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Competing states in a Couette-Taylor system with an axial flow

Avraham Tsameret and Victor Steinberg
Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel
(Received 25 June 1993; revised manuscript received 7 January 1994)

We present experimental results on novel pattern states which were observed in the Couette-Taylor
flow subjected to an axial flow, in a wide range of the control parameters. Propagating Taylor vortices
(PTV’s), stationary spirals (SSP’s), and moving spirals (MS’s) were found as a result of a different symme-
try breaking. These modes exhibit different wave-number selection. Novel states originating from an in-
teraction between these patterns were also found. A “mixed phase” of PTV’s and SSP’s was identified. A
“mode-competition” state, in which the PTV’s and MS’s are alternated in the column, is also described.
Finally, a “disordered-Taylor-vortices” state was observed and characterized.

PACS number(s): 47.20.—k, 47.60.+1i, 47.54.+r

I. INTRODUCTION

The superposition of the circular Couette flow and the
Poiseuille shear flow in the Taylor system with an axial
flow, as has previously been shown by Snyder [1], results
in a rich phase diagram which exhibits several types of
periodic structures. The through flow at a relatively
small Reynolds number value (Re <4) causes the Taylor
vortices to drift downstream, and the flow takes the form
of propagating Taylor vortices (PTV). Besides the PTV
mode, which was studied in detail recently [2-5], the
system also exhibits spiral modes which can be classified
by the helicity and direction of propagation as was done
by Biihler and Polifke [6].

A phase diagram which manifests instability modes of
different symmetries, such as the PTV and spiral modes,
may exhibit interesting nonlinear dynamics in the vicinity
of points or lines which separate different instability re-
gions. In such regions interactions between two or more
instability modes are expected to be observed. The study
of such interactions between modes is important because
it can possibly shed light on pattern selection processes
and on the scenario by which a macroscopic system be-
comes spatially and temporally disordered. We found
that the Couette-Taylor system with a superimposed axi-
al flow exhibits novel dynamical states which result from
interactions between the PTV and two spiral modes. A
wave number selection in these modes was also identified
and studied.

II. CHARACTERIZATION OF THE SYSTEM
AND EXPERIMENTAL APPARATUS

The system consists of the Taylor column and an axial
flow modification. One control parameter of the system
which governs the rotation is the Taylor number, defined

as
2
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where d =R, —R,. In the following we will use the re-
duced Taylor number (at e <<1)

=(Q_Qo)/ﬂo >

as the rotation control parameter, where ) is the critical
rotation speed for the onset of vortices without through
flow, corresponding to the Taylor number T,,. We use
below the control parameter €e=(Q2—Q()/Q, up to e=~1.
Here R, and R, are the radii of the inner and outer
cylinders, respectively, =R ,;/R,, v is the kinematic
viscosity, and () is the rotation speed. A second control
parameter which determines the axial flow is the Rey-
nolds number Re=ud /v, where 7 is the averaged velocity
of the axial flow.

Two columns were used in the experiments, with the
aspect ratios I'=L /d =54 and 48 (L is the length of the
working-fluid region), and radius ratios 7=0.707 and
0.77, respectively. The radii of the outer cylinders were
R,=2.685 and 4.100 cm, and the radii of the inner
cylinders were R, =1.900 and 3.150 cm, respectively.
The column was installed horizontally and was modified
by an axial flow arrangement. The axial flow was driven
by gravity in a closed loop, with the use of a pump. In
order to make the axial flow as uniform as possible in the
azimuthal direction, the fluid passed an inlet chamber be-
fore entering the working region between the cylinders.
The inlet chamber was constructed with flow directors
and a stainless-steel net with 0.25X0.25 mm? mesh size.
The net was used as nonrotational lateral boundaries at
both sides of the column. The working fluid was a mix-
ture of glycerol in water. Typically, the fluid had a dy-
namic viscosity of v=3.0 cS, which corresponds to a
mixture of 32.4% by volume of glycerol in water at 22 °C.
The viscosity of the fluid was determined from tabulated
data [7], and was checked by measurements with a com-
mercial viscometer (HAAKE CV-100). The temperature
of the fluid was maintained constant to a level of 25
mK. The temperature stability was achieved by circulat-
ing water in a jacket around the column by the use of a
commercial refrigerator-heater circulating system, and by
stabilizing the room temperature to within +1°C. Before
entering the column, the fluid passed through a copper
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tube which was immersed in the circulator water basin,
so that the axial flow was stabilized to the desired tem-
perature at the inlet. 1% Kalliroscope solution [8] was
used for flow visualization. The details of the apparatus
are described elsewhere [3,5].

