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Osmotic interactions between neutral surfaces in an electrolyte solution
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Osmotic forces between planar interfaces with intervening electrolyte solution are studied by means of
a Monte Carlo simulation with a two-dimensional Ewald summation. A short-ranged, usually attractive,

interaction is observed in solutions dominated by electrostatic correlations among the ions. At higher

concentrations, the Coulombic interactions compete with packing effects that give rise to an oscillatory

interaction similar to the structural forces frequently observed between colloidal particles in dense fluids.

The osmotic force in vanishingly narrow pores obeys the exact limiting law that relates the pressure on

the walls to the fugacity and to the asmotic pressure of the external solution.

PACS number(s): 68.45.—v

I. INTRODUCTION

In recent years forces between colloidal surfaces have
represented a major focus of experimental and theoretical
research [1—3]. In view of their importance for the sta-
bility of colloidal dispersions, theories of interacting dou-
ble layers have enjoyed particular attention. Classical
mean-field approaches [3,4] were supplemented by
modern integral equation theories [5—9] and computer
simulations [10—18]. The accuracy of these novel
methods allowed studies of complex situations character-
ized by a sensitive balance of various effects. In systems
where ion-ion correlations have a pronounced role, this
has lead to new interpretations of double-layer interac-
tions in colloidal systems. Both analytic theories and
simulations have revealed the existence of a notable at-
tractive contribution to the overall force between electric
double layers. This leads to a reduced repulsion or, in ex-
treme cases, typically in the presence of multivalent
counterions, even to a weak attraction between equally
charged surfaces [5,10]. An analogous mechanism has
been found to affect the interactions among spherical [13]
or cylindrical [19]polyions and between aqueous droplets
in microemulsions [20,21]. The common feature of these
systems was the presence of charged surfaces and neutral-
izing counterions distributed throughout the electric dou-
ble layer next to the interface. The ion-ion correlation
effects considered in the above cases, are, however, not
limited to the situations involving the presence of
electrified surfaces or charged macroparticles [16,22,23].
In the present paper, we present simulation results for the
osmotic forces between neutral surfaces with intervening
electrolyte solutions. The effect of the correlations
among the ions on their distribution next to the surface is
considered, and the concomitant osmotic force between
neutral wa11s is determined in a number of systems. The

existence of this kind of force has been indicated in our
previous work where the exact limiting law for ion distri-
bution in vanishingly narrow slits has been established
[22]. This result has been confirmed in a simulation
study by Valleau, Ivkov, and Torrie [16],who considered
the pressure between the plates in a concentrated divalent
salt solution. It is, however, of interest to explore the
effect more systematically and in a broader range of con-
ditions. In addition, we are concerned with the effects of
longer-ranged periodic boundary conditions. In the
above study [16], mainly dealing with charged surfaces,
the long-ranged interactions along the walls were treated
within the mean-field approximation. While capturing
the contribution of the charge-density profile outside the
simulation cell, the method does not account for ion-ion
correlations beyond the range determined by the
minimum-image convention. It is therefore desirable to
extend these calculations by using the essentially infinite

Ewald summation along lateral directions. The width
dependence of the pressure on the plates is studied using
a simple model consisting of smooth interfaces and the
primitive model of ionic solution [24]. The structure of
the solution between the walls in equilibrium with the
bulk phase of prescribed concentration and chemical po-
tential of the salt is determined by Monte Carlo simula-

tion. The dependence of the ion distribution next to the
surfaces on the distance between them determines the net
osmotic force between the two plates as a function of the
separation. The resulting interaction between the walls is

usually found to be attractive, short ranged, and of a
magnitude comparable to the attractive components of
the net forces between electrified surfaces seen in earlier
works [5,10]. As found in a preceding study [22], the net
interaction at very small separation between the two sur-

faces obeys the limiting expression for ion adsorption
which relates the force between the plates to thermo-
dynamic properties of the solution [22,23].
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II. MODEL AND METHOD

The model we use consists of two parallel, semi-infinite
plates immersed in an electrolyte solution [22]. The
latter is represented by the restricted primitive model
RPM [24] in which the ions behave as hard spheres of
charge +Zeo and of diameter u embedded in a dielectric
background of permittivity c.. Ignoring possible image
effects [12],a uniform permittivity is assumed throughout
the system. The configuration-dependent part of the
Hamiltonian consists of ion-ion (u;1 ) and ion-wall (u;~)
interactions:

U=X, XJu,j(r; }+X,u, (z, },
if r~ &cr

Z;Z eo /. 4rrer, ~otherw. ise,

~ if lz;l&L/2
u;„(z;)= '

F/S=P;, P,„,=[p, (L—) —p, (oo)]kT . (2)

The pressure exerted at the outer surfaces of the plates
P,„,=p, (out)kT=p, ( oo )kT equals the osmotic pressure
of the solution Il=gp&kT, where p& is the mean number
density of the ions in the bulk phase, and P is the osmotic
coefBcient of the solution. For very narrow pores, the ion
density has been shown [22] to approach a well-defined
limiting value

lim~=fz=rmb
L~U

(3)

where f+ is the fugacity and y+ the mean activity
coeScient of the ions. At separations L «o, the liquid
density in the pore becomes practically uniform, the con-
tact density p, approaching the average density in the
pore. The force between the plates at a separation L+o.
barely exceeding the thickness of a monolayer of ad-
sorbed ions o can therefore be expressed as [22,23]

lim F/S = [ limp, —p, ( oo ) ]kT= [y ~/P —1]II,
L~O L ~O'

