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Benard convection in a binary mixture with a nonlinear density-temperature relation

Christian Karcher' and Ulrich Miiller
Kernforschungszentrum Karlsruhe, Institut fur Angewandte Thermo un-d Fluiddynamik, Postfach 3640, 76021 Karlsruhe, Germany

(Received 10 September 1993)

Benard convection of a two-component liquid in a porous medium is considered. The mixture
displays Soret effects and shows a nonlinear density-temperature relation, i.e., non-Boussinesq proper-
ties. A two-parameter perturbation analysis is used to determine the effects on the stability of the basic
state and the Snite-amplitude convection. Linear theory demonstrates the nonlinear density-temperature
relation to have a destabilizing effect; the critical Rayleigh numbers for the onset of oscillatory and
steady-state convection are decreased. For the case of two-dimensional convection, traveling waves and
steady-state solutions are considered. They are determined up to fifth order of the amplitude parameter.
In the vicinity of the codimension-two point, a stable branch of traveling wave solutions exists near the
onset. If the Rayleigh number is increased the wave motion vanishes and a transition to steady-state
convection occurs. Due to the symmetry of the two-dimensional solutions this bifurcation is not affected
by the non-Boussinesq properties of the mixture. However, for the case of three-dimensional convection
the nonlinear density-temperature relation leads to an unfolding of the bifurcation of steady-state hexag-
onal solutions. As a consequence the branch of the oscillatory solution terminates at an isolated point in
the parameter plane.

PACS number(s): 47.20.Ky, 44.30.+v

I. INTRODUCTION

In a two-component liquid layer heated from below
and cooled from above the imposed temperature gradient
can generate a concentration gradient as well. This
molecular separation phenomenon is known as the Soret
effect [1,2]. In binary mixtures with negative Soret
effects, characterized by negative separation ratios f &0,
the more dense component migrates towards the lower
warm boundary [3]. Hence buoyancy forces are reduced
and the layer is stabilized by the induced concentration
stratification. In such a system the essential results of
linear stability analyses [4—12] can be described in terms
of the separation ratio P. For g&fcT and QCT&0 the
basic state of heat conduction becomes initially unstable
to oscillatory perturbations as the temperature difference
across the height of the layer exceeds a critical value.
For g) QCT a steady-state instability occurs. The case

/=FACT denotes the codimension-two point (CTP) where
both instabilities coincide at the same critical value of the
control parameter.

In previous years the nonlinear convection in binary
mixtures, subject to negative Soret effects, has stimulated
an enormous amount of effort both theoretically and ex-
perimentally; for details see, e.g., [13—25] and the recent
surveys of the literature by Schopf [26], Schopf and Zim-
mermann [27], and Zimmermann, Miiller, and Davis
[28]. Focusing on the vicinity of the CTP, i.e.,
PCT f«1, the m—ain experimental observations and
theoretical findings can be summarized as follows: For
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slightly supercritical temperature differences across the
layer traveling waves (TWs), consisting of a laterally
propagating roll pattern, are the preferred mode at the
onset of convection. Increasing the forcing temperature
difference the amplitude of the wave increases while its
phase velocity decreases. At an even higher value of the
temperature difference the propagation of the wave
ceases, and a transition to steady-state two-dimensional
convection occurs. In some cases the TWs may lose sta-
bility to modulated traveling waves before the transition
takes place.

In the present paper we investigate the infiuence of a
nonlinear density-temperature relation on the Benard
convection in a binary liquid layer. We consider a mix-
ture in a porous medium [29—31]. In this case similar re-
sults as in bulk Quid mixtures are expected while the
analysis is simplified. The work is motivated by experi-
ments on Benard convection performed by Ximmermann
and Miiller [32]. These experiments were conducted in a
liquid mixture of 15 wt. % ethyl alcohol in water at vari-
ous mean temperatures. Zimmermann and Miiller [32]
observed that stable TWs are suppressed when the mean
temperature is close enough to the solidification tempera-
ture of the mixture. Instead, a steady-state three-
dimensional convection pattern is identified. They con-
jectured that this observation is due to the presence of
significant nonlinearities in the density profile of the basic
state at low mean temperatures. Studies of convection in
single-component Quids demonstrate that these non-
Boussinesq properties lead to a preference of three-
dimensional hexagonal patterns at onset of convection;
see [33—38].

