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We investigate the effect of resonant temporal forcing on an anisotropic system that exhibits
a Hopf bifurcation to obliquely traveling waves in the absence of this forcing. We find that the
forcing can excite various phase-locked standing-wave structures: rolls, rectangles, and cross rolls.

At onset, at most one of the two—rolls or rectangles—is stable.

The cross rolls can arise in a

secondary bifurcation and can be stable. Experimentally, they would appear as a periodic switching
between a structure in which the “zig” component dominates and one with a dominating “zag”
structure. Since there are two symmetry-related states of this kind, one may expect disordered
structures to arise due to the breakup of the pattern into domains. The results are consistent with
recent experiments on electroconvection in nematic liquid crystals by de la Torre Juirez and Rehberg
[Phys. Rev. A 42, 2096 (1990)]. We also apply the general analysis to a model of the behavior near
a Lifshitz point, where the angle of obliqueness vanishes. This analysis indicates that phase-locked
standing rectangles are always unstable in this parameter regime.

PACS number(s): 47.20.Ky, 03.40.Kf, 47.27.Te

I. INTRODUCTION

Temporally periodic forcing can qualitatively change
the behavior of systems exhibiting spatial or spatio-
temporal structures. In systems which form oscillatory
structures, strongly resonant temporal forcing has a par-
ticularly large impact. For example, in one-dimensional
systems that undergo a Hopf bifurcation to stable trav-
eling waves, forcing can excite stable standing waves be-
low the threshold for the traveling waves; these standing
waves are phase locked to the forcing [1-3]. This theo-
retical prediction has been confirmed experimentally in
Taylor-Dean flow [4] and in electrohydrodynamic convec-
tion (EHC) of nematic liquid crystals [5].

In the nematic phase, the liquid-crystal system exhibits
an axial anisotropy due to a partial alignment of the
molecules; this defines the director. In the first EHC
experiments the waves always propagated along the di-
rector [5]. Recently the experimental parameter regime
has been extended to include a regime in which disor-
dered patches of waves, traveling at an oblique angle to
the director, are observed [6]. In this case, temporally pe-
riodic forcing excites standing waves in the form of either
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oblique rolls or rectangles. In addition, more complicated
structures are found [6]. These observations provide the
experimental motivation for our theoretical investigation.

This paper examines the effect of resonant forcing
on oblique traveling waves produced in a Hopf bifurca-
tion of the spatially uniform state of a two-dimensional
anisotropic system. The symmetry of the system forces
coexistence of waves traveling in four directions. The
possible interactions of these waves make a complete
analysis of the problem extremely complicated. However,
one of the striking features of the excited roll and rect-
angular structures is their strong spatial coherence. This
suggests that as a first step we focus on the case where the
amplitudes of the different modes are space independent.
We therefore investigate an extension of the four com-
plex amplitude equations analyzed previously (8]; this
model takes the temporal forcing into account [9], but
neglects large-scale spatial variations in the amplitudes.
This analysis elucidates the connection between the dif-
ferent structures excited in the experiments and allows us
to make some predictions for future experiments. We also
consider the transition from oblique to normal traveling
waves using suitably extended coupled Ginzburg-Landau
equations which are valid close to a Lifshitz point where
the angle of obliqueness goes to zero.

Formally, our analysis applies to weakly forced waves
arising through a Hopf bifurcation. We expect, however,
that some aspects may pertain to parametrically excited
waves in systems that do not undergo a Hopf bifurcation,
but which support weakly damped waves in the absence
of forcing. In particular, this approach has been suc-
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cessfully applied to surface waves arising in the Faraday
experiment with low-viscosity liquids [10] and is related
to methods used in studies of spin waves in ferromagnets
[11]. Of course, when applying the present approach to
these systems only the phenomena arising in the linearly
damped regime are of relevance (i.e., for parameter values
below the Hopf bifurcation point).

The organization of the paper is as follows. Section
II presents the amplitude equations for weakly forced
oblique waves. Section III reviews and interprets results
on the transition from traveling waves to phase-locked
standing waves. The phase-locked structures, as well as
the transitions between them, are discussed in detail in
Sec. IV. Section V contains our analysis of the Lifshitz
equations. The theoretical results are then compared
with the experimental ones in Sec. VI. The main re-
sults of the paper are summarized in the conclusion, Sec.
VIIL

II. AMPLITUDE EQUATIONS
FOR RESONANTLY FORCED OBLIQUE WAVES

This paper focuses on Hopf bifurcation in axially
anisotropic systems in the case where there are four neu-
trally stable modes at the Hopf bifurcation point. These
modes correspond to waves that travel at an oblique an-
gle v to the axis of anisotropy. Thus a typical scalar
field such as the vertical component of the velocity in
convection, V,, is given by

V;((L‘,‘y,t) = (zlei(qz-{-py) + Zzei(—qz+Py)

+z3e—i(q=+py) + z4e—i(—qz+py))

xe'et/™ 4 c.c. + ho.t. (1)

Here we have suppressed any dependence of V, on the
vertical coordinate z; we is the external forcing frequency,
and h.o.t. denotes higher-order terms. Since we are con-
sidering resonant forcing of order n, we assume that w./n
is close to the Hopf frequency. In this paper, we treat the
strong resonant cases n = 1,2. For the EHC experiments
of interest n = 2 [6]. Note that z; and z3 correspond to
left- and right-traveling plane waves in the direction of
gX + py; similarly z; and z4 correspond to oppositely
traveling plane waves in the direction of —gx + py. Thus
the waves travel at an oblique angle v = tan™1(p/q) to
the = axis (the axis of anisotropy). Here we assume
that the amplitudes z; are complex-valued functions of
a slow time T', but that they do not depend on the spa-
tial coordinates. The time evolution of the amplitudes is
determined by a system of coupled first order ordinary
differential equations which can, in principle, be derived
from the governing hydrodynamic equations (with peri-
odic boundary conditions) using center-manifold reduc-
tion [12]. However, in EHC this is not yet possible; even
the origin of the Hopf bifurcation has not been under-
stood at the hydrodynamic level [13]. Nevertheless, the
general form of the amplitude equations can be deter-
mined from symmetry considerations assuming that the
waves are due to a Hopf bifurcation of the motionless
state as experiments suggest [14]. Consequently, most
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of our results are not specific to the EHC experiments,
but pertain to a larger class of resonantly forced systems
with the same underlying symmetries. In a more heuris-
tic fashion, we also expect our results to be relevant to
surface waves in the Faraday experiment [15]. We will,
however, focus on the EHC system in order to make con-
tact with available experiments [6].

We consider a general.system that is invariant under
translations in the plane; since our solutions are spatially
doubly periodic, the group of translations corresponds
to a torus T2. Moreover, we assume reflection symme-
tries in planes parallel and perpendicular to the axis of
anisotropy; these reflections are denoted by x; and kg,
where £, : (z,y) = (z,—y) and &3 : (z,9) = (-=z,9).
These spatial symmetries act on the amplitudes as fol-
lows:

z1 eif1 21
6
4] et z22
6,,07) : - i
( 1y 2) 23 e 10, 23 ]
24 e“‘o’z,;
21 24 21 z2
z z z z
Ky 2]l > 31, kK L 1. (2)
z3 22 zZ3 24
24 21 24 z3

Here the phase shift 6; results from a translation (z,y) —
(z+61/2q,y+61/2p) and the 6, phase shift results from a
translation by (—602/2q, 62/2p). The amplitude equations
are equivariant with respect to these transformations. In
the absence of resonant temporal forcing the normal form
of the amplitude equations possesses an additional phase-
shift symmetry that we interpret as a time-translation
symmetry t = t + ¢/wn. It acts on the amplitudes as
follows:

$:2z — €'z, (3)

where z = (z1, 22, 23, 24). An analysis of the cubic trunca-
tion of the amplitude equations, equivariant with respect
to the symmetries (2) and (3), is presented in [8].