III. THE PHASE DIAGRAM

We present the phase diagram of our system (with
7=0.707), in Fig. 1, in the parameter space defined by €
and Re. For small through-flow velocities (Re <4.5) the
PTV mode is observed. The PTV are manifested first in
the convectively unstable region (between the convective
and absolute instability lines which are denoted by the
dashed and solid lines in Fig. 1, respectively), and dom-
inate at larger € in the absolutely unstable region. Anoth-
er region of the PTV is located for larger values of Re
(Rez 8).

Beyond Re=4.5 the flow is spiral-like, with a periodic
pattern of a ‘“stationary spirals” (SSP) mode. The SSP
are initiated near the inlet boundary, and they are ob-
served in a part of the column at Rex2.5. They fill the
entire column, however, at Re~4.5. As € increases, the
SSP mode is stable for larger values of Re. Another
spiral mode, which will be referred to as “moving spirals”
(MS), also occurs in the system. This mode is character-
ized by spirals which propagate downstream. Both spiral
modes (SSP and MS) are characterized by helicity m =1.
The MS mode is located in two separated regions in the
phase diagram. In the first, the MS mode appears at the
onset, for 5.26 <Re < 6.07, and it is stable along a narrow
strip in Re as € increases. The ratio between the phase
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velocities of the MS in this region and the PTV was
found to be 1.68. At €=0.65 the MS lose stability to the
disordered-Taylor-vortices (DTV) state which is de-
scribed below. The other region of the MS is located at
0.60<€<1.45 and Re> 12.5, between the PTV region at
smaller €, and regions which exhibit interaction between
modes, at larger €.

Besides the regions that are characterized by the ex-
istence of one flow pattern only, the system exhibits also
novel phases which result from interaction between two
modes, either between the PTV and the SSP modes, or
between the PTV and the MS modes. The interaction be-
tween the PTV and the SSP is observed in a narrow strip
along the right boundary line of the SSP region, for
0.275<€<0.98. This interaction gives rise to a novel
state, the “mixed phase” [see enlargement (1) on Fig. 1].
The mixed phase is characterized by a superposition of
velocity fields in both space and time of an oscillatory
(PTV) mode and a stationary (SSP) mode.

An interaction between the PTV mode and the MS
mode is manifested by two new states. The first is coined
the “mode-competition” state, and is located on the
phase diagram at 1.45<e€<1.54 and 14.0<Re<15.3
[see enlargement (2) on Fig. 1]. In this region the PTV
and the MS are alternated in the column in a nonperiodic
fashion. The second state which results from the interac-
tion between the PTV and MS is coined “disordered-
Taylor-vortices” state. This state is characterized by
PTV, which are interrupted randomly by MS. We note
that the transitions between the various states did not
show hysteresis.

The appearance of various periodic patterns with

FIG. 1. The phase diagram of the Taylor
system with an axial flow, for =0.707. Three
basic modes are observed: PTV, SSP, and MS.
The regions in which the mixed-phase and the
mode-competition state are manifested, are
shown in the enlargement (1) and (2), respec-
tively. DTV denotes the disordered-Taylor-
vortices state. The arrow pointed to the € axis
denotes the line of constant €=0.19, which
corresponds to the plot of k vs Re presented in
the next figure.
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different symmetries in the system is related to a pattern
selection process. One of the questions in this respect is
whether the pattern formation is provided by a bulk
property of the flow or by boundary effects, e.g., by a
phase pinning. To answer this question we produced per-
turbations at the inlet boundary to cause an exchange of
the SSP and the PTV modes. This experiment was car-
ried out in the column with the radius ratio =0.707, for
5.8<Re<14 and €=0.406. The inlet boundary was
designed as a moveable stainless mesh, whose motion is
computer controlled. It was found that it is possible to
change the flow pattern in the column from the SSP to
the PTV by moving the inlet boundary on a distance of
about 1 cm in the direction of the flow. The motion of
the boundary generated a perturbation that induced the
PTV, which took over the SSP in the system. A shorter
traverse of the boundary was not enough to change the
flow pattern. This procedure of changing the flow pat-
tern from the SSP to the PTV was reproducible.

