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Variational bounds on energy dissipation in incompressible flows: Shear flow
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A variational principle for upper bounds on the time averaged rate of viscous energy dissipation for
Newtonian fluid flows is derived from the incompressible Navier-Stokes equations. When supplied with

appropriate test "background" flow fields, the variational formulation produces explicit estimates for the

energy dissipation rate. This dissipation rate is related to the drag of the fluid on the boundaries, and so
these estimates translate into bounds on the drag. We analyze the problem of boundary-driven shear

flow in detail, comparing the rigorous estimates obtained from the variational method with both recent
experimental results and predictions of a conventional closure approximation from statistical turbulence

theory.

PACS number(s): 47.27.Qb, 03.40.6c, 47.20.Ft, 47.27.Lx

I. VmRODUCrIOX

One of the theoretical challenges presented by the
problem of turbulence in fluid systems is to derive quant&-

tative results directly from the equations of motion —the
Navier-Stokes equations. In the absence of exact analytic
solutions corresponding to turbulent flows, most theoreti-
cal approaches consist of approximate treatments of one
sort or another, ranging from the imposition of statistical
assumptions and moment hierarchy truncations, to the
introduction of scaling hypotheses [1]. Rigorous results
following directly from the primary model are thus im-
portant as checks on the validity of approximations, and
for quantitative evaluation of the quality of predictions of
secondary theories.

In this paper we focus on a specific physical quantity,
the rate of viscous energy dissipation, and establish a
framework for its practical, rigorous estimation directly
from the equations of motion —the incompressible
Navier-Stokes equations for a Newtonian fluid —for
boundary-driven flows. Our approach is to derive varia-
tional principles for bounds on the time averaged energy
dissipation rate, utilizing a decomposition that we refer
to as the "background flow" method. The variational
principles apply to both laminary and turbulent flows
and, with appropriate modi5cations, to externally forced
or thermally driven systems.

The energy dissipation rate in boundary-driven flows is
of fundamental interest for applications because in a
steady state situation it is the rate at which work must be
done against viscous drag forces in order to enforce the
boundary conditions. Bounds on the energy dissipation
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rate thus translate into bounds on the magnitude of the
drag forces exerted by the fluid on the boundaries. For
example, if a viscous fluid is sheared between parallel
plates as illustrated in Fig. 1, then power must be expend-
ed by an external agent to maintain one plate in a state of
motion with respect to the other. If the bottom plate is
fixed and the top plate is moving uniformly at speed U,
then the average rate of viscous energy dissipation in the
fluid is the product FU, where F is the average drag force
exerted by the fluid on the plate. Another fundamental
example problem is sketched in Fig. 2. A sphere moving
at constant speed U through a viscous medium must be
subject to a force counteracting the net force of the fluid
on its surface. On average in a steady state, the energy
dissipation rate is just FU, where F is the average magni-
tude of the drag force.

One important point that is often ignored in theoretical
work on problems like these is that it is not generally
known whether the primary model admits unique solu-
tions, or if the solutions which do exist are smooth [2].
That is, in three spatial dimensions it has not been ruled
out that solutions of the incompressible Navier-Stokes
equations can exhibit singularities within a finite time
starting from arbitrarily smooth initial conditions. This
mathematical problem has its roots in the physical

F= ~ ~ =U

FIG. 1. Fluid is sheared between parallel plates. The veloci-

ty difference is maintained by a force opposing the viscous drag,
and the average energy dissipation rate is the average power ex-
pended by this force, i.e., the product of the average force times
the speed I'U.
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FIG. 2. A sphere moving at speed U through a viscous Quid

must have a force acting on it to maintain its motion. The ener-

gy dissipation rate in the Quid is, on average, the product of the
average force times the speed FU.

phenomenon of vortex stretching, one of the fundamental
mechanisms of turbulent dynamics, and this unresolved
issue leaves open the question of the validity of these hy-
drodynamic equations in the turbulent regime; the mac-
roscopic equations of motion are derived from micro-
scopic considerations under the assumption that their
solutions are free from singularities [3]. These
singularities —if they do exist, which has also not been
established —correspond to a violation of the hypothesis
of a separation of scales between the microscopic dynam-
ics and the macroscopic structures. These considerations
mean that rigorous results, free from secondary hy-
potheses or additional uncontrolled approximations, are
important for the evaluation of the basic model.

The rest of this paper is organized as follows. In the
next section we formulate variational principles for
bounds on time average energy dissipation rates for a
class of flows driven by inhomogeneous boundary condi-
tions. The analysis is general enough to encompass both
closed, bounded systems and open, unbounded systems.
The basis of the upper bound principle is a decomposition
of the flow field into a "background" and a "fluctuation, "
reminiscent of, but distinct from, the Reynolds decompo-
sition into mean and fluctuating components. Section II
culminates with the statement of a minimization problem
for upper bounds which, when supplied with appropriate
trial background flows, can be used to derive explicit esti-
mates. As an example application of the technique, in
Sec. III we analyze the boundary-driven shear flow
geometry illustrated in Fig. 1. Combined with elementa-

ry functional estimates, the variational approach yields
explicit bounds on the energy dissipation rate and the
drag, including the high Reynolds number turbulent drag
for this problem.

The discussion in Sec. IV covers a number of points.
We compare the rigorous results obtained for the shear-
flow problem with both the predictions of a conventional
statistical closure model and recent experimental results.
This comparison leads naturally to questions of how the
upper bounds might be lowered, and we present some
possible directions for improvement, including a discus-
sion of the Euler-Lagrange equations leading to the op-
timal estimates that this approach can yield. Open flow
problems like those suggested in Fig. 2 present other
challenges which we also outline in this section. %e close
the discussion by pointing out a connection between our
upper bound variational principle and a heuristic margin-
al stability hypothesis for turbulent flows. For complete-
ness and because many of the conventional models, ap-
proximations, and results of classical turbulence theory
are unfamiliar to the physics community, we include an
appendix on the elements of statistical turbulence theory

along with a sample closure appropriate for wa11-bounded
turbulence. Finally, a brief appendix explaining one of
the functional estimates (Poincare s inequality) is includ-
ed.

This paper is the follow up to a previous short presen-
tation of some of these results [4], and it is the first in a
planned series of three papers developing variational
bounds and the background flow method. In the subse-
quent paper we intend to apply the same general ap-
proach to a body-force driven problem, namely channel
flow [5]. The third paper in the series is planned to deal
with the problem of thermal convection, where bounds
on the energy dissipation rate lead to estimates for the
rate of convective heat transport [6].

