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Simulation of a two-dimensional Ra3tleigh-Benard system
using the direct simulation Monte Carlo method
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The transition from conduction to convection in the two-dimensional Rayleigh-Benard system has

been simulated using the direct simulation Monte Carlo method, where the diffuse re6ection boundary

conditions are strictly applied at the top and bottom walls. It is shown that the determined critical Ray-

leigh number agrees well with that obtained by the macroscopic hydrodynamic equations.

PACS number(s): 47.20.Bp, 47.27.Te, 05.70.Ln

I. INTRODUCTION

The direct simulation Monte Carlo (DSMC) method is
one of the most widely used numerical techniques for
simulating rarefied gas flows with incorporating atomistic
details. This technique was originally developed by Bird
[1] and has been applied to various types of flow prob-
lems. In this method, a large number of molecules in a
real gas are simulated by a smaller number of representa-
tive particles. The trajectories of these particles are
traced in a short time interval by decoupling interparticle
collisions and taking interactions with boundaries into
account. Interparticle collisions take place on a proba-
bilistic basis in a collision cell. Macroscopic quantities
are obtained by sampling particle properties in a sam-

pling cell, which is generally larger than the collision cell.
The macroscopic hydrodynamic phenomenon of the

vortex shedding past an inclined flat plate in the near-
continuum region was studied by Meiburg [2] using both
the molecular-dynamics (MD) method and the DSMC
method. A vortex street was not observed in the DSMC
results because the size of the collision cell in this simula-
tion was about three times larger than the mean free
path. This was pointed out by Bird [3] using the forced
vortex in a lid-driven cavity flow. He suggested that the
size of the collision cell must be small in comparison with
the mean free path. Koura [4] has also studied the pro-
cess of vortex shedding past an inclined flat plate and
concluded that large-scale vortices were observed with
the collision cell size considerably greater than the mean
free path on the condition that an average number of par-
ticles per cell was sufficiently large. Kaburaki and
Yokokawa [5] calculated the forced vortex in a lid-driven
cavity Bow in the continnum region abiding strictly by
the criterion of the number of particles for the Bird
method and found that the DSMC results were in good
agreement with the results by the Navier-Stokes equa-
tion. Through these studies, the DSMC method was
found to be able to predict vortices in a How field.

Besides the flow field simulations, the DSMC method
has been applied to the simulation of the temperature
fields. Garcia [6] has studied the heat conduction in a di-
lute gas. The steady-state temperature gradient was eval-

uated between the parallel fiat plates with dÃerent tern-

peratures, and the temperature distribution in the heat
conduction state was shown to be predicted by the
DSMC method.

The Rayleigh-Benard (RB) system, in which both the
heat conduction and the vortex formation play an impor-
tant role, has been studied by many researchers experi-
mentally [7] and numerically [8]. In the RB system,
when the temperature difference between the top and bot-
tom walls exceeds the critical value, the transition from
conduction to convection occurs, which is known as the
RB instability.

The RB convection has also been studied at the molec-
ular level since the microscopic fluctuations of field vari-
ables would result in flow instability. Mareschal and
Kestemont [9] have shown the RB convection rolls by us-

ing the MD method when the Rayleigh number was
much higher than the critical Rayleigh number. Rapa-
port [10] reported the occurrence of the transient roll
patterns with higher wave number during the develop-
ment of the stable RB convection by the MD method.
Mareschal et al. [11], Puhl, Mansour, and Mareschel
[12], and Given and Clementi [13] compared the field
variables obtained by the MD method with the results by
the hydrodynamic calculation. Garcia [14] studied the
RB convection rolls by using the DSMC method and
Garcia and Penland [15] compared the DSMC results
with the numerical solution of the Navier-Stokes equa-
tions. Although the convection rolls were observed and
the field variables were discussed in these MD and
DSMC simulations, these works all employed semislip
boundary conditions at the top and bottom walls of the
system. Two types of semislip boundary conditions were
applied: in Refs. [9], [11], and [12], only the velocity
component in the perpendicular direction to the wall is
thermalized according to the Maxwellian distribution
with the surface temperature and the transverse com-
ponent unchanged, while in Refs. [10] and [13], the per-
pendicular component is siznply reversed and all the com-
ponents are scaled to match the surface temperature. It
is thus clear that the semislip boundary condition does
not satisfy the Maxwellian distribution completely at the
wa11, and the simulated flow field might be affected.
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Stefanov and Cercignani [16] have shown that the con-
vection rolls could be formed by using the diffuse
reflection boundary condition, in which the incident par-
ticle loses its thermal property completely and appears
with the velocity components randomly sampled from
the Maxwellian distribution corresponding to the temper-
ature of the surface. The influence of the boundary con-
dition upon the field variables was, however, not dis-
cussed. In any case, the transition from the conduction
to the convection state has not yet been clearly predicted
at the molecular level both by the MD and the DSMC
methods.