The temporal forcing destroys the phase-shift symme-
try (3), thereby allowing additional terms in the ampli-
tude equations. We assume that the temporal forcing is
weak and therefore we keep only the lowest order term
which does not satisfy the time-translation symmetry (3).
The amplitude equations truncated at cubic order are [9]

4 = vz +pz3 + (a|z]® + blze|® + c|zs|® + d|z4|?) 21
+f 222324,

s * 2 2 2 2

Z2 = vz + pzp + (a|z2| + blz1]* + c|z4|* + d| 23| ) 29
+f z1252s,

(4)
Z3 =vzz+ pz] + (a|z;;|2 +blzg)? + c|z1|2 + d|zz|2) 23
+f 2221 24,
s * 2 2 2 2
z4 = vza + p2zj + (a|za|? + blzs|® + c|22| + d|21)?) 24
+f Z]_Z;Z:; .

There are three small unfolding parameters: the dis-
tance from the Hopf bifurcation in the absence of forcing,
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Re{v} = v,, the detuning v; of the forcing frequency w,
with respect to the linear frequency wg, v; =Im{v} =
wo — we/n (n = 1,2), and the forcing amplitude F,
|u|™ o« F2 [1,2]. (In the case of parametrically excited,
weakly damped waves, v, is proportional to the linear
damping of the waves; it is always negative.) Without
loss of generality, we choose the temporal phase of the
forcing such that p is real and positive; all other coeffi-
cients are complex.

In the absence of forcing (1 = 0) Eqgs. (4) possess up to
seven branches of periodic solutions that bifurcate from
the origin at v, = 0. Three of these correspond to differ-
ent types of traveling waves and four to (superpositions)
of standing waves. In particular, they have the form

I: z=(v0,0,0) TRo,
II: z=(v,v,0,0) TRe™,

Im: z=(v,0,0,v) TRel,

IV: z=(v0,v,0) SRo, (5)
V: z=(v,v,v,v) SRe,

VI: z=(v,iv,v,5v) ARo,

VII: 2z = (vq,v2,v1,v2) SCR.

The abbreviations denote traveling rolls (TRo), two
kinds of traveling rectangles distinguished by their di-
rection of propagation relative to the axis of anisotropy
(TRet,TRell), standing rolls (SRo), standing rectangles
(SRe), alternating rolls (ARo), and standing cross rolls
(SCR). The standing cross rolls, which are characterized
by two complex amplitudes v; and v3, do not always ex-
ist. The numbering is the same as that used in our previ-
ous work on the unforced system [8]. In addition to these
periodic solutions one finds more complicated (branches
of) attractors such as heteroclinic cycles connecting three
of the above solutions [8].

In the presence of forcing, oppositely traveling waves
are linearly coupled [see Eq. (4)] so that pure travel-
ing waves do not exist. For example, the forcing de-
stroys pure right-traveling TRell by coupling it to the
left-traveling TRell; thus the TRell are replaced by a
general superposition of left- and right-traveling rectan-
gles, i.e., by (v1,v2,vz,v1). Similarly, forcing destroys the
ARo solution, which is an equal-amplitude superposition
of standing rolls which differ by 7/2 in their temporal
phase. In the next section we see that the pure standing
waves (SRo and SRe) persist and that they can phase
lock to the temporally periodic forcing.

III. TRAVELING VS PHASE-LOCKED
STANDING WAVES

In this section we study the effects of resonant forcing
on competition between various traveling-wave structures
and their standing-wave counterparts. Specifically, we fo-
cus on the stability of the phase-locked standing waves
to traveling-wave disturbances. In the oblique regime
there are two simple types of phase-locked standing waves
(PSW): phase-locked standing rolls (PSRo) and phase-
locked standing rectangles (PSRe). The stability of the

PSRo state to traveling disturbances is determined by re-
stricting (4) to the subspace where z = (v1,0,v2,0). Sim-
ilarly the stability of PSRe to traveling disturbances is
determined by restricting (4), in turn, to each of the sub-
spaces where 2z = (vy,v;,v2,v2) and z = (vy,v2,v2,v;1); in
the former case the disturbances travel perpendicular to
the director, whereas in the latter case they travel along
it. In each of these three cases, the restricted dynamics
has the form

b1 = vuy + pvy + avy|vy|? + Bog|ve|?,

6
Vg = vug + pu} + Buz|vi]? + ava|vs)?, “

where
a=a, B=c for TRo, (7a)
a=a+b B=c+d+f for TRe:, (7b)
a=a+d, B=b+c+f for TRell. (7c)

Here the subspaces are denoted by the traveling waves
that are present in each of them when there is no res-
onant forcing [cf. (5)]. Equation (6) was studied previ-
ously in the context of periodically forced waves in one di-
mension [1-3]; in these papers the phase-locked standing
waves, as well as traveling (TW) and unlocked stand-
ing waves (SW), were investigated. The results apply
directly to the present system by an appropriate identifi-
cation of TRo and TRel'! with the traveling wave TW,
and the new phase-locked solutions PSRo and PSRe with
the standing wave PSW.

In Fig. 1 we sketch a typical phase diagram associated
with (6), for fixed detuning v; and for 8, < a, < 0;
in this case the unforced traveling waves bifurcate su-
percritically and are stable. In the following discussion
we employ the notation (TW, PSW) used in the one-
dimensional case. For weak forcing the trivial equilibrium
loses stability via Hopf bifurcation along the line marked
H; this bifurcation leads to stable traveling waves, TW,
for positive values of v,. (The unlocked standing waves,

Forcing Amplitude [

FIG. 1. Phase diagram for a periodically forced supercrit-
ical Hopf bifurcation to traveling waves in the (v, ) plane,
where v, is the distance from the Hopf bifurcation in the ab-
sence of forcing and p is the forcing amplitude. Phase-locked
standing waves bifurcate from the motionless state on the line
PSW, traveling waves bifurcate at the line marked H. The
standing waves undergo a parity-breaking bifurcation at PB,
a saddle-node bifurcation at SN, and a Hopf bifurcation to
unlocked standing waves at SW.
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SW, are unstable in this case.) Along the line marked
PSW, which is given by p? = |v|?, a steady bifurcation
of the zero solution of (6) occurs; this bifurcation pro-
duces the phase-locked standing waves PSW with fre-
quency we/n. The amplitude r = |v;| = |vz| of the PSW
satisfies

IN|2r* + 2r°Re {v* N} + |v|* —p® =0, (8)

where N = a+ (. f Re{v*N} = v, N, +v;N; > 0 the bi-
furcation to PSW is forward, otherwise backward. Thus,
depending on the detuning v;, the bifurcation to the PSW
can be in either direction, independent of the bifurcation
direction of the standing waves in the unforced Hopf bi-
furcation. The saddle-node line of the PSW, marked SN
in Fig. 1, is given by

u* = (Im{v*N})*/|N|?, (9)

for Re{v*N} < 0.

