientation is a random function
of the X variable only and is constant within each layer.



FIG. 2. Case B. The force orientation fluctuates both along
the X and Z directions.