The paper is organized as follows. In Sec. II the
governing equations and the method of solution are
presented. The results of a linear stability analysis are
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given in Sec. III. Section IV shows results of the finite-
amplitude analysis. In the case of two-dimensional con-
vection the TW solution and the steady-state solution are
calculated up to fifth order in the amplitude. A bifurca-
tion diagram is shown representing the situation in the
vicinity of the CTP. We discuss the stability of these
solutions using standard results of bifurcation theory
[39—41]. Furthermore in Sec. IV we calculate three-
dimensional oscillatory and steady-state solutions with
hexagonal symmetry. For these solutions a bifurcation
diagram valid near the CTP is derived. The main results
of our study are summarized in Sec. V. To obtain a read-
able text details of rather lengthy calculations are
presented separately in the Appendix.

w =0 T=T~ C=C& at z=h (2.4b)

z 1T'(z) = T' —
( T —T )

2
(2.5a)

Using these idealized conditions the boundaries are as-
sumed to be permeable for the solute Aux. Hence the
present problem qualitatively corresponds to the ther-
mohaline problem [42—48] in which the concentration
gradient is not induced by Soret effects but externally im-
posed.

The system possesses a basic state of heat conduction
characterized by v'=0 and j'=0, a hydrostatic pressure
distribution and linear temperature and concentration
profiles. We find

II. FORMULATION OF THE PROBLEM

A. Governing equations

C'(z)=C' —S C'(1 —C')(T —T )
z 1

2
(2.5b)

The basic equations describing thermal convection in a
horizontal layer of a binary liquid mixture are the conser-
vation equations of mass, solute and energy. In addition
we use Darcy's law to model the conservation of momen-
tum in a porous medium. The full set of equations is

Moreover, these equations define the mean values T', C'
and the values of Co and C, used in the boundary condi-
tions (2.4).

In the following we are interested in dimensionless de-
viations from the basic state. Using the scales

V v=0,

B,C+(v V)C= —V j,
d, T+(v V)T=aV T,

(2.1a)

(2.1b}

(2.1c)

(x,y, z) ~h, t ~, v~ —,p ~
K

(2.6}

T T' 0- To ——T), C —C' ~ —SOC*(1—C')(To —T, ),
Kv= ——(Vp+pfge, ), e, =(0,0, 1) .
p

(2.1d)

Here v = ( u, U, w ) is the filtration velocity, C the concen-
tration of the solute, T the temperature, and p the pres-
sure. Material properties are the thermal conductivity ~
of the layer, the dynamic viscosity p of the mixture, and
the permeability E of the porous medium. In Eq. (2.1d),

g is the acceleration of gravity acting vertically down-
ward. Furthermore, in this equation the density pf of the
mixture is given by the nonlinear relation

j=—Do[VC —SOC'(1 —C')VT] . (2.3)

Here Do is the coefBcient of mass diffusion and So is the
Soret diffusion coefBcient. A11 the coe%cients are as-
sumed to be constant.

We consider a layer of height h and of infinite extend
in the horizontal x-y plane subject to fixed temperature
and concentration at the top (z =h) and bottom (z =0).
In this case the boundary conditions read as

w =0, T=T, C=C at z=0, (2.4a)

pf =p'[1 —a(T T")—P(T T—") —a'(C ——C')],
(2.2)

where a and a' are the coefficients of thermal and solutal
expansion and p denotes the nonlinear coefficient of
thermal expansion. We define the reference density p' at
the mean temperature T* and the mean concentration
C* within the mixture. In Eq. (2.1b) the solute ffux j, al-
lowing for Soret di8'usion, takes the form

eliminating the pressure and introducing the field
S =T+C eventually leads to a system of nonlinear per-
turbation equations. We obtain

V w =R VH [ I 1+/ —2y(z —
—,
' )]T+y T2 fS], —

d, T+(v V)T=w+V T,
d, S+(v V)S=LV S+V T,
and the homogenous boundary conditions

w =0, T=O, S=0 at z=0 1 .