The linear stability analysis of the PSW is simplified
by the fact that the perturbations (u;,uz) of the steady
solution (v1,v2) = (v,v) of (6) fall into two classes: u; =
uz and u; = —uy. We focus first on the perturbations
that preserve the standing-wave character of the waves
(w1 = uz). The determinant and trace of the resulting
2 x 2 stability matrix are

det = |v + 2N72|%2 — |y, (10)
Tr = 2(v, + 2N,r?), (11)

where 72 solves (8). The determinant vanishes at the
saddle-node bifurcation (9). There is a secondary Hopf
bifurcation when the trace vanishes, provided the de-
terminant is positive. This bifurcation produces un-
locked standing waves SW. The perturbations of the
form u; = —uy include the marginal translation mode
and a parity-breaking instability to traveling waves. The
parity-breaking instability occurs when the trace of the
associated Jacobian matrix vanishes, i.e., when

Tr = 2(vr + 20,7%) = 0. (12)

It is denoted by PB in Fig. 1. A typical bifurcation di-
agram is presented in Fig. 2. As long as the unforced
traveling waves are stable with respect to the standing
waves (G, < 0), the secondary Hopf bifurcation of the

Amplitude

FIG. 2. Typical bifurcation diagram for a periodically
forced supercritical Hopf bifurcation to traveling waves as ob-
tained along the dotted line in Fig. 1.

PSW to unlocked standing waves is always preempted
by the parity-breaking bifurcation to traveling waves. In
addition, modulated waves exhibiting three different fre-
quencies are possible; this follows from an analysis of Eq.
(6) in the vicinity of the point where the Hopf bifurca-
tion and the steady bifurcation merge (u? = v2,v, = 0)
(1]. This codimension-two point corresponds to a Takens-
Bogdanov bifurcation with O(2) symmetry, which was
analyzed by Dangelmayr and Knobloch [16].

Thus the stability of the phase-locked states (PSRo,
PSRe) to traveling disturbances (TRo, TRe'!l) and to
unlocked standing waves (SRo, SRe) is understood in
some detail based on previous studies. The competi-
tion between the different kinds of phase-locked standing
waves is the subject of the next section.

IV. COMPETITION
BETWEEN PHASE-LOCKED STANDING ROLLS
AND STANDING RECTANGLES

The relative stability of PSRo and PSRe is particu-
larly relevant to our understanding of the EHC experi-
ments since both states are observed. This stability ques-
tion can be addressed by restricting (4) to the standing-
cross-rolls subspace where (21, 23, 23, 24) = (v1, V2, v1,v2).
Note that this subspace contains both the PSRo (v; =0
or vz = 0) and the PSRe (v; = v3) solutions. The ampli-
tudes v, and vy satisfy

91 = vur + pv} + (a + c)vi|v1|? + (b + d)vs|va|® + foivd,
U = vug + pvy + (b+ d)vg|'vl|2 + (a+ c)v2|v2|2 + fv;vf.
(13)

These equations differ from those describing the forced
O(2)-Hopf bifurcation (6); the modes with amplitudes v;
and v, are uncoupled at the linear level since they rep-
resent standing waves with different orientations. More-
over, the nonlinear coupling term with coefficient f is
absent in (6).

We focus first on the stability of the PSRo solution,
which has the form (v1,v2) = (u,0), to perturbations in
the (0,v;) direction. The resulting 2 x 2 stability matrix
Dpsgr, has the following trace and determinant:

Tr(DPSRo) = 2[”1' + (br + dr)’%SRo]? (14)
det(Dpspo) = |[v + (b + d)rgp,|*
—|v+ (a+c— f)rpsrol® (15)

The amplitude rpsg, satisfies (8) with N = a + ¢. Pro-
vided the determinant (15) is positive, there is a Hopf
bifurcation at v, = —(b, +d,.)r3gg,; thus the presence of
the PSRo in one direction leads to a shift of the primary
Hopf bifurcation in the other direction. A steady state
bifurcation occurs for

Re{v*(a+c—-b—-d- f)}
bt dP —Ja+e— I

2
TPSRo
2

=p= (16)

We will show that this bifurcation leads to phase-locked
standing cross rolls PSCR which are also pertinent to the
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EHC experiments. The PSRo are stable in the (0,v;)
direction as long as the trace (14) is negative and

2Re{v*(a+c—-b—-d-f)}

< (lb+d? ~ |a+c— £2) rspo- (17)

Note that p depends on both the control parameters v,
and v;. Moreover, since the amplitude rpsr, can be var-
ied independently of v by changing the forcing amplitude
i, Eq. (17) reduces at onset to

2Re{v*(a+c—b—d—f)} <. (18)

Finally we note that the symmetry of the PSRo solu-
tion results in a doubling of the eigenvalues associated
with perturbations at an oblique angle to the rolls (see,
for example, [7]). Hence the stability calculations of this
section actually determine four of the eight eigenvalues
of the full stability matrix associated with (4) linearized
about PSRo; the remaining four eigenvalues were deter-
mined in the preceding section.

We now examine the stability of the phase-locked
standing rectangles in the standing-cross-rolls subspace.
The PSRe solution is an equilibrium solution of (13) of
the form (v, v2) = (u,u). We examine its stability with
respect to perturbations of the form (w,—w) by substi-
tuting (v1,v2) = (v + w,u — w) in (13). The resulting
2 x 2 stability matrix Dpgg. has the following trace and
determinant:

Tr(Dpsre) = 20y + 4(ar + ¢ — fr)TEsRes (19)
det(Dpsre) = |V + 2(a + ¢ — f)rpsrel’
—|v +2(b + d)rsge|?, (20)

where 7pgRe is a solution of (8) with N = a+b+c+d+f.
Note that

det[Dpspo(Tpsro)] = —det[Dpsre(2rpsre)].  (21)

Consequently a steady bifurcation to PSCR occurs at

T%SRe =P, (22)

where p is defined in (16). The coincidence of the steady
state bifurcations of the PSRe and the PSRo branches,
both to PSCR solutions, suggests that they may be con-
nected by the same branch of PSCR; this provides a
mechanism for a continuous transition between PSRo and
PSRe. We will show, in a particular limit, that this pos-
sibility can occur.

The PSCR are steady state solutions of (13) with
v1vz # 0 and |v;| # |vz|. We let v; = Re*® and v, = rei®,
and eliminate the phases from (13) to obtain (for r # 0)

p=\v+(a+c)r?+(b+d)R?

v+ (a+c— f)rt + (b+d)R?|?
v+ (b+dr2+(a+c— f)R?

+fR? (23)

Moreover, if r and R are both nonzero, then

v+ (b+d)R* + (a+c— f)r?|?

=|v+(a+c— f)RP+ (b+d)r?? (24)

This has a solution r? = R2, which corresponds to the
PSRe, and also a solution

2 + R? = 2p. (25)

Substituting 72 = 2p — R? in (23) leads to a quartic
equation for R?:

CsR® + CsR® + C4R* + C2R? + Cy = 0. (26)
The coefficients Cy, C3, and Cg are given by
Co=lv+2(b+d)pPllv+2(a+c)pl* - p*),  (27)
C2 =2Re([v +2(b+ d)p] (h* — f*)
x{2p[v +2(a + )p)(R* + f) —4?}), (28
Cs = |h? — £33, (29)

where h = a + ¢ — b — d. We use the reflection symmetry
that interchanges R? = |v1|? and 72 = |vz|? to simplify
this equation. In particular, we observe that for each
solution R? there must also exist a solution RZ = 2p— R?
[cf. (25)]. We let

u= R*(2p — R?) (30)
and write the solutions to (26) as

sz - IGCOCspz

-Cy £
u = ]
4ng

(31)

which yields the symmetry-related pair of solutions

R?=p++/p? —u. (32)

Note that both u and R? must be positive for PSCR
to exist. From (31), it follows that there are at most
two distinct PSCR solutions of (13); these annihilate in
a saddle-node bifurcation when CZ = 16C,Cgp®. We
note that the PSCR solution merges with the PSRo when
u = 0 and with PSRe when u = p?. We now consider two
limiting cases in which we can show explicitly that the
PSCR arise as a secondary solution branch that connects
the PSRo and PSRe solutions.