Changing the flow pattern from the PTV to the SSP
was also found to be possible, however the perturbation
that was required for this change was much larger. The
induction of the stable SSP in the column was done by a
fast pull of the inlet boundary for a distance of a few cen-
timeters in the opposite direction of the flow. This per-
turbation was large enough to generate turbulent eddies
near the inlet boundary. The procedure of changing the
flow pattern from the PTV to the SSP was not easily
reproducible, so that more than one perturbation was
sometimes necessary in order to change the flow pattern.
We note that by applying a quasistatical procedure, as
was used in mapping the phase diagram, one obtains only
one mode (PTV or SSP) for given control parameters, and
there is a continuous transition between these modes.
However, perturbations can excite the system to a meta-
stable state (PTV in the region of SSP and vice versa),
which probably have a finite (but long) life time.

We can conclude from the above observation that the
pattern selection process in the system is possibly associ-
ated with a response to a perturbation in the boundary
conditions.

Important information which is related to the phenom-
ena of transitions between the various modes can be ob-
tained from the measurements of the wave number of the
various patterns, which we present further.

Wave-number selection

The wave-number measurements were carried out by
taking pictures of the periodic patterns by a vidicon cam-
era. The pictures were grabbed by an eight-bit frame
grabber, and the wave number was calculated from the
Fourier-transformed data.

We have found that the wave numbers of all the vari-
ous periodic patterns were uniquely selected by the axial
flow. The wave number was determined by the value of
Re alone, and was insensitive to the specific procedure by
which the pattern was set in the column, to the aspect ra-
tio, or to the initial conditions. Such a wavelength selec-
tion was observed previously for the PTV mode in the
small € and small Re regime [2].
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In Fig. 2 the wave number of the various periodic pat-
terns vs Re is plotted for a constant €=0.19, for the
column with 7=0.707. The solid circles correspond to
the PTV in the small Re regime, the squares—to the
SSP, the open circles— to the MS, and the triangles—to
the PTV that appear at large Re. The states which result
from an interaction between the basic modes were not
presented in this figure. Figure 2 shows that the spiral
modes and the large-Re PTV exhibit a decrease of the
wave number with Re, which is approximately linear
with Re. This behavior is in contrast to the wave-number
behavior of the small-Re PTV, which exhibits an increase
of k with Re; however, the variation of k does not exceed
10%.

Figure 2 demonstrates that the transition between the
various modes in the system is associated with a jump in
the wave number (except from the transition from PTV
to SSP). A new flow pattern always appears after the
wave number of the previous mode has reached a
minimum. We observed that whenever the wave number
of a certain mode is forced (by increasing Re) to reach its
minimal value, the system does not allow an appearance
of the same mode with a larger value of k, but rather gen-
erates a new mode. We note that in stationary states
(such as stationary Taylor vortices [9]), whenever the vor-
tices are forced beyond the Eckhaus boundary, the sys-
tem responds with the same vortex pattern but with a
wave number within the Eckhaus stable band.

The boundaries of the stable wave numbers for the
spiral modes are shown in Fig. 3 as a function of €. The
solid squares and the open circles on the plot correspond
to the SSP and the MS modes, respectively. The data
points correspond to the extremal (maximal and minimal)
values of k which are associated with the spiral modes.
These points were obtained from measurements of k as a
function of Re, similar to the measurement which is
presented in Fig. 2. We note again that there is a one-to-
one correspondence between a value of k within the band
of the stable wave numbers, and Re value.
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FIG. 2. The wave number k vs Re, for PTV —solid circles,

for SSP—solid squares, for MS—open circles, for large-Re
PTV —triangles (€~0.19).
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FIG. 3. The range of stable wave numbers vs € for SSP (solid
squares), and MS (open circles). The points correspond to the
extrema of k vs Re curves.

IV. THE MIXED PHASE

The existence of a mixed phase, namely, a hydro-
dynamic state in which both stationary and oscillatory
modes coexist in space and time, was predicted [10] by a
theoretical analysis of the Rayleigh-Bénard convection in
a viscoelastic fluid. The control parameters of this sys-
tem are the temperature gradient and the elasticity of the
fluid. The mixed phase was predicted to exist on the
phase diagram of this system, in the vicinity of a
codimension-two (CT) point [11] of the second type [10].
CT of the second type is characterized by the fact that
the frequency of the oscillatory mode is finite as the CT
point is approached. The interest in the mixed phase
arose because the velocity field in this phase as predicted
can exhibit a nonperiodic or incommensurate combina-
tion of the wave numbers of the two interacting modes.
The study of the mixed phase could enrich our
knowledge about interactions between hydrodynamic
modes, and possibly the contribution of such interactions
to the generation of complex pattern states.