(2.7a)

(2.7b)

(2.7c)

(2.8)

In this representation the horizontal components of the
velocity vector can be expressed in terms of the vertical
component:

VHu = —B„B,w, VHU = —8 B,w, (2.9)

where VH denotes the horizontal Laplacian. The system
(2.7} is characterized by four dimensionless groups, the
Rayleigh number R, the separation ratio g, the non-
Boussinesq number y, and the Lewis number I.:

ag(TO —T, )EhR=
~(pip' )

y= —(To —T, }, L=

/=So C'(1 —C*)

Do
(2.10}

We consider R as the forcing parameter of convection.
is an additional control parameter characterizing Soret
effects. The parameter y quantifies the nonlinearity of
the density profile. The Lewis number I. defines the di-
mensionless time scale of molecular diffusion. For typical
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B. Method of solution

We use a perturbation analysis [49,50] to solve Eqs.
(2.7) subject to the boundary conditions (2.8}. Regarding
the amplitude of convection c and the non-Boussinesq
number y as small parameters, the variables of state may
be expressed in form of a double series:

(w, T,S)= g e"y (e„,T„,S„).
n =1,m =0

(2.11)

The forcing parameter R and the frequency ro of oscilla-
tory solutions are likewise expanded:

n =1,m =0
n —1 m

X ~n-1m (2.12a)

n=1, m =0
n —1 m

1 n —1,m (2.12b)

In writing Eq. (2.12b) we are looking for time-periodic
solutions, characterized by B,(w, T,S)=iroq(to, T;S).
Here i =& 1 an—d q is a real multiplier which will be

water/ethanol mixtures at low mean temperatures L is of
the order 10 [11].

defined later on. Inserting expansions (2.11) and (2.12)
into the nonlinear equations (2.7) and (2.8) and collecting
terms of equal power in the small parameters e and y re-
sults in a sequence of linear inhomogenous equations.
This sequence can be successively solved starting with the
eigenvalue problem of the order c'y . The coeEcients of
expansion of higher order, R„1 and co„1 with
n ) 1 and m )0, respectively, are determined from solva-
bility conditions for inhomogenous systems of differential
equations. Then, for a fixed parameter y, Eq. (2.12a)
defines the amplitude s as a function of the Rayleigh
number R. Moreover, from Eq. (2.12b} by demanding
aP ~ 0 we determine the parameter range in which oscilla-
tory solutions exist. To evaluate the linear stability prob-
lem (n =1) the coefficients are calculated up to the order

y . In the case of two- and three-dimensional finite-
amplitude convection (n ) 1) we calculate the coefficients
up to the order e and e, respectively. Hence the interre-
lation between the parameters used in the perturbation
expansion are assumed to be y ~ c and y ~ c, respective-
ly.

HI. LINEAR STABILITY ANALYSIS

To the order c'y we obtain the eigenvalue problem

L{Xio]=
D kR —k (1+/)

D —k —i~~q

D k—
N10

L (D k) i roooq
— S—,o

(3.1)

and the boundary conditions

X10=0 at z =0, 1 . (3.2)

Here 8, is denoted by D. Furthermore we have introduced the horizontal wave number k according to the lateral
periodicity of the first order solutions, i.e., V+X, = —k X, . Since the boundary conditions (3.2) suggest a solution
of the form Xio(z}~ sinirz, Eq. (3.1) can be reduced to a set of homogenous algebraic equations. The evaluation of the
solvability condition of this set yields the bifurcation points R 00' and R ' of steady-state (co=0) and oscillatory (co%0)
solutions, respectively. According to results of Brand and Steinberg [29] and Knobloch [31]we find

2R'"'= {1+/(1+L ')] (3.3}

and

g (os) q 1+L2

kz 1+/ ' (3.4a)

(3.4b)

where q =n+k . The solut. ion X,o(z) of Eq. (3.1) together with the solution X',o(z) of the adjoint problem are given in
the Appendix [Eqs. (Al} and (A2)].