II. VARIATIONAL PRINCIPLES
FOR ENERGY DISSIPATION BOUNDS

Suppose an incompressible Newtonian fluid is confined
to a region of space Q with stationary boundary BQ. We
denote the kinematic viscosity by v, and without loss of
generality mass units can be chosen so that the density
p= l. The fluid's velocity vector field u(x, t) satisfies the
Navier-Stokes equations

+u Vu+Vp=veau,
Bt

V.u=O,

(2.1)

(2.2)

where p(x, t) is the pressure field, along with appropriate
boundary conditions and square-integrable initial condi-
tions uo(x).

The region 0 may or may not be compact, and part of
the boundary BQ may correspond to rigid no-slip boun-

daries, boundaries at l
x

l

= ~, and periodic conditions.
We presume that the velocity field is prescribed on the
part of BQ corresponding to rigid boundaries, and in par-
ticular we take zero flux across those boundaries. That
is, if n is the normal to the boundary at a rigid boundary,
then

n ul„„„=o. (2.3)

(2.4)

where
llf ll2 denotes the Lz norm of a function f (x) on Q:

llf Ill= f lf(»I'~x
1/2

(2.5)

%e will be concerned with time averaged energy dissipa-

All components of the fluid velocity vector field are
specified at lxl=ao, if applicable. For the purposes of
this paper, we consider boundary and initial condition
setups such that finite kinetic energy solutions exist (in

some Galilean fratne) and possess enough regularity for
us to manipulate the equations of motion and perform
operations like integrations by parts at will. %e will

comment on this assumption more in Sec. IV.
The instantaneous energy dissipation rate (per unit

mass) in the fluid is defined as
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tion rates,

&«IIVnlll& = —f «IIVnt rill'«.
T 0

(2.6)

Note that a long-time limit of the finite-time average need
not exist, even though finite-time averages may be bound-
ed. Moreover, long-time averages need not be unique, for
even if the limit T~ (x) did exist, it would generally de-
pend on the initial conditions.

A variational principle for lower bounds on

(vllVullz&r is easy to formulate:
Theorem 1 (lower bound principle) F.or every solution

u(x, t) starting from every initial condition uo(x),

lim inf( v/JVuf/z) T & infj v//VUf/g V U=O,
T~ 00

U(x) satisfies u's boundary conditions) . (2.7)

Proof. At each instant t)0 the solution u(x, t) is
divergence free and satisfies the boundary conditions.
Hence at each instant,

v//Vu(, r)//z
~ infI v//VU//g V U=O,

U(x) satisfies u's boundary conditions) . (2.8}

The result follows by taking the time average over [0,T]
and letting T—+ 00.

This theorem simply states that the smallest possible
lang-time average energy dissipation rate for a solution of
the Navier-Stokes equations is at least as large as the
smallest possible value consistent with the constraints im-

posed by the vanishing divergence and boundary condi-
I

tions, disregarding the dynamical equations. Its utility
comes from the fact that we may derive partial
differential equations for the minimizing field. Indeed,
the velocity vector field U(x) minimizing ~~VU~~2 subject
to the constraints in Eq. (2.7) satisfies Stokes equations,

0= vh—U+ VP, (2.9)

O=V U, (2.10)

along with the same boundary conditions as u on BQ.
This is because the Stokes system in Eqs. (2.9) and (2.10)
are the Euler-Lagrange equations corresponding to the
variational problem of minimizing the functional,

F[Uj =J (vliVUlt 2PV Uid—x, (2.11)

where —2P (x) is the Lagrange multiplier for the V V=0
constraint.

Note that the Stokes equations are the linear part of
the stationary Navier-Stokes equations for the problem at
hand. Normally one expects a unique solution to such a
linear elliptic system, so that it provides a direct ap-
proach to developing explicit lower bounds on the small-

est possible long-time average rate of energy dissipation.
Formulating a variational principle for upper bounds

on (v~~Vu~~z)r is more involved. We have the following
theorem:

Theorem 2 (upper bound principle). For every solution
u(x, t) starting from every square integrable initial condi-
tion uo(x),

litn snpf v~[JVn[~[r
t) r 5inf v[[VUJ~[t+ J U VV Udx V U= 0,U satisfies the honndary cnd spectral conditions

(2.12)

where the vector field V(x) is the solution of the linear in-

homogeneous system

0= vhV+2(VU), —V+VP+U VU,

O=V V,

(2.13)

(2.14)

A W= vhW+2(VU}fi~. W—+VP,
0=V'-W

(2.15)

(2.16)

with W satisfying the same vanishing or periodic bound-
ary conditions as V, and demanding that the eigenvalues

with vanishing boundary conditions on the rigid portions
of fi}Q and for ~x~ ~ 0U, and periodic boundary conditions
on the periodic boundaries. Here, (VU},~ is the sym-

metric part of the tensor VU. If U.VU is not a gradient,
the spectral constraint on U(x) is the condition that the
self-adjoint operator acting on V in Eqs. (2.13) and (2.14)
is positive and invertible. If U.VU is a gradient the
operator need only be non-negative, in which case the
spectral constraint can be cast as an eigenvalue problem,

satisfy A, & 0.
Proof. Suppose that u(x, t) satisfies the Navier-Stokes

equations on Q and the boundary conditions on BQ.
Decompose u into the sum of square-integrable com-
ponents according to

u(x, t) =U(x)+ v(x, t),
V U=O=V v,

(2.17)

(2.18)

where the stationary divergence-free "background flow"
U(x) satisfies u's boundary conditions and the
divergence-free fiuctuation v(x, t) satisfies the homogene-
ous version of u's boundary conditions, i.e., it vanishes on
boundaries where u is speci6ed and is periodic on u's
periodic boundaries. The initial condition on the fluctua-
tion field is vo(x}=uo(x) —U(x), and the background field
is assumed to satisfy the spectral condition.