In this study the DSMC method of Bird [1] is applied
to the RB system to predict the critical Rayleigh number
at which the RB instability occurs. The eSect of the
boundary condition on the critical Rayleigh number is
discussed.

II. DSMC SIMULATION

The simulation region is a two-dimensional rectangle,
which is 11.3 mm in width and 5.6 inm in height, with an
aspect ratio of 2.016. This region is surrounded by flat
walls and filled with hard-sphere particles with a diame-
ter of 3.7X10 ' m and a mass of 4.8X10 kg. The
initial temperature and pressure are assumed to be 80 K
and 20 Pa, respectively. Under these conditions, the
number density is 1.81 X 10 m and the mean free path
is 0.091 mm. The Knudsen number is estimated to be
0.016, which corresponds to the continuum region where
the Navier-Stokes equation is valid. The simulation re-
gion is divided into 40X20 sampling cells, each of which
is divided into 5 XS collision cells. Therefore, the size of
the collision cell in the present simulation is smaller than
the local mean free path. Initially, each sampling and
collision cell contains 400 and 16 particles, respectively.
The time step for the transient simulation is chosen to be
0.9 of the mean free time and a sampling is performed in
every two simulation time steps. The temperature of the
bottom wall is increased instantly from the initial value
to a specified value at the simulation time zero and is
kept constant during the simulation. The temperature of
the top wall is unchanged from the initial value. The
difFuse reflection is assumed at the top and bottom walls,
while the specular reflection is assumed at the side walls.
In the specular reflection boundary condition, the per-
pendicular velocity component of the incident particle is
reversed, while the tangential velocity component is un-
changed. It is noted that the present simulation condi-
tions are more realistic compared with those used in the
MD simulations. Only the gravitational acceleration is
chosen to be a hypothetical value so that the density in
the conduction state is constant throughout the simula-
tion region [14,15]. The bottom wall temperature ranges
from 100 to 500 K, and the corresponding Rayleigh num-
ber from 126 to 5341. The critical Rayleigh number of
this system is about 1708, which is obtained from the
linear stability analysis of the hydrodynamic equations
based on the Boussinesq approximation [17]. The wave-
length at the critical Rayleigh number is given as 2.016,
and thus the aspect ratio of the simulation region is set
equal to this value.

III. RESULTS AND DISCUSSION
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FIG. 1. Transient of the velocity Seld at the Rayleigh num-
ber of 4527. Each velocity vector is obtained by sampling dur-
ing 200 time steps.

The transient of the velocity field at the Rayleigh num-
ber of 4527 is shown in Fig. 1. Each velocity field is ob-
tained by sampling particle velocities during 200 simula-
tion steps. The statistical fluctuation is found to be ap-
proximately 0.005 during this sampling period in the
present case. As is shown clearly in Fig. 1, the instant
alignment of velocity vectors is observed from the bottom
to the top wall, because the bottom wall temperature is
instantly increased. As time develops it is seen that the
velocity vector field becomes random and then two con-
vection rolls are gradually formed. The downward flow
seems to appear first at the center of the simulation re-
gion. The centers of the convection rolls are formed at
mid-elevation and located close to the downward ffow.
In our present results, the downward flow is found to ap-
pear always in the center of the simulation region, as was
seen in the hydrodynamic simulations [8]. In the MD re-
sults [11,12], on the other hand, the upward flow was ob-
served in the center. The direction of vortices seems to
be dependent on the boundary or initial conditions.

The time development of the mid-elevation tempera-
tures near the side wall and at the center of the simula-
tion region is shown in Fig. 2 along with the horizontal
average temperature. The temperatures are normalized
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FIG. 2. Time development of the mid-elevation temperature
at the Rayleigh number of 4527. The temperatures at the center
and near the sidewall are shown along with the horizontal aver-
age.
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so that the temperatures of the top and bottom walls are
0.0 and 1.0, respectively. The stable temperature field is
found after 3000 simulation time steps. It is found that
this temperature field with convection rolls remains
stable even after 25 000 time steps.

The temperature and the density profiles are shown in
Fig. 3 after the stable convection rolls are established.
Here, a sampling is performed from 4900 to 5600 time
steps. The density was normalized with the initial value.
It should be noted that the contour plots shown in Fig. 3
are smeared for the density profile in particular, and the
high- and low-density contours near the top and bottom
walls, respectively, are not seen. However, it is found
that the centers of the convection rolls shown in Fig. 1

are not on the average temperature contour of 0.5, but on
the average density contour of 1.0. The high-temperature
and low-density region spreads from the bottom to the

top wall along the upward flow, while the low-
temperature and high-density region spreads from the
top to the bottom wall along the downward flow. The
temperature gradient is large near the top wall. The
profiles of these macroscopic variables are similar to
those obtained by the DSMC method with the semislip
boundary conditions [14].