To the order c'y' we have to solve the inhomogenous equations

—Ro&k [(1+$)T,O —QSio]+2Rook (z —
—,')Tio

l COP1q T1P

iCOP1qS 1P

with respect to the boundary conditions

(3.5}
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X]&=0 at z =0, 1

The solvability of Eq. (3.5) requires

(r.[x„],x*„&=0,

(3.6)

(3.7)

where the angular brackets denote the weighted scalar product. By this condition for the right-hand side of Eq. (3.5)
resonant terms are eliminated. The evaluation of relation (3.7) gives

~oi=O

0& 0

(3.8a)

(3.8b)

A partial solution X»(z) of Eq. (3.5) can be easily obtained by expanding the remaining inhomogenity in terms of a rap-
idly converging Fourier s series [see Appendix, Eq. (A3)].

To the order c.'y the set of equations and the corresponding boundary conditions are

—R()zk [(1+/)T)0 —QS)oj+2Rook (z —
—,')T, )

L[X)z]= l C002QT jo

l C002$S )0

X,2=0 at z =0, 1 .

The evaluation of the solvability condition of this problem, i.e.,

&~[x(z]»)o&=o

leads to the following coefficients of expansion (2.12a) and (2.12b):

g (st)
(st) 00

.. .[f( q+fz q ]

and

(3.9)

(3.10)

(3.11)

(3.12)

g (os)
02

3m L (q+3n ) 1 — L
3R (os)

) (q) 1+ ' + z(q) 1+
[1+/]2 Lz( +3~2)2+ 2 2(1+L)2

15m L (q+15m ) 1 — L
15m.

L (q+15n ) +coq (1+L)

(3.13a)

2~0002=

Lz( +3 z)z 1+ q(1+L)
L +co 3~2

f, (q) 1+
[1+1(] L'(q +3m')'+ (0q(l'(1+L )'

L'(q+15n.z)z 1+ q

15m
+fz(q) 1+

L (q+15m ) +co(x)q (1+L)

(3.13b)

Here an implicit representation of the results is used where

f ( )
( 32q ) f ( )

( 64q ) (3.14)
9 X3n (2q+3m ) 225 X15m (2q+15n )

Minimization of the expressions for the Rayleigh numbers with regard to the wave number k leads to the critical con-

ditions for the onset of steady-state and oscillatory convection. After some lengthy algebra we obtain

(„) 4~', z f)+fz
1+$(1+L ') [1+$( 1+L ') ]

z
(3.1S)

and

", f) +—'„'fz-k'"' =m 1+
[1+/(1+L ')]

(3.16)

2 ]+I
1+/

2

1+
(1+f)'

15L (1——', L) 255L (1—
—,', L)

+ z 1+
25L +4' (1+L) 289L +4'((1+x)L)

(3.17)
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35L (1+ 'L—)
+ 2 1+

25L +4r!i (1+L)
323L (1+ ,', L—)

289L +4N (1+L)

(3.18)

15QL (1—", L—)
—4cooo(1+L) (1+"L—)k'"' =n 1+ i —', i 1+ ', L-

(1+f) [25L +4roeo(1+L) ]

17 X18L (1—"'L)—4' (1+L) (1+"'L—)
+ 34 1+225L3 iso 225

[289L +4eit (1+L) ]2
(3.19}

where

4X32 4X64
9 X7 X 3ir 225 X 19X 15m.