Inserting this decomposition into the Navier-Stokes
equations and using the boundary conditions in the
relevant integrations by parts, we Snd that the kinetic en-
ergy in the fluctuations evolves according to
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—
—,llv112+ J v. (VU),„.vdx+ I U.VU vdx

dt 2 2
&

sym 0
= —

vllVvllz
—vI Vv:VUdx, (2.19)

term and all of the second term on the right-hand side of
Eq. (2.19), and the result rearranged into

—lllvllz+2vllVullz= — lvllVvllz+ J v (VU)...vdx

where Vv:VU means g;~U; U; . The instantaneous en-

ergy dissipation rate is expressed in terms of the back-
ground and fluctuation fields as

vllVu112=vIIVv112+»I Vv:VU dx+&IIVUlli

+J UVUvdx'

+ l &llvUII' (2.21)

Equation (2.20) can be used to replace half of the first Now average Eq. (2.21) over time from t =0 to T:

&)lit+(vlIVvll2'&v vllVUgi 2(f f vlVvlg+v'(VU)
y

'v+O'VU'vjdx + //vv//,
'

Dropping the first term on the left-hand side at the expense of the quality sign and faking T +~, —

lim sup(vllVullz)r vllVUII —21im sup I 1 —,'vlVvli+v (VU),„v+U VU vldxT~ 00 T~co 0 T

The last term above is bounded uniformly in time:

~ ~ ~

~

~

~ ~f 1 —,
' v

I Vv I z+ v ( VU),„v+U VU. v I d x inf f I —,
' v I Vw

I z+ w ( VU),„w+U VU w J d x,0 V w=0 0

(2.22)

(2.23)

(2.24)

where the infimum is taken over divergence-free vector fields w(x) satisfying the fiuctuation s boundary conditions. The
minimizing vector field V(x) for the right-hand side of Eq. (2.24) satisfies the Euler-Lagrange equations,

0= vhV+2(—VU),„V+VP+U VU,

O=V V.
(2.25)

(2.26)

Note that if U VU is a gradient, then it can be absorbed into the pressure term resulting in a homogeneous equation for
V, the solution of which is V—:0. If U VU is not a gradient, the spectral constraint is the invertibility condition
guaranteeing that this extremizing vector field exists, and it is the convexity condition guaranteeing that the solution is
indeed a minimum. Using the Euler-Lagrange equations for the minimizing field, we have

(J t —,'vlVvlz+v (VU),„v+U VU.vIdx I ( —,'vlVVli+V (VU),„V+U VU VIdx
0 T 0

Vx ———-' U VVx (2.27)
0 0

where we have exploited V's boundary conditions in the
course of performing the integrations by parts in the last
two steps. Putting together Eq. (2.23) and Eq. (2.27), we
have shown that

lim sup(vllVulg) r & vllVUII', +I U VV Udx, (2.28)
T~ 00 Q

which establishes the result.
%e will introduce a Lagrange multiplier for the spec-

tral constraint and derive the associated Euler-Lagrange
equations in Sec. IV below, but we do not solve them
here. However, even without solving the Euler-Lagrange
equations this variational formulation is useful for estab-
lishing rigorous upper estimates. To derive such bounds
we must produce a trial background field U(x) satisfying
the boundary conditions and the spectral constraint,
and —if U.VU is not a gradient —solve the linear (typi-
cally nonconstant coefficient) inhomogeneous system in
Eqs. (2.13) and (2.14) for V. Ideally one solves the linear
eigenvalue problem in Eqs. (2.15) and (2.16) to ensure the
spectral constraint for a candidate trial background flow,

but this is not always completely necessary. This process
of manufacturing upper bounds is to be contrasted with
that required to establish lower bounds. There we must
find the exact minimizing velocity field by solving the
Stokes system in Eqs. (2.9)—(2.10). In the next section we
use these theorems, along with elementary functional
methods, to derive explicit bounds for a particular exam-
ple.

III. BOUNDARY-DRIVEN SHEAR FLOW

Consider the problem shown in Fig. 3. A fluid of
viscosity v is confined between parallel planes located at
z =0 and z =h, and we take periodic boundary condi-
tions on the intervals [0,1.„]and [0,1.~] in, respectively,
the x and y directions. The velocity at the lower plate is
zero, and along the upper plate it is iU (i, j, and k are the
unit vectors in the x, y, and z directions). Define the Rey-
nolds number

(3.1)
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The solution of the Stokes equations for this setup is
"planar Couette Sow,"

. U
U(x) =i—z, (3.2)

P(x)=const .

The energy dissipation rate in this fiow is

U2
vllvUII2=v L„L h. ,

(3.3)

(3.&)

FIG. 3. Plates of dimension I. XI.y are separated by gap h in

the z direction. The plate at z =0 is stationary and the plate at
z =h is moving at speed U in the x direction. Boundary condi-

tions are periodic in the x and y directions.

that a unique long-time limit exists for all finite energy in-
itial conditions. This situation is special because the solu-
tion of the Stokes equation for the lower bound on the en-

ergy dissipation rate is not generically a stationary solu-
tion of the Navier-Stokes equations. When it is, though,
the minimizing How may be realized and so the lower
bound is sharp. When the minimizing solution of the
Stokes equations is not a solution of the full nonlinear
Navier-Stokes equations, the lower bound may never be
obtained.

To produce an upper bound we must provide a
divergence-free trial background fiow satisfying the
boundary and spectral conditions. The linear Couette
fiow profile in Eq. (3.2) satisfies the boundary conditions,
and a natural place to start is to enquire whether the trial
choice U(x}=i Uz/h satisfies the spectral condition.

The usual Rayleigh-Ritz variational principle implies
that the spectral constraint on U(x) is equivalent to the
positivity of a certain functional. That is, the spectral
constraint can be expressed as the condition

I.
y

J( *d*f 'd( J d*[—,
' Iv I

+ (vU(, ( &0 (3.8)

for all divergence-free vector fields v(x)=iv, (»,y,z)+
jv~(», y, z)+kv, (»,y, z} periodic on, respectively, [O,L, ]
and [O,L ] in the» and y directions and satisfying the
boundary conditions v(», y, 0)=0=v(»,y, h }. When
U.VV=0, the ) sign in Eq. (3.8) can be replaced with a
~ sign. For Couette fiow,

and so for any solution of the Navier-Stokes equations
with these boundary conditions,

U2
lim inf(vllVull22) r & v L,L„h . (3.5)
T~ OO

(VU),„= (ik+ki),U

so the condition is

(3.9)

v UL„Ly
+min minx Ly (3.6)

This is the familiar expression for the drag force from ele-
mentary physics texts, proportional to the product of the
viscosity, the shear rate, and the contact area. It is useful
to express this force in nondimensional terms. Measuring
length, mass, and time in units of the geometric parame-
ter h and the material parameters p = 1 and v, we have

The force required to slide the top plate over the bot-
tom lubricated by the fiuid is the total energy dissipation
rate per unit velocity, which is also the wall shear stress r
tiines the area of the plates. When the fluid is in the lam-
inar state given by Eq. (3.2), the minimum force is

I.„L g Ux p z —,v v +—
U U, &Q.