(4)

i.e., the force per unit area is proportional to the

where L+o is the separation between the two surfaces,
z, is the coordinate of ion i normal to the plates, and
z;=0 corresponds to the midplane between the walls.
The plates are perfectly smooth and sufficiently thick, so
we can neglect any correlations across the walls. For a
purely hard-core interaction between the ions and the
walls, the osmotic pressure is determined by the contact
number density of the ions p, . The total force F per unit
area S of a plate corresponds to the difference between
the pressures exerted on the inner and outer surfaces of
the plates [25]:

difference y+ —
P times the ideal osinotic pressure of the

solution. The osmotic coefficient P normally exceeds y+
giving rise to the attraction between adjacent plates. If
the walls get even closer, i.e. for —o ~L 0, all ions are
squeezed from the slit, p, (in)=0, and the net force per
area becomes oppositely equal to the osmotic pressure of
external solution.

At finite separations L, the average concentration and
the contact density of the ions at the walls are functions
of the separation between the plates [16,22,23]. In the
present work, the contact number densities p, for
different separations are obtained by extrapolation to
z =EL/2 of the simulation results for the mean density
p+(z) in the slices obtained by dividing the simulation
cell by a set of equidistant planes parallel to the plates.
The average number density of the ions in narrow pores
is generally quite different from that of the bulk solution
[16,22,23,26-29]. In an earlier work, we studied the
overall distribution of the ions between the pore and the
bulk solution by a grand-canonical ensemble Monte Car-
lo simulation (GCMC) [22]. The convergence in the
overall number of the ions in wide pores was found to be
much faster than the convergence of the detailed ion den-
sity profiles in the gap. The average densities of the ions
determined [22] by GCMC at specific plate separations
were therefore used to obtain accurate wall-ion contact
densities by means of the canonical ensemble simulation
(CMC). The GCMC profiles from Ref. [22] for gap
widths below about a fifth of the ionic diameter were
suSciently smooth to be used without further CMC cal-
culation.

The effects studied in this and the preceding work are
most pronounced in narrow pores where screening effects
are weaker [30-32] than in the corresponding bulk solu-
tions. The accuracy of the simulation may therefore de-
pend on the appropriate account of long-ranged correla-
tions. To reduce the effects of the finite size of the simu-
lation cell, the periodic boundary conditions [33] were
applied along the lateral directions x and y. The planar
slit of width L was treated as a two-dimensional array of
equal, periodically repeating cells [34-37] of volume
V =L„„L with identical configurations of mobile ions.
The potential energy of a cell containing N ions was cal-
culated according to the relation [33]

N N
U~= g g gZ;Z, eolgnelr;, +Pl . (5)

i =lj=1 P

The sum over lattice vectors P includes the points
P=(lL„„,mL„„,O}, where m and l are integers running
from zero to infinity and the self-term i =j is omitted in
the basic cell l =m =0. The infinite sum over P is calcu-
lated by Ewald's method adapted to two-dimensional
periodic conditions [34,35]. This entails the application
of the relations.

N N

g [u~~j~(R,J)+u; '(R;.)+u (R; )]+u,
i =1 j=1

~ ~u(RJ~ )= (Z; ZJ e0 /4n e )gerfc( —a'8,")/R;. ,
P

(6)

(7)
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FIG. 1. The reduced pressure P*=F/(SpbkT) between neu-

tral plates immersed in 0.1-moldm ' solution of a monovalent
electrolyte as a function of the distance between the plates L.

FIG. 2. The reduced pressure P* between neutral plates im-

mersed in 1.001-mol dm ' solution of a monovalent electrolyte
as a function of the distance L.

u '(R; )=(Z;Z eo/4msL„) g exp(ikr; )/k[exp(k~z; ~)erfc(k/2m+v z; ~)
k=0

+exp( —k ~z~ ~
)erfc(k /2v —a Iz J ~

) ],
u '(R; )= (Z;—Z eo/2meL, )[z; erf(xz; )+exp( —z z; )/(m' s)],
u' '= Ze ~—/2n'Q; —;epK

(9)

(10)

Above, R; =r; —r. , R; = ~R,. ~, k, is the two-
dimensional reciprocal-lattice vector, k;~

=
~ k;~ ~,

r; =(x;,y; ), z; =z; —z, and a is the screening parame-
ter of the Gaussian distributions introduced in Ewald
method [33]. Apart from the use of the closed (N, V, T)
ensemble, with the numbers of ions N taken from earlier
GCMC simulation of the same systems, the details of the
calculation were as described in the preceding work [22].
The dimensions of the Monte Carlo cell were adjusted to
accommodate between 50—100 simple ions, along with
the condition that the xy size always exceed the width of
the slit. The maximum displacement of the ions was
chosen in such a way that we maintained about 40—50%
acceptance of attempted moves in the simulation. 56 k-
space vectors were used in the two-dimensional Ewald
summation. This would correspond to about 3X10 vec-
tors in a three-dimensional system. About 5 X 10 moves
were attempted during the equilibration, and
(2.5 —5) X 10 moves were made during the averaging pro-
cedure to obtain an estimated accuracy in the density
profiles of about + (1.0—2.5)%. Effects of the system size

and the Ewald sum parameters have been carefully ex-
plored in the preceding GCMC study of the same systems
[22].