The phase-locked standing waves arise through a
steady bifurcation at |v|2 = p2, whenever v, < 0, i.e., for
values of v, below the unforced Hopf bifurcation point.
We can use center manifold reduction [12] to reduce the
complex equations (13) to two real equations for the
standing-wave amplitudes [17]. For |v|®? = p?, v, < 0,
the neutral eigenspace of (13) linearized about the ori-
gin is spanned by v; = m; = i(p + v*), j = 1,2; the
damped eigendirections associated with the double eigen-
value 2v, are given by v; = 12 = i(u — v). We introduce
the slow time 7 = €2T and let v; = em A; + €3(m A 3 +
n2Bj3)+h.ot, p = |v| + €2p2. At cubic order in € we
obtain



‘%i—l =0A; +aAd + A, A%,
A, i (33)
T{T_ = (TAz + &A% + ﬁAzA?,
where
_ vl o mlPg .
o= -2, &= MURe((a+0)),
A_ |711|2 *

Equations of the form (33) also apply to systems with
large damping whenever sufficiently large forcing is ap-
plied. In particular, these equations describe the oblique
standing-wave components that have the correct tempo-
ral phase, relative to the periodic driver, to be excited by
the forcing. In contrast, Egs. (4) become invalid for large
damping. Note that in general the amplitudes in (33) are
complex due to translation symmetry; the specific choice
for the standing-cross-rolls subspace (21 = 23,22 = 24)
that leads to Eq. (13) breaks that symmetry.

Equations of the same form as (33) arise in the analy-
sis of the O(2) Hopf bifurcation problem and have been
studied extensively [18]. Generically, the only steady so-
lutions of (33) have either equal amplitudes (4; = Aj),
or one of the amplitudes vanishes. Thus at onset one
has only PSRo (one vanishing amplitude) and PSRe
(A1 = Az). Only in special degenerate cases do we ex-
pect more complicated small-amplitude equilibrium so-
lutions near onset. In particular, if @ ~ G, then higher
order terms must be included in the normal form (33)
and there can exist a small-amplitude mixed-mode equi-
librium solution with two different nonvanishing ampli-
tudes [19,20]. The mixed-mode solution corresponds to
the PSCR. Note that p o (@ — () so that p is small in
J
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this degenerate situation. This is consistent with (16)
and (22) which show that the secondary bifurcations to
PSCR occur when the amplitudes r3gg  and r3gg, are of
order p, respectively. In the two-dimensional control pa-
rameter space (p2,& — () the regime in which the PSCR
exist is delimited by the lines at which the PSRo and
PSRe become unstable to PSCR. The stability of the
PSCR solution depends on higher order terms which were
neglected in deriving the amplitude equations (4) [19,20].

The center manifold equations (33) lose their valid-
ity when v, — 0 since the eigendirections with eigen-
value 2v, can no longer be eliminated adiabatically;
these standing-wave modes become independent dynam-
ical variables. For nonzero detuning v; this regime can
be analyzed by considering the Takens-Bogdanov double-
zero point (v, = 0,u = po = |v;|) at which the Hopf
frequency goes to zero. Near this point simplification is
not achieved by a reduction in the number of degrees of
freedom. Instead, the form of the linear operator allows
certain nonlinear terms to be removed [12,21]. We begin
by expanding the amplitudes along the two directions
¢1 = (s +i)po and {2 = 1 in the complex plane, where
s = sgn(y;) distinguishes between the cases of positive
and negative detuning. Let

v =n(C1d; +(B;), =12, 0<n<1l. (35)
The new dynamical variables /i]- and Bj are real. At the
double-zero point the linear part of (13) is
A.j = SBJ',

~

B; =0.

(36a)
(36b)

Since s # 0, we can perform a near-identity nonlinear
coordinate transformation that removes most of the cubic
terms in the normal form. In particular, we let

A, = fil + nz(clfi% + Cg.ép&l + 631&% + 643’521&2 + C5E§)fil + n2(66éf + C7B1A1 + CgAg + Cgéz;‘iz + CmB%)Bl,

(37a)

B; = Bl + nz(dlfi"; + d2BIA1 + daxa.g + d4Bzfi2 + dség)zal + nz(dséf + d7é1fil + dsz‘ig + ngzx&z + dloég)él,

with A, and B; defined by interchanging the 1 and 2
subscripts in (37a) and (37b), respectively. We choose
the coefficients c; and d; so as to remove the cubic terms

in the A; equations and four of the ten cubic terms in

the f?,- equations. Moreover, in order to express the un-
_J

Al = sB; + €(Vp1 + svi1 — 1) Ar + evin B1 /1o + O(en?,n?),

B, = e(vp1 — V51 + p1)Br — 2epo(vin — spa)Ar

(37b)

folding parameters of the resulting equations in terms of
the original control parameters, we expand v and p as
B =po+eu, v=ispo+e(vy +ivi), (38)

where 0 < € < 1. The transformed equations are

(39a)

+4n?{—p3(a; + c;)A? + 2p2(a, + ¢,)B1 A3 — pd(b; + di + fi) A1 A2

+u§(b,. +d, + Zf,-)BzAlAz + Mg(b, + d,-)BlA§ + lllo(bi +d; — 2f,')BzBlAz} + 0(6’".2, n4),

(39b)
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with similar equations for A, and B;. We focus on the
stationary solutions of (39a), (39b), which correspond to
the phase-locked standing waves observed in the experi-
ments. In this case, (39a) yields B; = O(e,n%), j = 1,2,
which takes all terms involving B; in (39b) to higher or-
der. We obtain the following algebraic equations for the
Aj!

0= *2ﬂ0{6(Vi1 ~ 8u1)
+2npdl(a; + ;) AT + (b + di + fi)AZ]}Au
+0(€?,en?, n?),
(40)
0 = —2puo{e(vi1 — sp1)
+2n?pd((a; + ;) A3 + (b; + d; + f;)AI]} A,
+0(e?,en?,n%).

Note that the equations for the equilibrium solutions
of (33) are of the same form as (40). Thus, as be-
fore, PSRo and PSRe are the only phase-locked stand-
ing waves in the vicinity of the Takens-Bogdanov point,
unless a; + ¢; = b; + d; + f;, in which case higher order
terms must be retained. In this case, it is known that
the existence region of PSCR lies between steady state
instability lines of PSRo and PSRe [20]. Again this de-
generate case corresponds to p =~ 0. (Recall that v, = 0
near the Takens-Bogdanov point.)

