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Invasion percolation in a hydrostatic or permeability gradient: Experiments and simulations
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We present experiments and simulations of slow drainage in three-dimensional (3D) porous media, ei-

ther homogeneous and in the presence of gravity or heterogeneous and in its absence. An acoustic tech-

nique allows for an accurate study of the 3D fronts and the crossover region. Our results suggest that
both cases can be described by invasion percolation in a gradient. For the case of gravity, the front tail
width scales with the Bond number as crFT-B . ', in agreement with the theory. For the case of per-
meability gradient a different scaling is found, in agreement with a modified theory of gradient percola-
tion developed here.

PACS number(s): 47.55.Mh, 05.40.+j, 47.55.Kf

I. INTRODUCTION

Important in oil recovery, hydrology, and chemical en-

gineering, immiscible displacement in porous media finds
as much interest in the physics of disordered media. The
front between two immiscible fluids exhibits characteris-
tic patterns depending on the displacement process [1].
Well studied is the constant rate displacement in a porous
medium of a wetting fluid, which initially occupies the
medium, by a nonwetting fluid. This process is known as
drainage. The reverse process, where a wetting fluid dis-
places a nonwetting fluid, is termed imbibition. In this
paper, we are strictly concerned with drainage, the pore-
level mechanics of which are well understood. For exam-
ple, fast, viscous-dominated displacement in the limit of
large viscosity ratio (viscous fingering) is modeled by
diffusion-limited aggregation [2]. Invasion percolation
(IP) [3] describes the opposite extreme of slow displace-
ments, where capillary forces dominate over viscous and
lead to percolation patterns [4]. In the absence of pres-
sure gradients, the latter have the fractal properties, in-
cluding the critical exponents, of ordinary percolation.
For example, the displacing front has the geometry of the
incipient percolation cluster, which is a self-similar frac-
tal object of a specified fractal dimension.

For these regimes to apply requires macroscopically
homogeneous media in the absence of external forces.
However, this is not the case in many practical applica-
tions. For example, in a vertical displacement involving
fluids of different densities, gravity competes with capil-
lary and viscous forces by exerting hydrostatic pressure
gradients. The gravity number (also called the Bond
number) Bs=g„r ly measures the competition be-
tween gravity and capillary forces. Here hp denotes the
difference between the density of wetting and nonwetting
fluids, g„ is the acceleration of gravity in the flow direc-
tion x, r is the mean pore size, and y is the interfacial ten-

sion. If the displacement is downdip (injection of the
lighter fluid from the top, Bs &0), gravity acts to limit
the fractal regime to a finite extent and the front becomes
self-affine. Its extent is measured by the front width o in
two dimensions or by the front-tail width oFr in three-
dimensional (3D) geometries. Either obeys a scaling law
with the Bond number, as shown below. A compact pat-
tern follows the fractal front. The oppos"; c~~., where
the displacement is updip (injection of the lighter fluid
from the bottom, Bs (0), leads to gravity fingering [6].
Gravity effects for the stable case (Bs&0) have been
modeled with gradient percolation [7,8] (GP) and with in-
vasion percolation in a gradient [5] (IPG), which are
modified versions of ordinary and invasion percolation,
respectively. Experimental confirmation of the theory
has been obtained for drainage in 2D geometries [9].
However, no experimental confirmation exists so far for
3D displacements, where only one B value has been test-
ed [5].