The mixed phase which is found in our system is
confined to a narrow region in Re (ARe=0.2) along the
right boundary of the SSP region on the phase diagram,
in the range 0.275 <€ <0.98. The mixed phase is located
on the phase diagram between a region of the stationary
SSP mode, and a region in which the flow pattern is
chaotic (the DTV mode). As the mixed phase is ap-
proached from the SSP region, namely, as Re is increased
at a constant €, the stationary spiral pattern is modified
by the PTV that appear at the inlet and propagate
through the stationary spirals. The two modes coexist in
the column. That is, at every point in space and time one
can observe both modes.

The velocity field that corresponds to the flow pattern
in the mixed phase is shown in Fig. 4, in which the inten-
sity of the optical signal at successive time intervals is
plotted as a function of position. The flow pattern is
shown to be a superposition of a stationary and an oscil-
latory flow pattern. In this figure a space-time plot of the
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full velocity field is shown in (a), alongside with a decom-
position of the flow field to the oscillatory component (b),
and the stationary component (c). The stationary com-
ponent (c) was obtained by averaging the optical signal in
time (over a time of typically 0.57,). The oscillatory
component was obtained by subtracting (c) from (a). It is
seen that the amplitude of the oscillatory component is
not spatially uniform, but is rather periodically modulat-
ed. The modulation, as will be shown shortly, results
from a linear beating between two propagating modes,
one of which is the PTV mode.

In order to clearly demonstrate that the flow in the
mixed phase is indeed a superposition of stationary and
oscillatory components, we have reproduced the velocity
field in a computer simulation of the flow. The results of
the simulation are presented in Fig. 5. The mixed phase
flow is represented by the superposition of a stationary
component and an oscillatory component, which itself is
a superposition of two propagating modes. The station-
ary component, denoted by S(x) and shown in Fig. 5(c),
was extracted directly from the data, because the exact
reproduction of this term by simulation is not simple and
can unnecessarily complicate the picture. The oscillatory
component, shown in Fig. 5(b), was represented by the
term

A(x,t)=A(x,t)+ A,(x,t)
=a,sin(k,x +w;t)+a,sin(k,x +w,t) .

k, is the wave number of the PTV, as extracted from the
data, thus, the term A ,(x,?) represents the PTV mode.
The term A,(x,t), which has a wave number k, = (1)k,
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FIG. 4. A space-time plot for the velocity amplitude of the
flow pattern in the mixed phase. The intensity of the optical
signal is plotted as a function of the distance from the inlet at
successive time intervals, for the full flow pattern (a), the oscilla-
tory component (b), and the stationary component (c). Time
goes up. (Re=7.5, €=0.459.)
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FIG. 5. Simulation of the velocity field in the mixed phase,
for the full flow pattern (a), the oscillatory component (b), and
the stationary component (c). See text for details.

probably results from the interaction between the PTV
and SSP modes. The full superposed flow aS(x)
+ A (x,t) is shown in Fig. 5(a). A good representation of
the flow was found for a,=2a,=5a, o;=w,
k,=3.74(1/d),and k,=1.74(1/d).

The amplitude of the oscillatory component in the
mixed phase was found to exhibit an interesting spatial
behavior. The velocity amplitude of the oscillatory com-
ponent was found to vary spatially. Close to the inlet the
amplitude always increases with the distance from the in-
let, and farther away it may either increase, remain con-
stant, or decrease with the distance from the inlet, de-
pending on the values of the parameters € and Re. An
example is shown, in Fig. 6, which is a space-time plot of

TIME (units of Ty)

19 25 27 31 35 39
DISTANCE (units of d)
FIG. 6. A space-time plot of the oscillatory component of the

flow pattern in the mixed phase, for Re=7.45, €=0.417. Note

the increase of the velocity amplitude with the distance from the
inlet. Time goes up.
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FIG. 7. The velocity amplitude in the mixed phase for
several values of € and Re: €=0.275, Re =6.38 (squares);
€=0.50, Re =7.8 (triangles); €=0.594, Re =8.45 (circles). The
dashed lines are to guide the eye.

the oscillatory component for €=0.417 and Re=7.45.
This figure demonstrates an increase of the velocity am-
plitude with the distance from the inlet. This increase is
characteristic for small €, namely, € <0.5. At €=0.5 the
amplitude is roughly uniform far enough from the inlet,
and for €>0.5 the amplitude decreases with distance.
The amplitude is shown, in Fig. 7, for three values of e:
the data for €=0.275, 0.50, and 0.594; Re=6.38, 7.8, and
8.45 is presented by squares, triangles, and circles, respec-
tively. The symbols on the plot correspond to local maxi-
ma of the velocity amplitude, and the lines are drawn
only to guide the eye. The reason for the spatial varia-
tion of the amplitude is not clear, and a further study is
required in order to understand this behavior.