0 0 0
(3.10)

The term —IVvl in the integrand of the functional in
Eq. (3.10) is manifestly positive, but the second term
-v„v, is of indefinite sign. So it will not be surprising
that the positive term dominates at low Reynolds num-
bers, corresponding to large v or small U. This expecta-
tion may be established formally by estimating the rela-
tive magnitudes of the two terms. According to the
Schwarz inequality [8] and the relation 2ab & a +b,

2
+min

(3.7) J "d» J 'dy f"&».U. -IIU ll2IIU. II2--,'llvll2 ~

(3.11)
The Reynolds number is then precisely the measure of
the minimum (long-time average) applied stress necessary
for the maintenance of the boundary conditions.

In this example the solution of the Stokes equations
satisfies both U-VU=O and hU=O, so it is also a station-
ary solution of the Navier-Stokes equations for this
geometry. At low Reynolds numbers this stationary
linear velocity profile is actually nonlinearly stable [7], so

h
Ilvll2- IIVvll2 ~ (3.12}

Then,

And because each component of v is periodic in x and y
and vanishes at z =0 and h, Poincares inequality (Appen-
dix 8) implies
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f

f "dx f 'dy f dz, vlvvl'+ —v. u,

(3.13)

U(x) =i/(z), (3.14)

where the profile functions P satisfies the boundary condi-
tions $(0)=0 and $(h)=U. The spectral constraint is
then expressed,L„L

f dx f dy f dz( —,'vlVvl +P'v„u, )~0. (3.15)
0 0 0

A profile with P'=0 would suffice, but then P couldn' t
satisfy its boundary conditions. Keeping in mind the
boundary conditions on v, which demand v„and v, van-
ish at z =0 and z =h, we see that it may be possible to
satisfy the spectral constraint with a choice of profile
where the shear rate iI)'(z} is small over most of the inter-
val [O,h], but where the necessarily nonvanishing values

Thus if R ~ ~ —10, then the Couette profile satisfies the
spectral condition and we can assert that its dissipation
rate is an upper bound as well as a lower bound. When R
is larger than this, then this argument no longer assures
that the spectral constraint is satisfied by Couette flow
and other profiles must be tried to derive an upper esti-
mate. (We note that this crude bound, R ~m, below
which the laminar bound is realized is very conservative. )

The technical challenge for larger R is to choose a
divergence-free background flow field that satisfies the
boundary conditions at the plates, but which also satisfies
the spectral constraint. Referring back to Eq. (3.8), it is
apparent that this will be possible only if the lVvl term
dominates the v (VU),„v term for the relevant class of
vector fields v(x}. As suggested by the translation invari-
ance of the problem in the x and y directions, we will re-
strict our attention to trial background flows of the form

FIG. 4. Background flow profile P(z}. The straight line is the
Couette flow profile.

of il)' are concentrated towards 0 and h where the com-
ponents of v are relatively small. This hope may be real-
ized in the background Bow profile,

0&z~5

U
iI)(z)= —,5~z ~h —5

2
'

U
(z —h +25), h —5 +z h,

(3.16)

illustrated in Fig. 4. We refer to the parameter 5 as the
"boundary layer thickness. " At a given value of R, 5 will

be adjusted to assure that the spectral constraint is
satisfied. As will be shown below, the smaller 5 is chosen,
the more positive the functional in Eq. (3.15) will be, al-
though at the expense of a poorer (larger) upper bound on
the energy dissipation rate.

To see how this works, bound the p'v„u, term in Eq.
(3.15) as follows. Application of the fundamental
theorem of calculus and the Schwarz inequality shows
that the x-y integral of the product u„u, is uniformly
bounded in the interval z E [0,5] according to

L„L Bv„(x,y, z')
f dx f dy v„(x,y, z)v, (x,y, z) = f dx f dy f dz'

Bu, (x,y, z" )f 'dz"
0 z

L„L
& z dx dy dz'

2 1/2
Bv„(x„y,z')

az

X f dx f dyf dz'

'2 1/2
Bv, (x,y, z')

(3.17)

An analogous estimate holds near the z =h boundary. The J P'v„v, term is then simply estimated in terms of 5 and the

llVvll~~term:

Lx Ly h U Lx L L„Lf "dxf dyf dzg'u„u, = f dxf dyf dzu„u, +f "dxf 'dyf dzu„u,

~U5 1

2~2
Bv

az

2

2 2

Bv

Bz
' —

8~2 IIVvllz . (3.18)
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The incompressibility constraint on v was used in the last
step above [9]. Thus,

I.„L
X g Z 2V V + V~Vg

ll»II2 (3.19}

and the boundary layer thickness may be adjusted so that
the spectral condition is fulfilled by choosing

5=4~2—=4~2hR
U

(3.20)

=vL„L„'z z

U3
„L,Lh. (3.21}

This is a rigorous upper bound on the energy dissipa-
tion, valid when R ~ 8~2 so that 5 & it /2. It is interest-
ing for a number of reasons First. , it is independent of the
viscosity in accord with Kolmogorov s scaling view of tur-
bulent energy dissipation (this will be discussed further in
Sec. IV). In addition, the prefactor (8v 2) '=0.088 is
substantially less than 0 (1)hinting that this result is sub-
stantially more than a formalized dimensional analysis
argument. Furthermore, our analysis, and in particular
the background profiie in Eq. (3.14), hints at the generic
boundary layer form of high Reynolds numbers flows (see
Appendix A). The spectral constraint compels us to con-
sider the boundary layer structure for the trial back-
ground flow configurations.