(3.20)

I

2 1+L +L
1+L

Figure 1 shows the stability diagram of the present prob-
lem. The critical Rayleigh numbers R,'"' and R,'"' given

by the Eqs. (3.15) and (3.17}, respectively, are plotted
versus the separation ratio P. Two different cases are il-
lustrated: The dashed curves correspond to the well-
known case y=0 [29,31]. The new results for a binary
mixture with a nonlinear density-temperature relation,
characterized by y+0, are given by solid curves. We find
the non-Boussinesq properties to have a destabilizing
effect; for a fixed value of g the critical Rayleigh numbers
are decreased. This result holds independent of the sign
of the parameter y since the critical values depend on yi.
In single-component fluids (/=0) the destabilizing effect
of a nonlinear density profile was already identified by
Busse [35,36].

Following Refs. [9-16,26-28] we define the CTP at
P=gcT by setting R,'"'=R,'"'; cf. Eqs. (3.15}and (3.17).
We find that the CTP shifts to lower values of the separa-
tion ratio when the nonlinear density profile is present;
see Fig. 1. We obtain

—Lz
[1+y (1+L+L ){',fi+ —,",fq }] .—

(3.21)
Hence, for yAO the parameter range in which an oscilla-
tory instability occurs is obviously reduced. Moreover,
we define the value f=P by calculating Eq. (3.18} in the
limit co, =0. We find

Rc

X [f,(1+ ,'L )+f—2(1+—,",L )]

(3.22)

Since ttt & gcT, where P—itic ~ y L, the oscillatory sta-

bility curve R,(")(g) does not end at the CTP as for the
case y =0, but exists in a small range for g& gcT. In this

range we have R,'")& R,'"'; see Fig. 1. Thus, at the CTP
the onset of oscillatory convection is characterized by a
nonzero critical frequency when a nonlinear density
profile is present. Similar results are predicted by linear
theory if the boundaries are assumed to be impermeable
for solute flux; see Refs. [9,10,15,16].

Figure 2 shows qualitatively the critical wave numbers

k,'"' and k,'"' according to Eqs. (3.16}and (3.19), respec-

tively, as functions of i' for the cases @=0 (dashed lines)

and y+0 (solid lines}. When the nonlinear density profile
is absent we find constant wave numbers and k,'"'=k,'"'
[29,31]. In contrast, if yAO the critical wave numbers of
the steady-state and oscillatory instability differ as they
depend on the separation ratio f. Especially at the CTP
we find k,'"' —k,'"' ~ y L. A similar wave number split-

ting at the CTP was found by Refs. [9-12,15,16] by as-

suming impermeable boundary conditions. Furthermore,
for y%0 the wave numbers are increased. This fact can
be attributed to the destabilizing effect of the nonlinear
density profile. Since the reduction of the Rayleigh num-

ber corresponds to a reduction of the active layer height
the horizontal length scale is likewise reduced. As one

R(")
C

R(+)c

,4m
C

I I

I

! ! I
I

I I
I I!

I
I! I

%2

-L 0'P= —1

FIG. 1. Stability diagram for a binary mixture subject to

Soret effects, critical Rayleigh numbers R,'"' and 8,'"' for the

onset of steady-state and oscillatory convection as functions of
the separation ratio t(!, aud for the non-Boussinesq numbers

y=O (dashed lines) and yAO (solid lines). t(!cr denotes the

codimension-two point.

-L'P =
—, L +~+ +CT

Ip

FIG. 2. Plot of the critical wave number k,'"' and k,' ' at on-
set of steady-state and oscillatory convection as functions of the
separation ratio i( and for the non-Boussinesq numbers @=0
(dashed lines) aud @%0 (solid lines). Qcr denotes the
codimension-two point.



4036 CHRISTIAN KARCHER AND ULRICH MULLER 49

can see from Eqs. (3.16) and (3.19) there are singularities
at values f= L—( 1+L} ' and P= —1, respectively, in
the representation of the wave numbers. Hence the con-
vergence of the perturbation expansion is ensured only in
the parameter ranges y & [1+/(1+L ')] and (1+/}',
respectively.