The velocity field in the mixed phase that was observed
in our system was shown to be relatively simple, namely,
a linear superposition of the stationary and oscillatory
modes. A more complicated flow pattern, that would
possibly exhibit a chaotic behavior was predicted [10] to
result from an interaction between two modes with in-
commensurate wavelengths.

V. MODE COMPETITION

In the “mode-competition” state two hydrodynamic
modes compete for dominance in the system. This com-
petition results in an alternation of the flow patterns asso-
ciated with the competing modes.

A manifestation of mode competition in a different hy-
drodynamic system was found between transverse and
longitudinal rolls in the Rayleigh-Bénard system with a
binary mixture [12,13]. The competition between trans-
verse and longitudinal rolls results in square cells, and
leads to an oscillatory convection. A competition be-
tween transverse and longitudinal rolls, which lead to
square cells with time-dependent amplitudes, was ob-
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served also in a one-component Rayleigh-Bénard system
subjected to a through flow [4]. In this system a region of
irregular and intermittent flow pattern was observed. It
was suggested that this pattern originated from the com-
petition between the two types of rolls [14].

A mode-competition state is observed in our system in
the region 1.45<e€<1.54 and 14.1<Re<15.3. This
state is characterized by an alternation between the PTV
and the MS modes in the column. A pattern of either the
PTV or the MS is present throughout the column for a
certain period of time, and then disappears, and the other
pattern becomes dominant. The mode-competition state
differs from the mixed phase state by the fact that at the
first state only one mode is present in the system at a
given time.

The region of mode competition is found, quite surpris-
ingly, between regions in the phase diagram in which the
flow pattern is chaotic in space and in time—DTYV, at
Re<Re;=14.1 and Re>15.3. In the DTV, which will
be described in the next section, the flow takes the form
of the PTV which are randomly interrupted by the MS,
so that no pattern dominates in the system at a given
time. The existence of the state which exhibits order to
some extent between the chaotic regions is reminiscent of
locking regions in parametrically driven systems. More
study is required in order to identify the mechanism
behind the appearance of the mode-competition state in
our system. In the following we present our observations
of this state.

A typical space-time plot of the flow pattern in the
mode-competition state is presented in Fig. 8, for e=1.45
and Re=14.69. The alternation between the two modes
is clearly seen, because the phase velocity of the MS is
larger than that of the PTV. The phase velocities of the
two modes were determined from the space-time dia-
grams to be V,(PTV)=1.66d /7, and V,(MS)=2.2d /7,.

The time during which each mode dominates in the
system for a given Re and € was not constant. Typical
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FIG. 8. A space-time plot of the flow pattern in the “mode-
competition” state ( Re = 7.45, €=0.417). The MS can be dis-
tinguished from the PTV by their larger phase velocity. Time
goes up.
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FIG. 9. Typical histograms of the time durations of the PTV
(a), and the MS (b) in the column (e=1.45, Re = 14.69) in the
“mode-competition” state.

histograms of the time durations of the two competing
modes are presented in Fig. 9.

The averaged time duration in which one of the modes
was present in the system was shown to vary with Re. At
Re <Re, one observes that most of the time the MS are
present in the system, and the PTV appear only seldomly
and for a short time. PTV were observed for longer time
periods for larger values of Re. The averaged time dura-
tion of the PTV increases with Re until a point where
only the PTV were observed. Upon a further increase of
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FIG. 10. The ratio between the averaged time durations of
the PTV and the MS modes in the “mode-competition” state vs
n=(Re—Rejy)/Rey (Rep=14.1).
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which are dominated by either the PTV or the spiral