The upper bound on the average drag force implied by
Eq. (3.21) is F &Ii,„,where

For background flows of the form in Eq. (3.14),
U.VU—:0, and the solution for the auxiliary field V in
Theorem 1 is V=—0. Thus the upper bound on the energy
dissipation rate corresponding to the restriction in Eq.
(3.20} is

»m sup& vll~ull2 & r —&llVUllzP~ oc

tional statistical turbulence theory of high Reynolds
number boundary-driven shear fiow is briefly developed
in Appendix A, yielding detailed predictions for the drag
as a function of Reynolds number (modulo one fitting pa-
rameter that must be determined phenomenologically).
In Fig. 5, we plot the rigorous upper and lower bounds
derived in Sec. II along with the results of the closure ap-
proximation of Appendix A, with the customary value of
the fitting parameter. The theory predicts the so-called
"logarithmic friction law" for the drag with asymptotic
behavior as R -+ ao,

v 4 (lnR) (lnR)
(4.1)

1010

where the von Karman constant (the fitting parameter ~)
has nominal value ~- ~4, . This is to be compared with the
upper bound derived here,

R =0.088R (4.2)
8&2

At high R the theory and the rigorous upper estimate
have the same Reynolds number exponent and a compa-
rable prefactor, but the approximate theory has addition-
al logarithmic factors.

Both the prediction of the theory and the results of our
rigorous analysis can be compared with recent high Rey-
nolds number experiments on turbulent flow between
concentric cylinders [10,11],at least in the limit of large
aspect ratio and a narrow gap. (A calculation similar to
that in Sec. III can be carried out in cylindrical coordi-
nates appropriate for the concentric cylinder geometry,
yielding the same asymptotic bound as in Eq. (4.2) [12].)
The fit to the experimental data from Ref. [11] is also
plotted in Fig. 5, showing that the logarithmic friction
law fits the experimental data very well in the

21F,„=~ ~L„Ly= U L„Ly,8~2

and in nondimensional terms we have

hoax 1 Uh 1

8~2 2 8v 2

(3.22)

(3.23)

h2t

108

106

Summarizing the resu1ts of this section, we have proved
that for the boundary-driven shear flow considered, the
viscous drag (h r/v ) is bounded from above and below
in terms of the Reynolds number according to

h ~
(3.24)

8&2

104

102

101 102 10& 104 106

IV. MSCUSSION

It is of interest to see how the rigorous analytical
bounds derived in the previous section compare with ap-
proximate theories and/or with experiments. A conven-

FIG. 5. Drag force vs Reynolds number. Solid lines are the
upper and lower bounds from Eq. (3.24). The dashed line is the
approximate theory prediction from Eqs. (A23) and (A24). The
discrete points (+) are the high R St to experimental data from
Ref. [11].
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R —10 -10 range. This leads to the reasonable conjec-
ture that the empirical-approximate logarithmic friction
law may be quantitatively capturing the asymptotic
behavior. If this is the case, then the upper estimate in
Eq. (4.2)—at least so far as the Reynolds number depen-
dence is concerned —is sharp to within logarithms. Such
results are encouraging, but it is natural to ask where
there might be room for improvement in the estimates.

Ideally, the variational problem for the optimal back-
ground flow field in Theorem 2 will be solved exactly,
yielding the best estimates that this method has to offer.
In the application in Sec. III, however, two short cuts
were taken in order to obtain explicit results. First, trial
profiles were sampled from a very restricted class of func-
tions, namely, simple piecewise linear functions of one
variable as in Fig. 4. This was done primarily for analyti-
cal convenience. Second, the spectral condition on the
profile was not explicitly verified. Rather, elementary
and somewhat crude estimates were employed to ensure
that the constraint was satisfied. In all likelihood the
constraint is over satisfied resulting in an over estimate of
the best bound. What is being neglected in the
verification of the spectral constraint for the piecewise
linear profiles in Sec. III is the divergence-free restriction
on the functions in the domain of the operator in Eqs.
(2.15) and (2.16) or, equivalently, in the domain of the
functional in Eq. (3.15). To optimally check the spectral
constraint for a given test background profile, the eigen-
value problem in Eqs. (2.15) and (2.16) should really be
solved exactly, and the lowest eigenvalue should be deter-
mined as a functional of the test background profile P. In
the case of piecewise linear P(z), the eigenvalue problem
is a set of linear, piecewise-constant coefficient differential
equations. These equations have been solved exactly in

the two-dimensional situation (u~ =0=U~, B/By =0) for
the piecewise linear profiles, yielding the same R

power-law bound on the drag but with the prefactor re-
duced by more than an order of magnitude [13]. The
three-dimensional case cannot be better than this, indi-
cating that such a simple profile may not be so close to
optimal as to yield logarithmic modifications to scaling.

The next step will be to derive the optimal profile from
the variational principle. The spectral constraint leads to
an interesting kind of variational problem for the optimal
background flow. A simpler variational problem with
such a spectral constraint (a scalar problem resulting
from the relaxation of the divergence-free condition on
the test functions for the spectral condition) has recently
been solved exactly [14], yielding Euler-Lagrange equa-
tions of the form of the nonlinear Schrodinger equation.
That "optimal" profile function has been computed
analytically, and the resulting upper bound scales the
same as in Eq. (4.2} with a slightly improved prefactor.
We want to stress that the extremum Pow of the varia
tional problem will not be, nor is it meant to be, a mean
jhow in the usual sense of statistical turbulence theory.

The lesson learned from (i) enforcing the divergence-
free condition in the spectral constraint exactly for a
nonoptimal profile on the one hand, and (ii) finding the
optimal profile while relaxing the divergence-free condi-
tion in the spectral constraint on the other hand, is that
either approach yields the Kolmogorov-type scaling in

Eq. (4.2). This indicates that qualitative improvement in
the bounds, in the form of corrections to scaling, will re-
quire that we solve both problems simultaneously.

The Euler-Lagrange equations for the optimal profile
are nonlinear and as yet unsolved. We illustrate their
derivation now by considering (for simplicity) the exam-
ple of two-dimensional flows in the x-z plane (u =0=U,
B/By =0}.Restricting attention to plane parallel back-
ground flows, the upper bound variational principle can
be stated,

U2
lim sup (v~~Vu~~z)z &inf v +—f 4(z) dz f 4(z)dz=0, Ao[4j &0

r L„h h o o
(4.3)

A, u = —vb, u+ + —+4(z) w,ap U

Bx h
(4.4a)

where 4(z) is the deviation of the background shear from
the Couette profile and A,o[4] is the lowest eigenvalue of
the boundary value problem,

F[N j =—f 4(z) dz+a f 4(z)dz+PAo[4 j,
h o 0

(4.5)

Hence the inequality may be replaced by an equality,
A,o[@j=0, and the constraint may be imposed by the
usual method of Lagrange multipliers. That is, we seek
critical points of the functional,

Aw = —vow+ + —+e'(z) u
ap U
Bz h

(4.4b) where a and p are the Lagrange multipliers. The Euler-
Lagrange equations are simply

BQ BN

dx Bz
(4.4c) 5F v 5A,o=2—N+a+P

5% h 5N
(4.6)

where the components u (x,z} and w (x,z) vanish at z =0
and z =h, and are periodic in x. It is easy to see that the
set of square-integrable mean-zero functions 4(z) satisfy-
ing the spectral constraint A,o[4j 0 is convex, so non-
vanishing extrema will occur on the boundary of this set.