We can combine the above results to obtain the fol-
lowing picture. The steady state instability at p = |v|
produces both PSRo and PSRe, with at most one of
the two states being stable. This follows from (21); a
positive determinant is necessary for stability and for
T3sRopsre — 0 the determinants of Dpsp, and Dpsgre
have opposite signs. (Recall that r? can be decreased by
varying the control parameter u, while holding v fixed.)
In addition, for v, sufficiently negative, i.e., below the
onset of unforced traveling waves, the traces of Dpsgo
(14) and Dpggre (19) are both negative. For p sufficiently
small, the steady bifurcations from PSRo and PSRe to
PSCR can occur before the Hopf bifurcations associated
with Tr(Dpsro) = 0 and Tr(Dpspe) = 0. The differ-
ence in the steady state bifurcation values for each of the
solutions is given by

AHZ = ”%’SRo—»PSCR - N%SReﬂPSCR
=p*2(b+d]> = |a+c— f]?)
~(lat+ct+b+d+f[P—4la+c). (41

The two bifurcations coincide for p = 0 in which case
they lie on the neutral curve u? = [v|2. For p < 0 there
is no bifurcation to PSCR. For p > 0 there are two main
cases distinguished by the sign of |b+ d|? — |a + ¢ — f|?
[cf. (17)]. In these two cases, the conditions for stability
of PSRo and PSRe, respectively, to PSCR are given by

I (b+d?*—lat+c—f>>0):
PSRo : 7isg, > 2p, PSRe: rigg. < p, (42a)
I (b+dP?—Jla+c—f*<0):

PSRo: r3sg, < 20, PSRe: rigg. > p. (42b)

Amplitude

0 Forcing Amplitude L
FIG. 3. Sketch of the bifurcation diagram of PSRo, PSRe,
and PSCR for Ay > 0 and p > 0 in case L.

Figures 3 and 4 present possible bifurcation diagrams
when p > 0, and when both PSRo and PSRe bifurcate
supercritically. In case I, the PSRe are stable at onset,
but become unstable to PSCR at larger amplitude (i.e.,
larger values of y?). For Au? > 0, the PSCR merge with
the PSRo for even larger u? and stabilize them in turn.
Our analysis does not determine whether the pitchfork
bifurcation to the PSCR is supercritical or subcritical.
In the simplest scenario, the bifurcation is supercritical
when Ap? > 0 and the PSCR solution is stable in the
SCR subspace. For Au? < 0, the transition from PSRe to
PSRo is hysteretic and (in the simplest case) the PSCR
are unstable. In case II the PSRo and PSRe interchange
their roles and stable PSCR are expected for Ap? < 0. If
the PSRo or PSRe bifurcate subcritically from the basic
state more complicated bifurcation diagrams are possible.

We emphasize that p depends on the control parameter
v. Within the present framework, one therefore expects
that it may be possible to choose the detuning v; such
that p is in a suitable range to observe the transition to
PSCR below the onset of unforced waves (v, < 0) and
before other instabilities (e.g., parity breaking) set in. In
particular, by choosing v; such that p is small and posi-
tive it may be possible to observe the transition between
PSRo and PSRe by increasing u. Whether this transition
is made via a stable or unstable branch of PSCR solu-
tions will depend on the nonlinear coefficients [see (41)].
Similarly, if both PSRo and PSRe bifurcate supercriti-
cally and v, is sufficiently negative, then p determines

Amplitude

]

Forcing Amplitude p

FIG. 4. Sketch of the bifurcation diagram of PSRo, PSRe,
and PSCR for Ay < 0 and p > 0 in case .
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whether PSRo or PSRe are stable at onset. In particu-
lar, PSRo arise stably at onset if p < 0 in case I and if
p > 0 in case II [see (16) and (18)]. As will be discussed
below, the range over which the detuning and therefore p
can be varied effectively is, however, limited in spatially
extended systems.

V. TEMPORAL FORCING IN THE VICINITY
OF A LIFSHITZ POINT

Experiments on the liquid-crystal system have identi-
fied a parameter regime where rolls travel along the axis
of anisotropy as well as a parameter regime where (dis-
ordered) waves travel at an oblique angle to it. This
is reminiscent of the situation of steady normal and
oblique rolls for which the transition between the two
regines is usually continuous and the angle of oblique-
ness, v = tan"'(p/q) [cf. (1)], goes to zero at the Lif-
shitz point in parameter space [23,24]. In the present
case of Hopf bifurcation to traveling rolls, the disordered
character of the unforced waves has made experimen-
tal confirmation of the existence of such a Lifshitz point
problematic; no such experimental verification exists to
date. Nevertheless, such a point is of special interest
since it provides a natural mechanism for a transition
between the normal and oblique regimes. At the Lifshitz
point, the critical modes with amplitudes z; and z4 in (1)
become indistinguishable as +p — 0, as do the critical
modes with amiplitudes z;, z3; the description in terms of
four ordinary differential equations is no longer appropri-
ate. Instead, the behavior in the vicinity of the Lifshitz
point is modeled by a generalized Ginzburg-Landau equa-
tion in which the small wave number p is incorporated
into a slow variable in the y direction. This description of
the Hopf bifurcation in the vicinity of the Lifshitz point is
analogous to the model of the Lifshitz point in the steady
state case [25]. The latter leads to a single partial differ-
ential equation (in two space dimensions) with real coef-
ficients, whereas in the Hopf case the system is described
by two coupled complex partial differential equations.

For a Hopf bifurcation with translation and reflection
symmetry two complex amplitudes are required to model
the behavior of both the left- and right-traveling waves.
We replace (1) by

Vi(z,y,t) = EA(z, y, t)e(wet/n+a2)
+€e2B(z,y,t)e!@t/"=8) L hot. + c.c.,
(43)
0 < € € 1, where z = €2z, y = €7, and t = €*f are slow
variables. The spatial symmetries of the system result in

the following equivariance properties of the generalized
complex Ginzburg-Landau equations:

£—>2Z+0/3: (A,B,0:,0,) > (Ae*®,Be % 9,,d,),
(44a)

z——-z:(A,B,0,,8,)) - (B, A, —0q,0y), (44b)

§— —9:(A,B,08,,8,) - (A,B,8,,-9,). (44c)

One then obtains the following equations (through order
€%):

8 A —v0,A=dO2A+ s82A + 90,02 A+ hd;A + vA
+uB* +EA(|AI* + |BI*) + §A|B/?,
(45)
8B + v8,B = d92B + s02B — ¢0.82B + h}B + vB
+pA* +EB(|A]" +|BI) + gB|A[%,

where, without loss of generality, we assume that the
group velocity v and the (scaled) forcing amplitude y are
real; all other coefficients are complex. The Lifshitz equa-
tions (46) without the temporal forcing (i.e., u = 0) were
introduced in [9] and partially analyzed in [8]. In the
unforced case the Lifshitz point is given by s, = v, = 0,
with the unscaled deviation from the Lifshitz point given
by (e2s,, €*v,). As before we assume the temporal driv-
ing is small and therefore keep only the lowest order
terms pB* and pA* that destroy the phase-shift symme-
try (4, B) — e**(A, B). Specifically, the unscaled forcing
is i = e*p. Similarly, the complex coefficient v has been
scaled by €*, i.e., # = €%v. It should be emphasized that
all terms in (46) are not generally O(1) in e. In particu-
lar, if the (unscaled) group velocity () and the unscaled
imaginary part of the s (3;) are O(1), then v and s; are
O(1/€®). Formally, we assume that ¥ and 3; are O(e?)
so that ¥ = €?v, 5 = €%s. In an asymptotic analysis of
the general case, where ¥ and 3; are O(1), one would in-
troduce a faster time ¢; = €2 and first solve the O(e?)
equations before introducing those at O(e®) [26,27]. We
expect to capture part of this general case by assuming
v and s; are large [i.e., O(1/€?)] in the final results.

Without temporal forcing, the growth rate o of modes
A,B x e*e=+PY) is given by 0 = v, — dpq® — s,p? +
g:qp® + h.p*. Thus, for s, > 0, a Hopf bifurcation to
normal traveling rolls occurs at

v, =0, ¢.=0, p. =0. (46)

For s, < 0 the bifurcation to oblique traveling waves is
given by

2d,. s,
4h,d, + g?