In the DTV state the PTV mode is perturbed

FIG. 11. The relative standard deviation of the time duration
vs u for the PTV (solid circles) and the MS (open circles).
Re the PTV state was randomly perturbed by the MS, so
that at a given time an ordered pattern could not be ob-
served. A measurement of the relative time durations of
the two modes was carried out, and the result is present-
ed in Fig. 10. During the measurement time each pattern
appeared in the column about 20 times. The x axis on
the plot is u=(Re—Rey)/Rey, and the y axis is the ratio
between the averaged PTV and MS time durations. The
plot demonstrates the way by which the PTV mode takes
The width of the distribution of the time duration of a
pattern, either the PTV or the MS, was shown to increase
or decrease with Re in the same way as that of the aver-
aged time duration 7 of the pattern. In Fig. 11, the ratio
duration time 7, is shown as a function of y, for the PTV
mode (solid circles) and for the MS mode (open circles).
It is seen from Fig. 11 that the normalized width of dis-
VI. THE DISORDERED-TAYLOR-VORTICES STATE
The DTV state is found on the phase diagram, present-
randomly in time by the MS mode. The uniform spa-
tiotemporal order, exhibited by the nonperturbed PTV
mode, is broken by the MS, and the PTV mode becomes
disordered. The degree of disorder depends on the rate of
incidence of the MS in the system. It was found that the
number of the MS that were initiated at the inlet bound-
ary was increased with Re, but was independent of €.
Therefore, Re could be considered as a parameter that
controls the degree of disorder exhibited by the DTV
state. The DTV state may thus be an example for the
study of the development of spatiotemporal chaos in an

2 .
@D Q
p
5 :
" 8 A 3
o e O 2] Z -
S : ~ =
o 3 g
Rl
o e " > 2
Oe P I 3
[
o b >
=] 9 © -
_ : Q & 3 3
o © < ~e ) § ~ -
o o o e} p o R &b
.-
L/0 P g g i 8
- Q ‘S -] %
5 S 2 =83
> ‘=
) kS ha BE E

14.91.

FIG. 13. A space-time plot of the flow pattern in the DTV

state, for e=1.0, Re

extended open system. It turned out that it is more con-
venient to conduct these studies in the column with a
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FIG. 14. A space-time plot of the flow pattern in the DTV
state, for e=1.0, Re = 21.26.

tem. Although defects are not observed near the outlet in
Fig. 12, the MS still affect the PTV there by inducing a
modulation of the phase velocity of the PTV, which is
manifested as tilted PTV near the outlet. At larger Re, as
in the case shown in Fig. 13 (Re=14.91), the MS
penetrate into the interior of the system, and as a result
the defects are found throughout the column. Finally, at
still larger Re (Re=21.26 in Fig. 14) the pattern is
strongly disordered everywhere.

A variety of nonequilibrium systems have revealed a
state that can be defined as a spatiotemporal chaos
[15-17]. In a part of these experiments an attempt to
quantitatively characterize the order-disorder transition
and the chaotic state has been made. A natural way to
quantify the breaking of the long-range pattern coheren-
cy is to use a correlation function analysis. This ap-
proach was used successfully in two experimental systems
[16,17] exhibiting a transition to defect-mediated tur-
bulence. It allowed us to identify some features of the
nonequilibrium order-disorder transition which are simi-
lar to an equilibrium phase transition. A destruction of
spatiotemporal order may be associated with the appear-
ance of spatiotemporal defects on space-time plots of the
DTV. However, we would like to emphasize here that a
1+1 representation of temporal dynamics of two-
dimensional patterns definitely simplifies their analysis,
but does not necessarily completely and adequately
represent a complexity of their behavior. Since we did
not perform a complete visualization of the column, we
cannot be sure that there are no topological defects in the
structure besides spatiotemporal dislocations. The ex-
istence of the former ones would obviously lead to an ad-
ditional disorder in the system. Bearing in mind this con-
sideration we characterized the degree of disorder of the
DTYV state as a function of the control parameter Re by
two methods. First, we counted the number of defects as
a function of Re in the corresponding space-time plots.