Another external force that may also act in a similar
fashion arises from heterogeneity. Recent work [10) on
immiscible displacement in heterogeneous porous media
has indicated that spatial permeability variations also act
in ways similar to gravity, with the additional feature
that contrary to gravity, permeability gradients may vary
in space. For example, consider drainage in a horizontal
medium with a permeability gradient. Because the
nonwetting fluid preferably penetrates the high permea-
bility regions, we expect that a form of gradient percola-
tion would also describe this process, but with a different
number Bk, now based on the permeability gradient. We
shall call 8k the heterogeneity Bond' number. In this pa-
per, we postulate that both these effects (gravity and per-
meability heterogeneity) can be described by IPG. We
present three-dimensional experiments in bead packs and
pore network simulations to test this conjecture for gravi-
ty and permeability heterogeneity.
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II. PRELIMINARIES

Before we proceed, we summarize briefly what is
known about gradient percolation in the present context.
We recall that GP is a lattice percolation process, where
the occupation probability p is not constant, but de-
creases (typically linearly) with one of the lattice coordi-
nates [5,7,8]. IPG is the analog of this process to in-
vasion percolation. Invasion percolation in a hydrostatic
pressure gradient was first proposed by Wilkinson [7] to
describe imbibition in the presence of gravity. Sapoval
and co-workers [8] considered a more general problem in-

volving diffusion. In both applications, however, the per-
colation (occupation) probability p(x) is spatially vary-
ing. In the case of drainage at low rates, of interest to
this paper, p is related to the capillary pressure II, which
denotes the di8'erence between the pressure of nonwetting
and wetting fluids across an interface at the pore throat
of size r, by the two relations

and

p= ar r
)r

II =2y/r,
where a(r) is the pore size distribution. In the absence of
gradients, the fluid displacement is described by IP,
where p is uniform in space, the front has the fractal
structure of the percolation cluster, and its extent is given
by the correlation length g, which satisfies the percolation
scaling [4] g-l~p —p, ~

. Here l is the lattice spacing,
the correlation exponent is v= 4, or 0.88, in 2D or 3D, re-

spectively, and p, is the bond percolation threshold,
which is a lattice property (e.g., p, =0.25 for a simple cu-
bic lattice in bond percolation). The displacement is
driven by an increase in II and reaches breakthrough
(g» I) when p reaches p„ in which case II attains its
capillary threshold value II, .

In the presence of gradients (e.g., along the direction
x), the displacement process is described by IPG, where
now p is continuously decreasing. A front location x, (t),
where p (x, ) =p„can be identified. Clearly, this front lo-
cation x, (t) varies with time as a result of the imposed
pressure difFerence P (t), which must increase for the dis-
placement to proceed [e.g., P(t) = II, +6pg„x, (t) for the
case of gravity]. The vicinity of x, is a crossover region,
described by the theory of finite size e6'ects in percolation
[4]. In both GP and IPG, there is a region around x, of
finite extent 0 where percolation theory applies. Its scal-
ing is given by [7,8]

So —p (5p }~llf

dp/dx~, = Bs(r, 12Ai —), (5)

where r, corresponds to p, . In the case of heterogeneity

only, the capillary pressure is uniform in space but vari-
able in time, thus

dp/dx =(I IA, }(dr/dx)= —(1/A, )Bk,

where Bk =— dr Idx ——d V—k Idx. If the permeability k
is decreasing in the direction of the displacement

(Bt, & 0), invasion by the nonwetting fluid requires higher
pressures, the permeability gradient acting to stabilize the
front. In the opposite case (Bk (0) invasion is facilitat-

ed, leading to fingering due to capillary heterogeneity
(which differs from the classical viscous fingering prob-
lem}. Assuming that the lattice is of fixed spacing l, we

shall have

10

10

where the relation (p —p, )/5p =(x, —x)/o was implied,

5p =—~Vp~' '+', P=0.45 in 3D, and the scaling function
IIf was computed in Ref. [8]. The function IIf is unique
to the Gp process. It accounts for the fractal nature of
the front in the vicinity of p, as well as for the approach
to a compact pattern away from the front (near the inlet),
where the invading saturation is described by the expres-
sion So-(x, —x)~. A schematic of this function, com-

puted from gradient percolation in a 3D lattice, is shown
in Fig. 1.