9iSr 2

P = > 0.

- 2 —
Up = 23rpc7 qc 4hrdr+gi2’

(47)

Note that stability of the trivial state with respect to
large wave numbers ¢ and p requires that d, > 0,h, <
0. Moreover, we assume 4h.d, + g2 < 0 so that the
instability to oblique waves occurs when s, < 0, with
v, < 0 in (47).

With resonant temporal forcing, the location of the
Hopf bifurcation to normal, as well as to oblique, waves
remains unchanged for small p, ie., for 0 < u <

|Vest (e, Pc)|, where
ver(q,p) = v +iqu — dg* — sp? — iggp® + hp®.  (48)

The frequency on the Hopf bifurcation surface is given
by w = 4/|veg|? — p2. Recall that this frequency is the
difference between half the driving frequency (for n =
2) and the frequency of the critical mode. Note that
the frequency w decreases as p increases, until it goes
to zero for u? = p2(q,p) = |veg|?. At such points, the
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Hopf bifurcation is replaced by a steady bifurcation of
the trivial solution of the amplitude equations (45). This
steady bifurcation leads to (standing) waves which are
phase locked to the forcing.

To get some insight into the nonlinear solutions of (45)
we consider two limiting cases. Since the phase-locked
waves arise through a bifurcation involving a real eigen-
value, the coupled complex equations (45) can be reduced
to a single equation sufficiently close to the neutral sur-
face [17]. Depending on the kind of extremum (g.,p.)
chosen as expansion point, different equations are ob-
tained. Here we concentrate on a situation that even-
tually leads to an equation of the same form as for the
steady bifurcation at a Lifshitz point [25]. Another limit-
ing case is obtained by considering oblique waves within
(45), i.e., assuming |p| > O for small v and p. This allows
us to derive the amplitude equations (4) from the Lifshitz
equations.

We first describe the reduction to a single real Lif-
shitz equation. The condition for a Lifshitz point for the
standing waves on the normal-roll branch is

82p*(ge,pe = 0) =0, (49)

where g, is determined by 8,u%(gc,pc = 0) = 0. These
two conditions determine the critical wave number ¢ =
gc and the Lifshitz point in parameter space s, = stF,
respectively:
_2('/1- - drqg)dr(Ic + ('U‘Ic +vi — diQ:)(v - 2diq::) =0,
(50)

SLP - (Vi +vq. — diqzz:)(si + gch) + giqc(drq?: — Vr)
T drqg — Vr ’

(51)

Note that the presence of the forcing has shifted the Lif-
shitz point for the standing waves to a nonzero value of
s,. This is in contrast to the unforced case where the
Lifshitz point occurs at s, = 0 with ¢. = p. = 0. For
large values of v and s;, of order ¢~2, this leads to

ge=—2 (1 + 3'1%1‘-1—) +O(H) (52)

v

and a shift of the Lifshitz point to

V;i8;

1
stP = _— (uigi —2d
v

T

) +0(e). (53)

»
v

Thus, in this limit of large group velocity v in (45), the

steady state neutral surface y? = u2 has only a sin-
gle minimum with p = 0; this occurs at p? = p2 =

u3(ge, pe = 0), where g, is given by (52). (In the special
case that v is not large, this need not be the case, as will
be discussed below.)

To derive the reduced Lifshitz equation from Eq. (45),
we introduce superslow space and time scales and expand
p about its critical value p. = |veg(ge,p = 0,s-F)|, s,
about its critical value sL'F, while holding v fixed (v, <
0). In particular, we let
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X = 6z,
T = §t, (54)

Sy = syl-JP + 05,1,
Y = 51/2y,

B = pic + 6% pa,

where 0 < § < 1. We use the two eigenvectors (u, —veg)*
and (p, V%) of the linear operator evaluated on the neu-
tral surface u? = |v.g|?, and expand the amplitudes A
and B as follows:

) e

A\ _ I
(5)-5(-4a
2 I8 ige.z
+6 {( _Veﬂ)Azeq
+ ( K ) Bze"qcz} +0(6%). (55)
Vet

At O(§%) we obtain

By = —5—— { (v + 2ig.d)dx + (s"F +igcg) 0% } Ay,

2Veff,r
(56)

where veg» = Re{veg} and v.g is evaluated at (q,p) =
(ge,0), and s'F = sLP +is;. Projecting the O(8*) equa-
tions onto the left-zero eigenvector (u, —veg) the Lifshitz
equation,

BTAl = (ang( + K,zalz/ + ’I:K,33Xa)2/ + K.48§1)A1
+XA; + FA1|A1|2, (57)

is obtained, where the coefficients x; (j = 1,...,4), %,
and I are all real. We find that

2
v Heb2  p_ He Re{vig(2¢+§)}. (58)
Veff,r Veff,r

The coefficients k; are given by the appropriate deriva-
tives, with respect to the wave numbers ¢ and p, of

the growth rate o = veg. + (/12 —szfﬂ-, eg., K1 =

820(ge,pe = 0). Note that the direction of bifurcation
of the spatially uniform, (nontrivial) steady solution of
(57) depends on veg, as well as the original nonlinear
coefficients ¢ and §.

As mentioned before, Eq. (57) has been studied in the
case where the bifurcation to the steady uniform solu-
tion is supercritical (i.e., in the case where I'/¥ < 0)
[25,28]. These investigations determined that normal
and oblique rolls can be stable in two-dimensional wave-
number regions, where the shape of these regions de-
pends on the parameter values. In the present context,
such solutions correspond to normal phase-locked stand-
ing rolls (NPSRo) and oblique phase-locked standing rolls
(OPSRo). In the oblique-roll regime stable zigzags arise
which connect OPSRo of opposite angles with respect to
the director. In addition, undulated solutions can also be
stable in small islands in wave-number space [25,28,30].
In the subcritical case, suitable nonlinear gradient terms
in X as well as Y direction would have to be included
when going to fifth order. They would allow the direc-
tion of bifurcation of NPSRo and of OPSRo to differ from

each other.
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The divergence of B, as veg, — 0 in Eq. (56) shows
that the reduced Lifshitz equation (57) is no longer valid
in this limit, i.e., as the Hopf bifurcation point is ap-
proached. At the Hopf bifurcation and also at the parity-
breaking bifurcations from standing structures to travel-
ing structures the full complex Lifshitz equations (45)
need to be used. This is not pursued here.

Additional information about possible phase-locked
wave patterns is obtained by examining the shape of the
neutral surface pu? = |veg|? in more detail, where veg
is given by Eq. (48). For example, an earlier study by
Riecke, which pertains to (normal) standing rolls in one
spatial dimension, found that the neutral curve need not
be convex [17,29]. In fact, it can have two minima, in
which case the band of stable wave numbers splits into
two disjoint regions, one centered at each of the two min-
ima. This has been investigated, in the one-dimensional
case, using the appropriate Ginzburg-Landau equations
(17,30], as well as phase equations [17,30,31]. Under
the conditions that there are two minima of the neutral
curve, it was found that wave-number gradients need not
decay as would generally be expected if there was just a
single minimum. Instead, stable domain walls can arise
which separate regions with different wave numbers gq.
In the present, two-dimensional study, one may expect
that multiple minima with differing values of p can also
be obtained in the phase-locked standing-wave regime.
We investigate this possibility by examining the form
of the neutral surface, associated with the generalized
Ginzburg-Landau equations (45), in a special limiting
case.