III. RESULTS AND DISCUSSION

The system parameters used in the present calculations
are taken from earlier simulation studies of bulk [38,39]
and confined [16,22] restricted primitive model (RPM)
electrolytes. The systems considered comprise mono-
valent and divalent symmetric electrolytes at different
concentrations, listed in Table I where known [16,38—40]
thermodynamic coefficients of bulk solutions are also in-
cluded. All the data correspond to the temperature
T =298 K and relative permittivity E„=78.5. In the last
two columns, we give the limiting values of the reduced
pressure P' =F/(SpI, kT) between the walls at vanishing
separation L determined by Eq. (4) and from the simula-
tion [22]. At distances —o + L + 0, the reduced pressure
P* equals —1.0. The I. dependence of P* at finite sepa-
rations is illustrated in Figs. 1 —5. The limiting values

TABLE I. The properties of RPM electrolytes considered in the simulations.

p g

System Valency cr (nm) c (mol dm ') lny+ Eq. (4) MC

2:2
2:2

0.425
0.425
0.425
0.420
0.420

0.1031
1.001
1.968
0.0456
0.971

0.9451
1.094
1 ~ 346
0.650
0.651

—0.2311
—0.1165

0.2545
—1.437
—2.635

—0.1514
—0.2128
—0.0562
—0.4024
—0.579

—0.1521
—0.2245
—0.0540
—0.4057
—0.583
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FIG. 3. The reduced pressure P between neutral plates im-

mersed in a 1.968-moldm 3 solution of a monovalent electro-
lyte as a function of the separation between the plates L.

FIG. 5. The reduced pressure P between neutral plates im-

mersed in a 0.971-mol dm solution of a divalent electrolyte as
a function of the wall-wall separation L.
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P'(0) practically coincide with the prediction of the ex-
act relation, Eq. (4) [22]. Negative values of P'(0) reveal
the presence of an attractive osmotic force between adja-
cent surfaces immersed in the solution. The reduced den-

sity of the ions in the slit, and the concomitant reduction
in the pressure on the walls, stem from the tendency of
the iona to avoid the region where their ionic atmosphere
is distorted by the presence of the walls. At higher con-
centrations, the packing effects contribute in the opposite
direction. In monovalent salt solutions, the calculated
force rapidly decays from the limiting value over a dis-
tance equal to a small fraction of the diameter of the ions.
This rapid decay is not observed in the presence of di-
valent salt. At somewhat larger separations, the force de-

cay is slowed down, but qualitatively difFerent pictures
emerge at different conditions. In dilute solutions of
monovalent electrolyte and in both systems with divalent
ions, the ion-ion correlations appear to be dominated by
electrostatic effects that give rise to a monotonical weak-
ening of the osmotic force with the distance between the
walls. The range of the force extends over a wall-wall
distance of several ionic diameters, and appears to in-
crease with the valency of the ions. The results for the

concentrated divalent electrolyte, system 5, appear to be
in good agreement with previous work [16],although we
observe a somewhat longer range of wall-wall attraction.
In highly concentrated solutions such as system 3 depict-
ed in Fig. 3, the ion-ion correlations are apparently dom-
inated by packing effects, as is expected from the values
of thermodynamic coefficients listed in Table I. The
osmotic force shown in Fig. 3 is therefore reminiscent of
what has been seen in studies of structural forces in dense
molecular Suids [25,41—47] confined by planar interfaces.
While simulations reveal the existence of a nonspecific
osmotic contribution to the interaction between neutral
interfaces, the effect appears to be weaker than some of
the measured salt effects between apolar surfaces in aque-
ous solutions [1—3]. The present results correspond to
the sole contribution of the ion-ion correlations, and can
be useful as a benchmark for approximate theories such
as those discussed in Ref. [23]. In real systems, the pres-
ence of a simple electrolyte has often been found to alter
the strength of surface forces in both the short- and
long-ranged regimes [1,2]. At least part of these effects
should be attributed to more specific ion-surface interac-
tions. These would include the screening of existing po-
lar groups, or the adsorption of the ions that could give
rise to or alter the existing surface charge on the parti-
cles. The present model with pure hard-core ion-wall in-
teraction cannot capture these contributions. Introduc-
tion of specific ion-wall attraction in a tractable form of
Baxter's adhesion is currently under consideration. The
presence of the electrolyte may also be felt through its in-
teractions with the molecules of the solvent. These in-
teractions can lead to highly specific efFects that should
be considered within the framework of nonprimitive
models for an electrical double layer [48,49] to be con-
sidered at a later date.
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