IV. FINITE-AMPLITUDE CONVECTION

A. Convective pattern

In the regime of finite-amplitude convection we focus
on two- and three-dimensional steady-state (SS) and TW
solutions. Standing waves are not considered, since these
solutions are not expected to be a stable form of convec-
tion: In the case y =0 Knobloch [31] has shown that
two-dimensional standing waves are unstable with respect
to larger-amplitude TWs. Following the idea of Knob-
loch, Karcher [51] has demonstrated that this result
holds also for a small nonlinearity in the density profile as
well as for the three-dimensional case.

The horizontal and temporal periodicity of the linear
modes (see Sec. III} is achieved by introducing a pattern
function of the form

4(x,y, t )= A H g exp [ i [k—( q'N r ) coq t ]—], (4.1 )

N

so that the complete solutions x, (x,y, z, t) in the order
c'y can be written as a product, i.e., x, (x,y, z, t)
=X, (z)4(x,y, t). In Eq. (4.1) r=(x,y) and q'N is a hor-
izontal unit wave vector. We restrict the analysis to so-
called regular patterns [35,36]. These are characterized
by a single horizontal amplitude A H . The particular
value of AH can be determined from the normalization
condition (4,4 ) = 1.

In the notation of Eq. (4.1) a two-dimensional roll pat-
tern is given by N = 1 and A& =+2' . A three-
dimensional hexagonal pattern is characterized by N =3,
~H 6( 3

)', and y12 q 13 q'23 2, where q'NL

In the time-periodic case (F40) the resulting
pattern is a superposition of three TWs of the same phase
velocity, while their axes are each shifted by an angle of
120'

~ This yields a nontraveling structure which may be
interpreted as oscillating triangles (OTs); see Roberts,
Swift, and Wagner [52].

The differential equations and the boundary conditions
to the order e"y, with n & 1, can be written in the gen-
eral form

Here S„represents the corresponding right-hand side
vector containing the relevant coefficients of the pertur-
bation expansion (2.12a) and (2.12b), i.e., R„, and

co„, . Moreover, S„contains terms which are due to
the nonlinearities in the basic equations (2.7). These
terms can be expressed in form of products of n first or-
der solutions. Due to the homogenous boundary condi-
tions the calculation of R

&
and cu„, is straight-

forward; we apply the solvability condition

& Snm «x10, sc & =0 (4.3)

B. Tvvo-dimensional Snite-amplitude convection

We consider first the equations of the order c. y
Since by nonlinear interactions of two roll solutions
(n =2), characterized by the same wave vector, resonant
terms cannot be generated all coefficients of the perturba-
tion expansion vanish, i.e.,

R ) =0,
m 0, m =0, 1,2, . . . .

(4.4a)

(4.4b)

To the orders c. y and c. y
' the relevant equations are

within the respective order. Here x&o z denotes an arbi-
trary solution of the adjoint eigenvalue problem charac-
terized by the wave vector q'x. According to Eq. (4.3),
the coefficients R„& and co„, are fixed by eliminat-

ing resonant terms generated by nonlinear interactions of
first order solutions. Moreover, together with the
coefficients R„& we discuss the stability of the various
patterns. This is done with the aid of standard stability
theorems of bifurcation theory; see Refs. [39—41] for de-
tails. For a supercritical bifurcation to occur it is neces-
sary and sufficient that the first nonvanishing coefficient

R„, is positive. In this case the bifurcating solution is

stable with respect to infinitesimally small disturbances
which are themselves of the same spatiotemporal struc-
ture. If the first nonvanishing coefficient is negative, the
bifurcation is subcritical and the corresponding solution
is unstable.

In this section we focus again on the presentation of
the main results and refer to the Appendix for details of
the calculations. In the following the cases N = 1 and 3

will be treated separately.

M[x„]= 1

x„=O at z =0, 1 .