In the one-dimensional case it was shown that for mul-
tiple minima of the neutral curve to occur the group ve-
locity must be small [29] [see also Eq. (52)]. Thus to
demonstrate the phenomena we choose v = 0 as well
as ¢ = 0. (The minima will then persist for v and g
sufficiently close to 0.) Figures 5 and 6 show the neu-
tral surface u? = |veg(q,p)|? for v, = —0.2,d = 1 + 1,
8 = —1 4+ 0.585¢, and h = —4.27 + 2.5¢ for two differ-
ent values of v;. When v; = —0.34 (Fig. 5), there is

FIG. 5. Neutral surface p?(q,p) for the forced Lifshitz
equation (45) with v = g = 0, v, = —0.2, d = 1 + 1,
s = —1+ 0.585{, h = —4.27 + 2.5¢, and v; = —0.34. In
the nonlinear regime, zigzag structures are expected to arise.
The local wave number of the zigs and of the zags lies in one
of the three minima of the neutral surface.
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FIG. 6. Neutral surface for »; = —0.3. Other parameters
as in Fig. 5.

a minimum at p. = 0, ¢ = 0, corresponding to nor-
mal PSRo, as well as a minimum (of roughly the same
depth) at p = +p. ~ 0.45. Thus in this case one ex-
pects a competition between these three kinds of waves
which could lead to zigzag patterns consisting of domains
with p = p. and p = 0, respectively. In contrast to the
zigzags associated with the reduced Lifshitz equation (57)
[25], one of the two zigzag directions here is given by the
normal direction. Changing the frequency to v; = —0.3
shifts the minimum at p. = 0 to a nonzero value (Fig. 6).
Now there are four minima and one expects, for example,
zigzags consisting of oblique waves with two different pos-
itive values of p. In the case that d; < 0, the extremum
at ¢ = 0 can become a maximum and two new minima
(in the g direction) can arise at ¢ = +¢;. (The reflec-
tion symmetry that forces symmetry-related pairs +g¢;,
as well as an extremum at ¢ = 0, is due to the special
choice v = 0 and g = 0.) Two cases with d; < 0 are
shown in Figs. 7 and 8. For d; = —0.5 (Fig. 7) the ab-
solute minima are at ¢ = 0 and p = £p; 3, whereas for
d; = —0.7 (Fig. 8) they are at p = +p; and ¢ = +q;.
Between these two situations the minima of the neutral
surface almost degenerate into a circular curve around
the local maximum at ¢ = 0, p = £0.35. (Recall that
in the physical system ¢ = 0 corresponds to a nonzero
wave number §.) Such a neutral surface, with a minimiz-
ing closed curve centered around a finite wave number,

714
7

Z
%7
5%

FIG. 7. Neutral surface for d; = —0.5. Other parameters
as in Fig. 6.
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FIG. 8. Neutral surface for d; = —0.7. Other parameters
as in Fig. 6.

should lead to interesting nonlinear behavior. Of course,
the complicated situations described here are only ob-
tained for special parameter values (e.g., near v = 0).
Generically, we expect the neutral surface to have only
a single minimum. In particular, this is true when the
group velocity v in (45) is large.

Finally, we examine the possible stability properties of
the spatially periodic, phase-locked standing-wave solu-
tions of the Lifshitz equations (45) in the weakly oblique
regime. This is accomplished by deriving the amplitude
equations (4) from (45) for p # 0. Inserting the expan-
sion

A =z (t)eX9=HPY) 2 (£)e9=PY) 4 hot.,
(59)
B = z3(t)e”"@=PY) 4 2 (1)e (92 -PY) L hoot.

into (45), we find that the nonlinear coefficients in (4) in
terms of those in (45) are

a=¢ b=c=f=¢+§ d=2, (60)

with v in (4) replaced by veg. It then follows from our
stability calculations in Secs. III and IV that PSRe are
always unstable at onset in the weakly oblique regime.
Moreover, PSRo are a stable solution at onset provided
Ve, < 0 and

Re {v}z(2¢+ §)} > 0. (61)

This is precisely the condition that the PSRo bifurcate
supercritically from the trivial solution [cf. Eq. (8)].
That PSRe bifurcate unstably close to the Lifshitz point
is consistent with the observation that rectangles are an
unstable solution of the reduced Lifshitz equation (57)
(25], and that SRe are an unstable solution of the full
Lifshitz equations (45) in the absence of forcing (u = 0)

(8]-
VI. COMPARISON WITH EXPERIMENTS IN
ELECTROCONVECTION

Before comparing our results with the experiments in
electroconvection of nematics, it is useful to discuss some
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of the properties of the unforced experimental liquid-
crystal system that are reported in [6]. Without tem-
poral forcing the first instability of the basic state leads
to a steady roll pattern. Detailed investigation shows,
however, strong fluctuations below threshold which are
possibly due to thermal noise. Crucial in the present
context is the fact that the fluctuations have the char-
acter of (oblique) traveling waves. A natural bifurcation
diagram which is consistent with these findings is shown
in Fig. 9; similar to convection in binary mixtures, there
could be a subcritical Hopf bifurcation which leads to
unstable waves which in turn merge with a branch of
steady rolls. In this bifurcation scenario there is a dis-
continuous transition from the motionless state directly
to finite-amplitude steady rolls when the control param-
eter is increased beyond the Hopf bifurcation.

Motivated by experiments on binary-mixture convec-
tion, where the bifurcation to traveling waves is subcriti-
cal [5], the effect of resonant periodic forcing on a weakly
subcritical Hopf bifurcation to one-dimensional traveling
waves has been investigated theoretically [3]. In this sub-
critical case, it was found that forcing can lead to stable
PSW that arise in a supercritical bifurcation already be-
low any saddle-node bifurcation of the unforced (as well
as of the forced) branch of traveling waves. In particu-
lar, bifurcation diagrams of the kind sketched in Fig. 10,
in which the parity-breaking bifurcation of the PSW to
TW is subcritical, are possible. If the unforced traveling
waves are unstable to a large-amplitude steady structure
it is quite natural to assume that this instability per-
sists in the case of sufficiently weak forcing. Thus, at the
parity-breaking bifurcation to traveling waves, the sys-
tem could jump from the PSW to the steady structure
as indicated in Fig. 10.

Without temporal forcing the experimental system has
two control parameters: the amplitude V and frequency
Q of the applied ac voltage. The bifurcation parame-
ter v, depends linearly on the amplitude V), i.e., v, x
(V — V.)/V.. The frequency € is much greater than the
Hopf frequency in the EHC experiments; our amplitude
equations apply to the averaged system. The nonlinear
coefficients in the amplitude equations (4) depend on {2
and thus can be varied somewhat. The resonant tempo-
ral forcing introduces two additional control parameters:
the forcing (modulation) amplitude AV, or equivalently
|#|® oc AV?, and the detuning v; = wg —we/n (n = 1,2).

SS

Amplitude

)Y
0 Ve

FIG. 9. Sketch of the bifurcation diagram suggested by ex-
periments on electroconvection in nematic liquid crystals.
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FIG. 10. Effect of a periodic forcing on the subcritical Hopf
bifurcation to traveling waves sketched in Fig. 9. The par-
ity-breaking bifurcation of the PSW to TW can be subcritical,
thus inducing a jump transition to the steady structure.

