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Spreading diffusion and its relation to sliding friction in molecularly thin adsorbed films
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The Einstein relations between frictional transport and diffusion coefficients are applied to the special
case of a molecularly thin adsorbed film in order to demonstrate the equivalence between film-substrate
sliding friction and the collective spreading diffusion properties of the film on its substrate.
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I. INTRODUCTION

Einstein’s  discovery that frictional transport
coefficients could be related to diffusion coefficients ranks
among the more important results of early 20th century
physics [1]. This discovery occurred within the context
of Brownian motion of mesoscopic particles in a con-
densed matter fluid. Through direct observation of the
self-diffusive properties of the particles, a firm experimen-
tal foundation was given to the notion that fluctuations
(implicit in the statistical mechanics of Boltzmann and
Gibbs) were due to atomic motions occurring within the
fluid.

The crucial theoretical step in Einstein’s reasoning was
to note that what appeared as friction in one experimen-
tal situation would appear again as diffusion in another
experimental situation. The connection between the two
situations has come to be called the Einstein relation.

The Einstein relation is applicable to numerous prob-
lems in condensed matter physics [2]. We apply it here to
the particular case of friction due to sliding (interfacial
viscosity) of an adsorbed monolayer (or molecularly thin
film) and the mass diffusion coefficient of the layer as it
spreads out on its substrate.

We have previously described how the sliding friction
coefficient of an adsorbed film can be experimentally mea-
sured by means of a quartz crystal microbalance (QCM)
[3]. The primary physical implication of our work is to
note that such measurements can also provide quantita-
tive information on the collective spreading properties of
the film, direct observation of which [4] may not be
straightforward.

In Sec. II we apply the thermodynamic arguments of
Einstein to the mass diffusion and the sliding friction
coefficient of a molecularly thin adsorbed film. In addi-
tion, we review the simplicity of Einstein’s reasoning for
the particular context of an adsorbed film. In Sec. III the
same results are rigorously derived by means of the fluc-
tuation dissipation theorems of quantum statistical phys-
ics [5]. The latter derivation is given for completeness of
theoretical presentation. It also serves as a proof that the
original reasoning by Einstein remains applicable even
when atomic motions are treated within a quantum
mechanical framework. We conclude with a discussion
of physical considerations in Sec. IV.
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II. STATISTICAL THERMODYNAMICS

Consider N film particles, each with mass m, adsorbed
on an area A;. The behavior of the film is governed by
the equilibrium equation for two-dimensional thermo-
dynamics [6]:

d¢=sdT+Tdy, (1)

where ¢ is the spreading pressure (the force per unit
length exerted on an arbitrary boundary within the film),
s is the entropy per unit area, and I'=N /4, is the num-
ber of particles per unit area.

Suppose that the particles were forced to concentrate
near one point on the surface, creating spacial nonunifor-
mities in the spreading pressure of the film. As a result,
film particles would drift from regions of high spreading
pressure to regions of low spreading pressure. How long
would it take for the particles to spread out so as to uni-
formly cover the surface (on a macroscopic scale)? From
the sliding friction viewpoint, the film is described by the
Darcy law [7]:

—Vé=mn,v,, (2)

where 7, is an interfacial friction coefficient defined as
Fy/ A;=mn,v,, which relates the frictional force F, to the
film drift velocity v,.

The Einstein argument allows one to alternatively view
the spreading as a diffusive process described by the rela-
tion

—DVI'=Tv,, (3)

where D may be viewed as a ‘“‘spreading diffusion”
coefficient.

In order for Eq. (2) to be consistent with Eq. (3), the ex-
istence of a density gradient must necessarily imply the
existence of a gradient in the spreading pressure. The ex-
plicit form of this interdependence is obtained by express-
ing the gradient of the spreading pressure as

8¢

V= |or

vr, 4)
T

so that Egs. (2) and (3) can be combined to obtain the
Einstein relation between 7, and D:
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ar (5)

Equation (5) is the central result of this work. It can be
put into a form more convenient for experimental appli-
cation via the thermodynamic relations implicit in Eq.

(1):

a | _ (2] [ow| _p[ou ©
ar o ar or
allowing Eq. (5) to be rewritten as
p=T2|3u | _L (P2 ||3n | _Ir |3
n, |ar m ar m |dr |~
M
where p,=mT is the mass per unit area of the film and

T=p, /1, is a characteristic film slip time which has pre-
viously been discussed in great detail [3]. (The slip time
is related to the decay of the film momentum fluctuations
and corresponds to the time for the film’s average drift
velocity to fall to 1/e of its original value.) The relation
between 7 and film momentum fluctuations will become
more apparent in Sec. III, where the fluctuation dissipa-
tion theorems are discussed as the basis of the Einstein
relations stated in Egs. (5) and (7). Although the
mathematical manipulations of Sec. III are more involved
than those of this section (which follow from Einstein’s
original reasoning), the physics of the final answer will be
the same.

III. MASS DENSITY FLUCTUATIONS

The correlation function describing mass fluctuations
in a molecularly thin film under equilibrium conditions
involves the mass density operator at wave vector Q, tak-
en for convenience to be along the x axis in the plane of
the film:

(8)

The dynamic linear response function (for the mass densi-
ty) to an applied potential is given by
x(Q, g)—— lim [ “dte®([pg(1) ,p3(O]) , (9

which is analytic in the upper half complex frequency
plane Im& > 0. The dispersion relation for x(Q,¢) reads

XQ.0== [ “do

2ig2 Imy(Q,w+i0%), (10a)

Rex(Q, Q+10+)——-Pf dco Q sImy(Q,0+i0%),

(10b)

where P indicates the principal part of the integral and
Imy(Q,0+i0%) determines (completely) the response
function.