The mid-elevation temperatures near the sidewall and
at the center of the simulation region are shown in Fig. 4
as a function of the Rayleigh number. This observation
is made when the flow is in a complete steady state. A bi-
furcation between purely conductive and convective
states is clearly seen at around the hydrodynamic critical
Rayleigh number of 1708. In other words, the critical
Rayleigh number predicted by the DSMC method, which
is approximately 1700, as shown in Fig. 4, agrees with
that obtained by the macroscopic hydrodynamic equa-
tions.

In our simulation, 400 particles are used in a sampling
cell for all cases, and the influence of the number of simu-

lation particles on the critical Rayleigh number is not
clear. We, however, found that 40 particles in a sampling
cell (1 or 2 in a collision cell) were not enough to form the
vortices shown in Fig. 1 under the same conditions.
There might be a necessary number of particles for simu-

lating not only the vortices but also the transition be-

tween conduction and convection states.
The state of pure heat conduction is observed when the

Rayleigh number is below this critical value, while the
state of heat convection appears above the critical value.
The velocity field and the temperature profile in the heat
conduction state are shown in Fig. 5, where a sampling is
performed between 11700 and 12600 time steps. The
Rayleigh number in this case is 1507, which is lower than
the critical value, and the convection rolls do not appear.
The temperature varies almost linearly in the vertical
direction, and the isothermal contour is nearly parallel to
the bottom and the top walls. The midelevation tempera-
ture is slightly higher than 0.5, which is also seen in Fig.
4. These features of temperature distribution in the heat

0.8

NEAR THE SIDE WALL

0. 7

0.
—-0. 9

DENSITY
I

' ' ' '
I

' ' '
I

' ' ' '
I

' ' ' ' i ' ' ' '
I

' ' ' '
t

I

0.83 —:
0.89
-0. 94

jl.22 I: . -1.0

17 1 111.06

0.6
Ct

I—

cr 0.5
LU
Q

LLI 0. 4

0. 3
10

t

I

I

i

HYDRODYNAMIC CRIT ICAL RAYLEI GH NUBBER
(Ra 1708)
I

10

RAYLE I GH NUMBER (-}

I

10

FIG. 3. Temperature and density distribution at the Rayleigh
number of 4S27. Sampling is performed from 4900 to 5600 time
steps.

FIG. 4. Mid-elevation temperature in the steady state as a
function of the Rayleigh number. The temperatures at the

center and near the sidewall are shown along with the horizon-
tal average.
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FIG. 5. Velocity field and temperature distribution at the
Rayleigh number of 1507. Sampling is performed from 11700
to 12 600 time steps.

conduction state were also observed in the MD results
[9]

The midelevation temperatures obtained by using the
semislip boundary condition are shown in Fig. 6. This
figure corresponds to Fig. 4, in which the results by the
difFuse boundary condition are shown. In our semislip
simulation, the perpendicular velocity component of the
reflected particle is thermalized and the transverse cam-
ponents are unchanged. The simulation conditions are
almost the same as before except for the aspect ratia of
the simulation region. The width is 15.8 mm instead of
11.3 mm, and the aspect ratio is 2.83 in this case. This
aspect ratio is equal to the wavelength at the critical Ray-
leigh number which is obtained from the macroscopic hy-
drodynamic equations with the slip (inviscid) boundary
condition [17].

The bifurcation between the conductive and convective
states is also seen in Fig. 6, as was already shown by the
diffuse boundary condition in Fig. 4. The obtained criti-
cal Rayleigh number is, however, at around 1000, while
the hydrodynamic one is 658 in this case [17). The
difFerence in critical Rayleigh number is large compared
with the former case obtained by the difFuse boundary
condition. This would indicate that the semislip bound-
ary condition does not correspond correctly to the invis-
cid boundary condition for the macroscopic hydro-

FIG. 6. Mid-elevation temperature in the steady state as a
function of the Rayleigh number. The temperatures at the
center and near the sidewall are shown along with the horizon-
tal average. The semislip boundary condition is applied.

dynamic equations and is not adequate to simulate
thermal boundary conditions.

IV. CONCLUSIONS

In this study the RB conduction-convection system has
been simulated by using the DSMC method. The macro-
scopic heat conduction and convection states and the
transition between these two states were simulated at the
molecular level, and the results of the flow patterns were
in good agreement with those derived by the hydro-
dynamic equations. It was found, by using the strict
difFuse boundary condition at the top and bottom walls,
that the determined critical Rayleigh number agreed with
that of the linear stability theary. The semislip boundary
condition, which had been frequently used in MD and
DSMC simulatians, was shown to be inadequate to simu-
late the thermal boundary condition. Our results suggest
that the DSMC method provides a valuable tool for
studying microscopic structures in macroscopic Qow
transitions and instabilities.
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