In the experiments, four regimes have been identified
in the (v,,u) plane, as indicated in Fig. 11. For small
applied voltage V (above the open circles) incoherent
traveling-wave patches are observed. They are inter-
preted as driven by noise, which is possibly of thermal
origin [22]. This is substantiated by recent measurements
of the spatial Fourier spectra [32]. Thus the open circles
do not represent a true transition but indicate instead
the location where the instrumental sensitivity is suffi-
cient for the detection of very weak fluctuations. When
the forcing amplitude is increased, a transition to phase-
locked standing waves is found (solid triangles). Depend-
ing on the driving frequency 2 they are either standing
oblique rolls or standing rectangles and can naturally be
identified with the PSRo and PSRe, respectively. When
increasing the applied voltage (i.e., v,.) further, the PSRe
lose stability to a structure (at the open diamonds) which
is also phase locked to the forcing but is more com-
plicated. During the phase in which the voltage rises
the structure is predominantly a “zig”. Then the “zag”
component increases in strength, leading to a structure
which resembles rectangles during the peak of the volt-
age, whereas the “zag” component dominates during the
decay phase. It is reported that this structure—in con-
trast to the PSRo and PSRe—shows no strong spatial
coherence. We interpret this structure as the PSCR bi-
furcating off the PSRe. Recall that the PSCR is given
by z1 = z3 = Re'®, z; = 24 = re*®, so that a typical
quantity like the vertical velocity V, is given by [cf. (1)]

V., = 4R cos(wet/n + ®) cos(qzr + py)
+4r cos(wet/n + @) cos(qz — py) + h.o.t.  (62)

Thus, provided ® — ¢ is not a multiple of 7, the two
standing waves differ in their phase with respect to the
forcing; the structure alternates between “zigs” [for val-
ues of t such that cos(wet/n + ¢) = 0], “zags” [when
cos(wet/n+ ®) = 0], and rectangles [when |R cos(wet/n+
®)| = |r cos(wet/n + @)|]. Figure 12 shows a representa-
tive sequence of PSCR structures. Since the two ampli-
tudes r and R are different, there exist two symmetry-
related PSCR solutions, one in which the “zigs” dom-
inate (R > r) and one in which the “zags” dominate
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(r > R). When the PSRe solution loses stability to
PSCR, both zig- and zag-dominated PSCR are expected
to arise and compete with each other, with domains sep-
arated by grain boundaries forming. It is tempting to
attribute the spatial incoherence observed in the experi-
ments to the existence of such domains. Unfortunately,
the reported experiments do not provide enough data to
investigate this interesting question.

When the applied voltage is increased further a tran-
sition to a steady structure occurs (to the right of the
solid squares) which is modulated in its amplitude. This
transition is beyond the scope of the present analysis.
One may speculate that it is related to the fact that the
initial Hopf bifurcation seems to be weakly subcritical
(cf. Fig. 9): without temporal forcing the system jumps
directly to a steady branch. In the presence of forcing
this could render the parity-breaking bifurcation of the
PSRe subcritical. The system would then jump from
the PSCR directly to the steady branch as indicated in
Fig. 10. We have not studied the stability of the PSCR.
Since the instability of the PSRe to TRe leads out of the
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FIG. 11. Experimental phase diagram for temporally
forced convection in nematic liquid crystals, reproduced from
[6]- (See the text for a discussion of the various regions.) (a)
Q = 0.50 Hz, (b) = 0.31 Haz.
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standing-wave subspace, which also contains the PSCR,
one might expect that they inherit that instability, and
consequently, also exhibit a jump transition to the steady
structure.

The present analysis suggests that the parameter p,
which governs the competition between the different
standing structures, can be made small by choosing a
suitable detuning v; [cf. (16)]. If this could be achieved
below the unforced Hopf bifurcation (v, < 0), both tran-
sitions from PSCR to PSRo and to PSRe could be ob-
served at small amplitudes below the onset of the Hopf
bifurcation in the unforced case. In the experimental
system the wave number of the structure is, however,
not fixed. Instead, the system can choose a wave num-
ber from a continuum of values within the stability lim-
its. In particular, if v = v,& + vy is the group veloc-
ity in the oblique regime, then a change Ag¢Z + Apg in
the wave vector shifts the detuning to an effective value:
Veff,i = Vi + vz0q + vy Ap + O(Ag?, Ap?, AgqAp). Simi-
larly, near the Lifshitz point, the effective detuning at the
critical wave number (g.,p. = 0), with g. given by (52),
is strongly reduced and can remain small over a range of
frequencies; in particular, veg; = v; +vg. — dig? = O(e?)
[17]. This may explain why in the experiments the lo-
cation of the transition to PSCR, which depends on the
detuning v; or more precisely veg ;, did not change sub-
stantially even though the forcing frequency was changed
by almost 50%.

Finally, our analysis suggests that a transition to
PSCR may also be found if the frequency Q2 is chosen
such that the first transition is not to rectangles but to
standing oblique rolls (PSRo), as long as p is positive
and not too large in the regime where the PSRo arise.
Experimentally this has not been tested in detail.

VII. CONCLUSION

In summary, we have studied the effect of a resonant
temporal forcing on oblique traveling waves close to onset
in an anisotropic system. We have found that such a forc-
ing can excite various standing-wave structures which are
phase locked to the forcing: rolls, rectangles, and cross
rolls. The latter arise in secondary bifurcations from ei-
ther the phase-locked roll or rectangle structures, and
in many cases (if not all) provide a transition between
them. These bifurcations depend strongly on external
control parameters such as the forcing frequency (effec-
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FIG. 12. Typical time sequence for a rep-
resentative phase-locked standing-cross-rolls
solution (PSCR). Note that the structure al-
ternates between a zig- and a zag-dominated
state.

tive detuning). In particular, if the wave number of the
structure could be fixed, one would be able to choose the
control parameters such that a wide variety of bifurcation
scenarios could be observed. In the general case, however,
the attainable effective detuning is limited. Nevertheless,
by adjusting the frequency Q2 of the applied ac voltage in
the unforced case, so that the system is close to a transi-
tion between standing rolls and rectangles, the available
detuning may be sufficient to observe the transition from
phase-locked standing rolls to phase-locked standing rect-
angles via the general cross-rolls solution.

A striking feature of the standing rolls and rectangles
observed in the experiments is their strong spatial co-
herence. This is perhaps not surprising since they arise
through bifurcations in the amplitude equations that in-
volve only real eigenvalues. Close to onset, the standing
rolls can be modeled by a single Ginzburg-Landau equa-
tion with real coefficients. This equation admits a stable
band of wave numbers and exhibits diffusive phase dy-
namics; moreover, it can be derived from a potential.
Similarly, we expect the standing rectangles to be de-
scribed by two coupled Ginzburg-Landau equations with
real coefficients. We propose that the spatial incoher-
ence associated with the standing cross rolls may be due
to the formation of grain boundaries separating domains
of symmetry-related structures. A more detailed experi-
mental, as well as theoretical, investigation of this regime
would be interesting. Such studies could reveal whether
this interpretation is correct and, if so, identify the dy-
namics associated with the domain walls.

In the vicinity of a Lifshitz point, we model the system
by two coupled complex generalized Ginzburg-Landau
equations which take into account the spatial degrees of
freedom. We find, in this regime, that the phase-locked
standing rectangles are always unstable. Phase-locked
standing rolls are the preferred spatially periodic solu-
tion in this regime.

Finally, the results presented in this paper may also be
pertinent to parametrically forced systems which do not
exhibit a Hopf bifurcation, but which do support weakly
damped waves. This, for instance, is the case in the
Faraday experiment for low-viscosity fluids.
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FIG. 12. Typical time sequence for a rep-
resentative phase-locked standing-cross-rolls
solution (PSCR). Note that the structure al-
ternates between a zig- and a zag-dominated
state.