The response function is well studied within the con-

text of neutron and x-ray scattering experiments. The
dynamic structure function S(Q,w) for such scattering
studies can be found from x(Q, &) using [5]

[1—e ™" 715(0,0) .

2
Imy(Q,0+i0")= | T2L

(an

Applying known general expressions [5] to the specific
case at hand, we obtain the form of x(Q,§) for certain
asymptotic limits.

(i) The dynamic response function must reduce to the
thermodynamic response function in the low frequency
long wavelength limit:

ar
o

P2

: (12)
ct

lim li ,E)=m?
Qlinogl_l',l})X(Q §)=m

T

where cr is the (isothermal) speed of sound in the film.
Equations (10) and (12) imply the thermodynamic sum
rule

P2
lim = —Im ( ,a)+10+)——-— . (13)
Q-0 f X Q CT

(ii) In the high frequency limit, the response function
must be that corresponding to “free particles:”

2

Jim —Q%— XQ,6=—p,, (14)

which together with Eq.
strength sum rule

(10) implies the oscillator

.g_ ® i0ot)= 2
vfo dooImy(Q,0+i0")=p,0°. (15)

(iii) If the long wavelength limit in Eq. (14) is taken for
finite frequency, then one obtains the acoustic impedance
of the film Z(£) from

£
Q2

11m

x(Q,8)= |— |Z(§)—p, . (16)

i
5

The real and imaginary parts of the acoustic im-
pedance (each is an experimentally measurable quantity
by means of a QCM) may be obtained by taking the limit
of real frequency:

Z(w0+i0T)=R(0)—iX (o) . (17)

The complete acoustic impedance is determined by the
acoustic resistance via the dispersion relation

Z(§)=—£€f°°dwR(m)/(w2—§2), (18a)

X(m———Pf doR(0)/(0*—0Q?) . (18b)

The asymptotic limits discussed thus far allow for the
representation of x(Q,¢§) as a sound wave (phonon) prop-
agator with a self-energy part I1(Q,{) defined as

X(Q,8)=p,0%/[c}Q*—£>—11(Q,0)] . (19)
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In the long wavelength limit, the self-energy part defines
the “slipping impedance” Z ({) of the film against the
substrate:

. . Z;(8)

lim II(Q,{)=if—— . (20)

2-0 P2

It is interesting to note that Egs. (16), (19), and (20) im-

ply a simple acoustical engineering rule for computing
the mechanical impedance of a film on a QCM: The
acoustic impedance is that which would be computed if
the film were rigidly fixed to the substrate, but connected
in parallel to an impedance Z; representing the “slip-
ping” of the film on the substrate:

1 _ 1 1
Z(£) ikp, ZJ(&)
Now let us return to the Einstein relation.

The zero frequency limit of the “slipping impedance”
can be identified with the interfacial friction coefficient

Z,(0)=n,, (22)

21

so that the slipping impedance Z ({) may be described as
a frequency dependent interfacial viscosity. Equation
(21) can, for many purposes, be approximated by neglect-
ing the frequency dependence of Z (). Equations (21)
and (22) then imply a simple Drude form for the acoustic
impedance:

_ibpy P2
Zprue(6)= 1—itr y T= m .

In this regard it should be remembered that Eq. (21) is
quite rigorous, while Eq. (23) represents a form for the
acoustic impedance which in practice is often adequate.
Equation (23) has previously been discussed in great de-
tail [3]. The more rigorous equation (21) will be treated
in a future work.

In both the long wavelength and low frequency limits,
the above considerations can be summed up by the fol-
lowing statements:

P2Q27'
(c%sz—ié‘)

(23)

x(Q,8)— , as (Q,6)—(0,0).  (24)

The density fluctuations propagator of Eq. (24) has a
diffusion pole with

D =c%7' , (25)

which is the Einstein relation of Sec. II derived from a
response function viewpoint. For a perfectly ‘“‘smooth”
substrate, sound waves propagate freely and the charac-
teristic slip time is infinite. For an actual substrate (with
nonzero interfacial friction and finite slip time), the densi-
ty fluctuations ultimately become diffusive, proportional
to the square of the (isothermal) sound velocity times the
slip time as described by the Einstein relation of Eq. (25).

IV. DISCUSSION

Sliding friction coefficients and slip times have been
measured [8] for physisorbed films on gold and silver sub-
strates. Slip times for liquid monolayers of materials
such as krypton, xenon, nitrogen, water, and cyclohexane
are observed to be on the order of ns (for QCM’s which
oscillate at 8 MHz). The -corresponding friction
coefficients range from ~8 dyn/cm? per cm/s for a ma-
terial of relatively light molecular weight (water) to =~ 120
dyn/cm? per cm/s for a more massive material such as
xenon. The spreading diffusion coefficients for such films,
deduced from Eq. (7), are on the order of 1 cm?/sec [9]
(less for rough surfaces [8]). This is in qualitative agree-
ment with the experimentally observed equilibrium times
and supports the interpretation of D as the rate at which
the film can spread into an equilibrium configuration.
The observation of higher friction coefficients for films
adsorbed on rough surfaces is intuitively appealing. It is
also intuitive that a lower diffusion rate should be associ-
ated with a rougher surface, since the film particles must
travel longer distances along the surface in order to ac-
complish the same net horizontal displacements.
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