Consider now the application of the above to gravity or
pertneability gradients. In either case, the link of the
probability gradient to the Bond number is through the
previous capillary pressure relationship. We take for
simplicity a uniform pore-size distribution a(r) of width
X and mean pore size r, from which it readily follows that

p =(r r)IA. + ,'.—In the c—ase of gravity only, the capil-

lary pressure varies in both space and time, II
=P(t) b,pgx, —but r is fixed T.hus dp/dx =

bpgr /2yl—,. Evaluating near the front gives

~ lVp~
—v/(1+v)

l
(3)

10

where o indicates the front width in 2D or the front-tail
width [8] trFr in 3D. The difference in the definition of
the front extent in 2D and 3D geometries reflects the
de'erent connectivity properties in the respective dimen-
sions [8].

In the stable case (negative values of dp/dx), the
theory of IPG allows for the invading Quid concentration
So(x) to be determined through the relationship [8]

10-2
t

-1 4 -1 2

s' s'c

5p

-0.6 -0.4 -0.2

FIG. 1. The scaling function IIf computed from gradient
percolation in a 3D 348 X 348 X 50 lattice.
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B—v/1+ v

I
(7)

for either the gravity or the permeability cases.
The condition of uniform spacing is necessary for (7) to

be valid. However, in our experiments it was satis5ed
only in the gravity experiments. In the heterogeneity ex-
periments, the permeability gradient was generated by a
constant gradient in the bead size, which in turn imposed
a gradient in the lattice spacing, since spacing and pore
size in a bead pack are proportionally related (l-ar).
Under such conditions, Eq. (7) should not be applicable,
in fact the front width should be a function of time (or of
x, }, decreasing with x, in the case Bk )0. A
modification of the IPG to model this situation is neces-
sary and such is proposed below. Before we proceed, we
present the experimental results.

III. EXPERIMENTS

The experiments were performed with porous media
consisting of packed glass beads, the diameter of which
ranged between 80 pm and 1 mm. For the gravity experi-
ments, we used oil and various water mixtures of variable
density difference (imp varying from 20 to 100 kgm
y -25 mJ m ) and variable bead diameters (but of con-
stant size in each experiment), resulting into a range of
values of B from 5X10 to 10 '. For the permeability
gradient experiments, gravity efFects were suppressed by
using equal density fluids (dibutyl pthalate and water
sucrose solutions 11.9 wt. %). An interval of a permea-
bility gradient was created between two regions of uni-
form permeability (bead size). The gradient was generat-
ed by a patient filling of the region with layers of filtered
beads of monotonically changing size varying from 800 to
80 )Mm. The thickness of each layer varied such that the
gradient of the bead diameter was constant and equal to
Bk. The length of the heterogeneity interval was also
variable (5, 10, 15, and 30 cm). However, because of
practical limitations, only one decade in Bk [2.4
X 10 (0.072/30) —1.44 X 10 (0;072/5}] was covered in
the heterogeneity experiments. The nonwetting fluid
(lighter or equally dense fluid) was injected in the direc-
tion from top to bottom (or from high to low permeabili-
ty) in a sample saturated with the wetting fluid (water
sucrose solution) at a low constant flow rate (correspond-
ing to a low capillary number Ca= p,q/y —10,where p,
is viscosity and q is the displacement velocity). The low-
rate restriction was necessary to avoid signi6cant viscous
pressure drops. The concentration profile Sc(x) was
recorded with the use of an acoustic technique described
elsewhere [11], with an accuracy in saturation of
2X 10 . The spatial resolution in the gradient direction
was 1 mm, although it is also possible to resolve varia-
tions down to 100 pm through a decorrelation method.
This high accuracy technique allows for a precise deter-
mination of the average front position and of the cross-
over regime. With the exception of the gravity experi-
ment with Bg =0.1, where a fixed transducer was used
and the saturation was monitored as a function of time,
all other experiments involved an acoustic scanning de-
vice for the determination of the saturation proNe. In

10

10

the permeability gradient case all data were collected
near the midpoint of the heterogeneity.