Although the functional A,o [4 j cannot be expressed in

any explicit form, the variation appearing in the Euler-
Lagrange equations is the result of elementary (regular,
nondegenerate) first-order perturbation theory. With an
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e' ' x dependence in u, w, and p, we may replace 8/Bx
with ik, eliminate u and p, and express everything in
terms of w(z}=e ' w(x, z) and w'=dw/dz:

5+
k 54(z)

i [w(z)'w'(z) —w(z)w'(z)']
w'z' + w z' z'

0

Hence the Euler-Lagrange equations in (4.6) express the
shear profile 4 in terms of the A,0=0 eigenfunctions, and
the problem becomes one of solving the nonlinear bound-
ary value problem

2
2

0=v —k w+ikd 2 . d
dz2 dz

—+4(z) w
h

+ik —+4(z}
h dz

(4.8a)

F;,=6@vUr, (4.9)

where r is the radius of the sphere. At high Reynalds
numbers we anticipate scaling of the turbulent drag simi-
lar to that found in Sec. III, i.e., F-U r, but without
the apparent logarithmic corrections that arise in wall-
bounded shear Bows. This expectation has never yet been
shown to follow rigorously from the incompressible
Navier-Stokes equations.

There are a number of technical complications associ-
ated with application of Theorem 2's upper bound varia-
tional principle to this problem. First, it is not so simple
to construct continuous divergence-free vector fields that
satisfy the no-slip boundary conditions on the surface of
the sphere and the spectral constraint. The well-known
solution of the Stokes equations is one such field, but
since it is not an exact solution of the Navier-Stokes

4(z) =a'[1 i [w—(z)'w'(z) —w(z)w'(z)'] J, (4.8b)

where w(0}=O=w(h), w'(0)=O=w'(h), and a' is ad-
justed so that 4 has mean zero —that is, io is normalized
according to

1= i m z'w'z —u zw'z' z. 48c
0

This is a nonlinear Orr-Sommerfield type equation (as
arises in linear hydrodynamic stability; see Ref. [7]) for
which a numerical approach has been developed [15],and
which might be successfully tackled by the tools of
matched asymptotic analysis as R —+ ~.

Technical considerations aside, a basic open question
for the shear-flow problem is this: can we deduce the
functional form of the lagarithmic friction law rigorous-
ly, as an upper bound, directly from the incompressible
Navier-Stokes equations'? We hope that further develop-
ment of the results in this paper will contribute to the
resolution of this question.

It also remains a challenge to develop similar back-
ground flow decompasitions and variational upper
bounds for open systems like grid generated turbulence
or for flow past a solid object. In the case of flow past a
sphere, the solution of the Stokes equations for the lower
bound yields the classical low Reynalds number formula
for the "Stokes drag, "

equations unless R =0, it cannot generally produce an
upper bound as well. We also know the relatively simple
irrotational divergence-free vector field corresponding to
an exact stationary solution of the Euler equations for
this geometry, i.e., the Navier-Stokes equations with
R = 00. But the irrotational field doesn't satisfy the no-
slip boundary conditions and so cannot be used at finite
R. An appropriate candidate test field might be manufac-
tured by some means, but then there remains the problem
of checking the spectral constraint in an unbounded
domain where the spectrum of the operator in Eqs. (2.15)
and (2.16) might well be continuous. Furthermore, it will
likely be the case that U VU is not a gradient so the auxi-
liary field V will have to be computed and included in the
bound. These problems will be the object of future
research.

The spectral constraint leads to consideration of the
complete set of eigenfunctions of the associated eigenval-
ue problem. When the background profile is near op-
timal, this approach provides a novel way to generate a
basis that is "adapted" to turbulent flow prablems. It
will be interesting to look at the structure of these flow
fields, with the hope that elements of the turbulent dy-
namics may be illuminated in these coordinates.

Another variational approach to bounds on flow quan-
tities, based on a decomposition into mean and Quctua-
tion flows, was developed earlier this century [16]. The
predictians of that method [17],both the Reynolds num-
ber scaling and the magnitudes of prefactors, are general-
ly the same as those derived in this paper directly from
the Navier-Stokes equations.

We derived the variational principle in Theorem 2 by
manipulating the equations of motion and solutions
without regard to questions of existence or regularity of
solutions. Although it is not known if unique solutions
exist, so-called weak solutions are available, which satisfy
integrated versions of the energy evolution equation in
the form of an inequality (see, for example, Ref [2]). This
is suflicient to ensure that our analysis carries through, so
we can assert that the variational upper bounds hold for
the weak solutions of the Navier-Stokes equations.

A general observation about the variational principle
for the upper bounds is that the spectral constraint can
be considered a nonlinear stability condition on the back-
ground flow field. That is, U(x) satisfies the spectral con-
straint if and only if it is an appropriately nonlinearly
stable stationary solution of the Navier-Stokes equations
with the same boundary conditions, half the viscosity,
and some applied body force. By "appropriately" non-
linearly stable we mean that the kinetic energy in any de-
viation decays in time at a rate uniform in the initial per-
turbation. We are thus hopeful that, via the background
flow approach developed here, methods and results from
nonlinear stability theary [7] can be taken over into more
general studies of nonstationary and turbulent flows.

The upper bound variational principle derived in this
paper can also be rephrased with an eye toward making a
connection with an old argument in turbulence theory,
namely a "marginal stability" hypothesis. The idea,
which goes back at least to Ma1kus' work in convection
[18], is that mean turbulent flows organize themselves
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into marginally stable configurations. The hypothesis
that a well mixed turbulent core is bounded by thin lami-
nar boundary layers whose thicknesses are determined by
the condition of marginal stability leads to predictions for
the global transport properties of the flow. (For the cy-
lindrical Couette geometry, the prediction is a drag
-R'~ dependence on the Reynolds number [19].) This
is a completely heuristic principle, though, which has
never been derived from the equations of motion. The
following corollary of the upper bound variational princi-
ple, however, is suggestively similar in spirit to this mar-
ginal stability hypothesis.