For each data set the data was divided into 12 space-
time windows, each of which contained 80 lines separated
by 200 msec in time (similar in size to the windows shown
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in Figs. 12-14). The number of defects in each window
was counted, and the mean number of defects and the
standard deviation for the given data set was then calcu-
lated. We note that this analysis is similar to the analysis
that was used in the study of the onset of spatiotemporal
chaos in electroconvection of liquid crystals [16]. The
onset of spatiotemporal chaos in electroconvection was
found to be associated with the creation of topological
defects in two-dimensional roll structure [16]. However,
in the current analysis the second “dimension” —time, is
arbitrary. Therefore, in order to compare the results for
different Re values a time coordinate should be scaled by
Re. As a result, the defect density 77, as a function of Re
is presented in the inset of Fig. 15. One can associate an
averaged distance between defects § Eﬁd_l/ 2 in the x-
plane with the coherence length of the DTV state. From
the plot of { vs Re in Fig. 15 one can conclude that a
sharp decline of the coherence length which is clearly evi-
dent at Re=~14 and corresponds to a sharp increase in
the averaged number of defects, indicates a destruction of
the long-range order. This sharp change means a well-
defined transition to an incoherent state with {=~(3-4)d
at ReR 14.

Another way to quantify the degree of disorder of the
DTYV state is to apply a correlation analysis. For a given
value of Re the optical signal along the column was auto-
correlated in space. The result was demodulated in order
to obtain the envelope of the autocorrelated signal, and
then was averaged in time (about 1000 lines, separated
from each other by 200 msec, were used for time averag-
ing). Figures 16—18 show the autocorrelated signal and
the result of the averaging after demodulation, for three
values of Re. As a result of the time averaging a spatial
period-doubling modulation of the pattern becomes more
pronounced. We did not identify the source of the modu-
lation. The averaged signal was fitted by the function
F(x)=A+[B+Ccos(k /2)x]exp(—x /1), and the corre-
lation length / was obtained from the fit. The corre-
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FIG. 15. The average distance between defects § vs Re in the
DTV state. The inset: the defect density vs Re. The bars
denote one standard deviation.
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FIG. 16. (a) The spatial correlation function of the optical
signal along the column. (b) Demodulated and time-averaged
correlation function (solid line), and fit (dashed line). Re
= 12.24, €=1.0.
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FIG. 17. (a) and (b) the same as in Fig. 16 at Re = 13.0,
€e=1.0.
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FIG. 18. (a) and (b) the same as in Fig. 16 at Re = 21.3,
€=1.0. Note that (a) exhibits beats between two nearby wave
numbers.
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FIG. 19. The correlation length /, obtained from the fits to
the time-averaged autocorrelated signals, vs Re in the DTV
state.

sponding plot is shown in Fig. 19. The remarkable
feature of the sharp drop of the correlation length down
to the gap size at Re=~14, similar to the sharp change of
& given in Fig. 15, manifests the well-defined transition to
the spatiotemporal disorder, where the long-range coher-
ence of the structure is completely destroyed. We would
like to point out a difference in the saturation values of £
and I. It is feasible that the difference occurs due to the
existence of an additional source of the disorder which is
not captured, on the other hand, by a one-dimensional
(141) representation of the DTV state. Thus, the DTV
state exhibits a spatiotemporal behavior similar to that
found earlier in electroconvection of nematics [16] and in
surface waves [17].

VII. SUMMARY

The phase diagram of the Couette-Taylor system with
an axial flow in the range of Re<22 and €<1.7 was
presented. Both stationary (SSP) and oscillatory (MS)
spiral modes were observed, besides the PTV. The wave-
number behavior of the various modes was discussed. It
was found that the wave number of the spiral modes and
of the large-Re PTV is decreased with Re, and that the
transitions between the modes are associated with a jump
in the wave number.

Novel states, which are originated from interaction be-
tween the PTV and spiral modes, were discovered. These
states are as follows.

(i) The “mixed phase,” in which both the oscillatory
mode (PTV) and the stationary mode (SSP) coexist in
space and time. The observed pattern in the mixed phase
was shown to be reproduced in a computer simulation by
a superposition of an oscillatory mode and a stationary
mode.

(ii) The “mode-competition” state, in which the PTV
and the MS are alternated in the column in an irregular
fashion. This state, which exhibits a spatial order, is lo-
cated between regions which exhibit a spatiotemporal dis-
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order. Measurements and analysis of the duration times
in which the two competing modes appear in the column
were carried out.

(iii) The “disordered Taylor-vortices” state, in which
the MS randomly perturb the PTV mode. The degree of
disorder in the system, which is controlled by Re, was
quantified by the analysis of the spatiotemporal defects in
the structure, and by the correlation analysis.
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FIG. 9. Typical histograms of the time durations of the PTV
(a), and the MS (b) in the column (e=1.45, Re = 14.69) in the
“mode-competition” state.