Figure 2 shows the experimental saturation profile
plotted versus the reduced position (x, —x)/ozz for the
case of strong gravity effects (B =10 ') (where over a
thousand experimental points are plotted). The small
fluctuations of the concentration are reminiscent of the
invasion percolation process (described by the model of
the devil staircase [12]). The dashed line through the
data is the best fit of the crossover function (4}, which is
here also extended for positive values of the reduced vari-
able. The fit is excellent and demonstrates the validity of
the theory in 3D and over a much wider range [—3
+ (x, —x ) /tr ~~ 1, 10 & Sc ~ 1 ) than in earlier experi-
ments [5,9] (note the use of a semilogarithmic plot in Fig.
2). Figure 3 shows the corresponding profile for the case
of a gradient in permeability (Bk =2.4X10 ). A good
flt with the data is also shown. From these profiles, the
front width can be determined as a function of either
gravity or permeability Bond numbers, by matching with
the theoretical function (4). A plot vs the Bond number
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FIG. 3. Experimental profile for invasion percolation in a
gradient of permeability (Bk =2 X 10 ). Plot of the nonwetting
saturation So versus the reduced space variable. The dashed
line is the theoretical prediction (4) [or (14)].
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FIG. 2. Experimental profile for invasion percolation in a
gradient of hydrostatic pressure (Bg = 10 '). Semilogarithmic

plot of the nonwetting Quid saturation So versus the reduced

space variable. The dashed line is the theoretical prediction (7).



4136 CHAOUCHE, RAKOTOMALALA, SALIN, XU, AND YORTSOS

(9) it follows that the coordinate x in the real lattice at lo-
cation j is

10 '= 1 —(1 a—Bk )~

(10)

and in view of X.=(j—1)ar &, real (x) and stretched (X)
lattice coordinates are related via

10 10

FIG. 4. Log-log plot of the tail width o (normalized ~ith the
local bead size) versus the gravity Bond number Bg (triangles) or
the permeability Bond number Sk (stars). The dashed line of
slope —0.47 is the theoretical IPG prediction (7).

obtained by this matching is shown in Fig. 4. It should
be pointed out that the Bk data required a shift (prefactor
adjustment) to coincide with the Bs data; thus the tail for
a hydrostatic pressure gradient with Bs =0. 1 is the same
with that for a permeability gradient with BI, =0.025 (see
also below). The corresponding prefactor may be related
to the pore size distribution. The dashed line of slope—0.47 is predicted from (7). We observe that both data
sets (Bs and Bk ) are consistent with this slope.

The excellent agreement between theory and experi-
ment confirms the validity of the IPG theory for either
gravity or permeability gradients in 30. However, while
the case of gravity is very satisfactory, the agreement of
the permeability gradient results with (4) and (7) is some-
what unexpected. GP and IPG apply to media of uni-
form lattice spacing, as is indeed the case with the gravity
experiments. In the permeability heterogeneity experi-
ments, however, the spacing varied with the pore size,
which is certain to change the scaling. To determine the
new scaling, a modification is necessary.

IV. THEORY

r =r&(1—aB.k }J ', j =1,2, . . . (9)

which shows that although linear with respect to x, the
variation with respect to j (or X) is a power law. Using

To proceed with a theoretical analysis we must stretch
the real lattice into a regular lattice of uniform spacing,
where GP applies and accordingly transform the proba-
bility gradient. Consider a mapping of the real lattice
variables (x,y, z;o) to a uniform lattice with variables
(X, Y,Z;X). This lattice has constant spacing (which
without loss can be taken as the first bond length ar

&
). In

the real lattice, the average pore size at the coordinate lo-
cation j (j= 1,2, . . . ) in the direction of the gradient is

r~+, =r~ (1—aBk ), .

where we made use of the definition of the heterogeneity
number dr/dx = Bk. We can use —(8) to obtain the
dependence of r with respect to j (or X) in the stretched
lattice,

x = [1—(1—aBk) '] .
Bk

We can now apply gradient percolation theory to the uni-
form lattice problem (always recalling that the probabili-
ty p varies with x) to obtain the result