Corollary (upper bound principle) Sup. pose U(x) is a
stationary solution of the Euler equations [Eqs. (2.1) and
(2.2} with vanishing viscosity] which (i) satisfies the
boundary conditions for the Navier-Stokes problem, and
(ii) is marginally nonlinearly stable as if it was a solution
of the Navier-Stokes equations. Then, v~~VU~~z is an

upper bound on the largest possible time-averaged energy
dissipation rate for solutions of the Navier-Stokes equa-
tions.

Proof. When U is a solution of the Euler equations,
U VU is a gradient. Then the auxiliary field V=O and
the spectral constraint is precisely U's marginal stability,
in the language of the energy method for nonlinear stabil-

ity.

with a time independent body force f(x), and for xEQ
with some specified time independent boundary condi-
tions. We decompose u(x, t) as

u(x, t) =U(x)+v(x, t), (A3)

where U is the time average of the velocity field,

U(x) = ( u(x, ) ) = lim —f u(x, t)dt,
7-~oO g 0

and v(x, t) is the time dependent fluctuating component
satisfying

(v(x )) =0 (A5)

The mean flow U satisfies the boundary conditions that u
satisfies, while the fluctuation field v satisfies the homo-
geneous version of the boundary conditions. That is, if a
component of u is specified on the boundary then the cor-
responding component of v vanishes there, if the normal
derivative of a component of u is given then the normal
derivative of that component of v vanishes on the bound-

ary, and if u is periodic in some direction then so is v.
Suppose that time averages of time derivatives vanish

and that time averaging commutes with spatial derivative
operations. Then, taking the time average of Eqs. (Al)
and (A2) we find
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APPENDIX A:
STATISTICAL TURBULENCE THEORY

AND THE LOGARITHMIC FRICTION LAW

au +u.Vu+Vp =vhu+ f,at
V'.u=0

(Al)

(A2)

Because of the effectively random behavior of turbulent
flows it is very natural to attempt a statistical formula-
tion, and this is a classical approach to turbulence theory.
The idea is to decompose a turbulent velocity vector field
into its mean and fluctuating parts (the "Reynolds
decomposition") in an attempt to isolate and extract
relevant averaged physical quantities. The "mean" in
this approach may be a time average —appropriate for a
steady configuration which, although fluctuating at a11

times, has well behaved time averaged characteristics-
or an ensemble average where the average is over initial
conditions in some class. For the purposes of this discus-
sion we will consider a steady state turbulent flow and as-
sume that time averages of all quantities exist.

Suppose that u(x, t) is a turbulent solution to the
Navier-Stokes equations

where the mean pressure is

P(x)=(p(x )) . (A8)

Subtracting Eq. (A6) from Eq. (Al) and Eq. (A7) from
Eq. (A2) leads to the equations of motion for the fluctua-
tions:

v +v Vv+U Vv+v VU
at

—(v Vv)+V(p P)=vhv, —

V v=O. (A10)

The stationary Navier-Stokes-like equations satisfied
by the mean flow in Eqs. (A6} and (A7) include an addi-
tional effective force ((v Vv) ) from the turbulent fluc-
tuations. Noting vs vanishing divergence, the fluctua-
tion force may be written as the divergence of a tensor, so
the full stress tensor balancing the body force in Eq. (A6)
is

aU, aU,S.'."'"'= 5 P+v + — . .+(v;v. ) . (A11)
ax ax1 l

Turbulence gives rise to an additional stress driving the
mean flow (v;vj ), known as the Reynolds stress In Eqs. .
(A9) and (A10) we observe that the fluctuations them-
selves are driven by the mean flow and pressure fields,
rather than being driven directly by the body force or by
inhomogeneous boundary conditions.

A hierarchy of equations relating the mean flow to
various time averaged moments of the fluctuations may
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be derived. In order to solve the stationary (albeit non-
linear} problem for U, the Reynolds stress ( v;v ) must be

supplied. A stationary equation for the Reynolds stress
may be derived, but it will involve higher correlation
functions such as (v, v vk). This problem continues and
the hierarchy never closes: at each stage another func-
tion from a higher stage is required. This is the essence
of the so-called closure problem in turbulence theory, a
familiar quandry in nonlinear statistical physics. To
make any progress some truncation of the hierarchy must
be introduced by hand, and such closure approximations
can be considered analogous to mean field theories in sta-
tistical mechanics.

Most efForts have concentrated on developing closures
at the level of the Reynolds stress because, just as a
Newtonian fluid is characterized by a simple relationship
between the shear stress and the rate of strain, so too
would one hope that nature strives to realize a simple re-
lationship between the Reynolds stress and the mean
velocity s strain rate. This is even more compelling con-
sidering that it is the mean's rate of strain tensor which,
on average, supplies the energy to the turbulent fluctua-
tions. To see this, note that for either periodic or rigid
boundary conditions the turbulent kinetic energy evolves
according to

—,'[[v[[',= —v[[Vv[[',——,
' f v,

'+ '
v, d'x

+ Vivj X
0 Bxi

(A12)

U(x,y, O) =0, U(x,y, h }=iU . (A14)

In order to proceed, some assumptions must be made.
First we impose the symmetry of the geometry on the

mean flow. Translation invariance in the x and y direc-
tions imply that the mean flow field, the mean pressure,
and the Reynolds stress are functions of z alone. The
divergence-free condition combined with the boundary

On average in a steady state the first and last terms van-
ish, the remaining balance being between the rate of ener-

gy supply to the turbulent fluctuations and the rate of
viscous energy dissipation by the turbulent fluctuations.
Viscosity dissipates turbulent kinetic energy, so there
must be a significant (negative, in fact) spatial correlation
between ( v; v ) and the mean's shear rate:

'aU, aU,
'