X-g(X,+X), (12)

where g or-, ~p
—p, ~

'. Inherent to (12) is the assump-
tion that gradient percolation results remain valid even
when the lattice size changes in the transverse to the gra-
dient direction (y, z —+ Y,Z), an assumption which was ac-
tually confirmed numerically. We may then proceed by
recalling that p

—p, = Bk(x ——x, )/k, and o -X(dx/
dX)„where x and X are related through (11},to arrive at
the final result

' 1+v

B—(+ )
x,Bk 1

ln
1 —aBI,

(13)

This more general scaling is different from the classical
(7), which, however, it approaches in the small Bk limit.
In fact, the above shows that o decreases as x, (or time)
increases. How can the new scaling be reconciled with
the experimental findings? Before we proceed to an
answer, we first present a numerical confirmation of the
theory.

To simulate IP in a permeability gradient we modeled
the porous medium as a square or cubic lattice of nodes
(pores) connected by bonds of size 200XNX (where NX
ranged from 220 to 2250) or SS XSSXNX (although data
were also collected for 32X32XNX} (where NX ranged
from 150 to 900}, respectively. The bond size was distri-
buted uniformly with mean values assigned according to
(9) and with a constant A, , thus the lattice has a monotoni-
cally changing (decreasing if Bk & 0) spacing. The
theoretical prediction (13) was tested by plotting the
values of o. for different times and Bond numbers in the
appropriate log-log plot. 2D results shown in Fig. 5 have
a computed slope of 0.429, in excellent agreement with
the theoretical prediction of 1/(1+v)=0.4285. Good
results are also shown for the 3D simulations (where the
slope is 0.545 compared to the expected 0.532) (Fig. 6).
The scatter of the data was found to diminish and the
agreement with the theory becomes better as the network
cross-section increases.

The occupied fraction p&, which is related to the exper-
imental saturation via pf'=So/p, can be also determined.
We proceed as follows: For the uniform spacing lattice
(where real space is not yet involved) we expect (4) to ap-
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ply. Incidentally, we should note that (4) was derived
only for GP [8]. In our simulations, we found that when
an invasion problem is involved, the numerical results
can fit to the scaling function Ilf, but only after a stretch
of the reduced variable. This was found necessary in
both gravity and heterogeneity cases. Although not ex-
plicitly stated in Ref. [5], we assume that a similar
stretching was also done there. The final result for the
uniform lattice problem is

r

(14)

'P

Pf'- Bk— IIf Co.
(15)

Although Eq. (15) is difFerent from (4), the scaling of the
spatial variation of saturation is the same in both equa-

where the constant c was found to be of order 3 in both
cases. To convert to the real lattice, we substitute the
previous relatians between real and lattice variables to
obtain

tions, thus allowing for o to be directly inferred. (Note
that the factor c remains constant as the Bond number
varies. )

The agreement of the permeability gradient experimen-
tal results with the thearetical slope 0.47 can now be in-

terpreted. As painted out above, the heterogeneity re-
sults were collected at the midpoint of the heterogeneity
region, which by construction has a constant mean pore
size for any Bk. Since in (13} 1 (x,Bk /r, —

) also
represents a normalized pore size, this implies a fixed
value for the product x,Bk. Substitution in (13) and us-

ing Bk «1 in the expansion of the logarithm yields
o''+" Bk ', -which is the scaling of the standard IPG.
The same interpretation holds for the saturation profile.
On the other hand, for arbitrary, and variable, x, loca-
tions the mare general scaling (13}should be obeyed. The
inadequacy of the direct GP relationship o /r, -Bk "/'+"

to describe the present heterogeneity case, where the lat-
tice spacing is variable, was demonstrated by replotting
the 3D numerical data corresponding to Fig. 6. The re-
sults are shown in Fig. 7. We see that the data are widely
scattered and do not suggest the theoretical straight line
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