+ ' v vj x= 2v v 2 &0.
0 xj x(

(A13}

A particular closure scheme can be applied to the
problem of shear-driven flow between parallel plates, i.e.,
for the setup in Fig. 3. At high Reynolds numbers a tur-
bulent state is presumed to be realized, accompanied by a
nonlinear mean flow profile and a Reynolds number
dependence for the drag distinct from those relevant to
the laminar Couette flow. The equations for the mean
flow U(x) are Eqs. (A6) and (A7) with the boundary con-
ditions

conditions then immediately give U, =O. Homogeneity
and isotropy in the y direction imply U =0. The remain-
ing component is U„(z), which when translated by U/2
should be antisymmetric about the middle of the gap at
z =h /2. That is, alternative boundary conditions for the
mean profile between z =0 and the middle of the gap at
z =h/2 are U(0)=0 and U„(h/2)=U/2. Using these
symmetry assumptions, the x component of Eq. (A6) be-
comes

d U„(z)
v~vz =v

dz
(A15)

Integrating up from z =0 and using the vanishing bound-
ary conditions on the fluctuations [v„(x,y, O, t)=
O=v, (x,y, O, t)] we obtain

(v„v, )(z)=vU„'(z) —vU„'(0), (A16)

where the prime denotes derivative with respect to z.
The last term above is proportional to the mean wall
shear stress,

(r) =vU„'(0), (A17)

which is to be determined.
Next, a closure must be introduced. Along the general

lines discussed earlier we inject a functional relationship
between the Reynolds stress and the mean shear. By
analogy with viscous shear stresses we assume a relation

( v„v, )(z) = —p(z) U„'(z), (A18)

p(z)=~ z U„'(z), (A19)

where the dimensionless absolute constant a is a fitting
parameter in this theory, known as the von Karman con-
stant. The von Karman constant must be determined
empirically, and it has a nominal value ~=0.40. The clo-
sure that we make is thus [20]

(v„v, )(z)= az U„'(z)2 . — (A20)

Note that this closure assumption is to be used in the
lower half of the flow where O~z ~ h/2. For z between
h/2 and h, the mixing length z should be replaced by
h —z.

For 0~z ~ h/2, Eq. (A16) becomes

O=a z U„'(z) +vU„'(z}—u, , (A21)

where u, is the velocity scale defined by the (as yet un-

introducing the proportionality factor p(z), with units of
viscosity [(length) X(time) '], known as the eddy viscosi-
ty. The eddy viscosity should be positive: the minus sign
in Eq. (A18) is dictated by Eq. (A13) which requires that
U,

' (v„v, ) be negative on average.
The eddy viscosity is supposed to be a property of the

flow field and not the fluid itself, so we should construct it
out of local quantities determined by the mean flow and
the geometry, not out of material parameters. We choose
the natural inverse time scale given by the mean shear
rate U„'(z}, and the natural length scale —known as the
mixing length given by—z, the distance to the rigid wall.
The eddy viscosity is then defined,
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known} wall shear stress:

u, =&(~)=QvU„'(0) . (A22)

U
(A25)

Solving the quadratic equation in Eq. (A21) for U„' as a
function of z and integrating up from z =0, we find the
flow profile

yielding precisely the laminar stress in Eq. (3.7). The
fitting parameter K does not enter into this limit of the
model. In the opposite limit of R ~00, Eq. (A24} pre-
dicts

U, (z) =ln
Q«

2KQ «Z + 1+
'2 1/2 '

2KQ «Z U

2 lnR
(A26)

1 — 1+
'2] i/2

2KQ «Z

2KQ «Z
(A23)

and the nondimensional drag force

h2~ g2 g2

pv 4 (lnR)
(A27)

Q«
1 — 1+ K R

U

Q«
R

'2 1/2

(A24)

For a given Reynolds number, Eq. (A24) is to be solved
for u, as a function of U and R. Then Eqs. (A23) and
(A22) yield explicit predictions for the mean fiow profile
and the wall shear stress. A typical profile at moderately
high Reynolds number is sketched in Fig. 6. The shear in
the mean fiow is concentrated in thin layers near the rigid
boundaries, and at large Reynolds numbers these bound-
ary layers have thickness 5-v/u, .

In the limit R ~0, the solution of Eq. (A24) is

0.8

The velocity scale Q, is fixed by the boundary condition
U„(h/2)= U/2:

'2 1/2
U Q«=ln 'K R+ 1+ K R

2 Q«

Asymptotically at high Reynolds numbers, this theory
predicts a turbulent drag force proportional to the square
of the speed U with logarithmic corrections. The energy
dissipation rate is not strictly independent of the viscosity
in this theory. The prediction is that it vanishes propor-
tional to [ln(1/v)] as v~0, all other parameters being
held fixed.

This example has been developed for illustrative pur-
poses with a minimum number of fitting parameters (just
one), but it reproduces the essential features of the con-
ventional wisdom, both theoretical and experimental,
concerning the structure of the mean fiow and the tur-
bulent drag in wall-bounded shear Nows. The introduc-
tion of an eddy viscosity, a mixing length, and a closure
as in Eq. (A20), though, constitute completely uncon-
trolled approximations which do not follow systematical-
ly from the Navier-Stokes equations.

APPENDIX B: POINCARE'S INEQUALITY

Suppose 0 is a set for which the negative Laplacian
—6, along with boundary conditions, is a strictly positive
self-adjoint operator with a discrete spectrum and small-
est eigenvalue A, , )0. Suppose further than f (x) and its
gradient Vf (x) are square integrable on a set 0 and that

f (x) satisfies boundary conditions (typically Dirichlet or
Neurnann conditions} that allow for the integration by
parts,

j f(x)'[ —hf(x))d x=llVf(x)llew . (B1)

0.6

0.4

Poincare's inequality asserts that

llf(»llz- ll~f(x}llew (B2)

0.2

To see this, let P,(x), $2(x), . . . be the complete ortho-
normal basis of eigenfunctions of —h with the boundary
conditions on Q, and 0(k, , A,2(. . . be the correspond-
ing set of eigenvalues. Then the spectral decomposition
of fis

0'
0

I

0.2
I

0.4 0.6
I

0.8 f(x)= g f„P„(x), f„=f P„(x)'f(x)d x .
n=1

(B3)

FIG. 6. Mean flow profile from the closure theory (solid line}
for R =10 . Note the boundary layer structure as compared to
the background flow profile in Fig. 4. The dashed line is the
laminar Couette flow profile.

According to Parseval's theorem,

n=1
(B4)
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and

(BS)

Thus, because )(,„/A, , ~ 1 for all n,

llf(»ll2= X If„l'~ X "If.l'= IIVf(x)ll', . (B6)
n=1 n=1
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