V R PP( 1+Q }VH R(g%VH w„

V —8, 0 T„

0 V L V —0,

(4.2)
and

R20VH [(1+4)T10 F10]
M[x30] = (v10'V)T20+lco20qT10

( v
& o

- V )S20 +i co20qS & o

x3o=0 at z =0 1
(4.5)

R21VH [(1+$)T10 QS10] 2(z 2 )VH(R(. T30+R20T )+102R~)VH(T10T20)

M [x31] = ( v11 V )T20 +i co21qT10 +' ~20qT»

(v11' V )S20 +1co2,qS,0 + 1co20qS»

x3& =0 at z =0, 1,
(4.6)
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respectively. In writing Eqs. (4.5) and (4.6) we have al-

ready used results of the lower-order analysis to simplify

the vectors SM and S~, (see the Appendix). The evalua-

tion of the solvability condition of the problems (4.5}and

(4.6) yields the following coefficients for the SS solution:

(st)~ 1+$(1+L '+L +L )

4 1+/(1+L ')
R(cB— R(st)+L i

20 00 4
(4.10)

ittzc= —(1+L '+L +L ) '. For P& g~c the bifur-
cation to steady-state convection is supercritical (R20 &0)
and for g & gzc it is subcritical (R20 &0). Since ger & P~c
[cf. Eq. (3.21)], at the CTP the bifurcation is subcritical
and the corresponding coefficient reads

R~) =0 .

For the TW solution we obtain

Rzo=0

R2) =0,

a)2)=0 .

(4.7b)

(4.8a)

(4.8b)

(4.9a)

(4.9b)

Hence, when the first instability of the basic state is oscil-
latory, the SS solution is unstable at finite amplitudes.
Note that the bifurcation to TW convection is degenerate
(R20 =0) and the frequency of the TW decreases with in-

creasing amplitude (Nia&0). To describe the bifurcation
of the solutions in more detail we perform a higher-order
perturbation analysis which strictly holds near the CTP.

It is easy to show that to the order e y no resonant
terms are generated and the coefficients vanish. Thus we
obtain

There is no dependence of the perturbation expansion
(2.12) on the non-Boussinesq number y to this order.
The results are therefore similar to findings of Knobloch
[31] for y =0. The SS solution shows a so-called

[31,46—48] tricritical point (Rza=0) at f=f~c, where

R3o =0

c03p =0 ~

To the order c y the relevant equations read as

(4.11a)

(4.11b)

R40V~ [(1+/)Tia QSi0 }+RiDVH j( 1+lan )T)0 ttSpp j

Mt xsp] = (vip'V)T40+(vip'V)Tip+icog@Ti0+ia)20qT3Q

( vip'V )S40+ ( vip'V)S2p+ ico40qSia + i coipgS3Q

(4.12)

xso=O at z =0, 1 .

R ' ' = 'n L [1+O—(L)+O(hg) ], (4.13)

where we have used k =H. For the TW solution the
corresponding coefficients are

R '~' = ,', 7T6L [1+O(L)—+O(hy) ), (4.14)

(cr)2~~Po = )g~ i [1+O(~'|(')] .
C00o

(4.15)

Note that for the SS solution we have R~~'&0 [Eq.
(4.13)] but R 20

' &0 [Eq. (4.10)]. Hence the subcritically
bifurcating branch of the steady-state solution develops a
limit point, characterized by R =R and R (R "
where it changes direction. Bifurcation theory assures
[39—41] that at the limit point the SS solution is stabi-
lized with respect to infinitesimally small disturbances.

The evaluation of the solvability condition of Eq. (4.12)
turns out to be a cumbersome task. The full equations
determining the coefficients R40 are given in the Appen-
dix [see Eqs. (B10) and (Bll)]. However, in the vicinity
of the CTP and for small Lewis numbers L the expres-
sions can be considerably simp Med. By inserting
g=P~ —hg into Eqs. (B10) and (Bl1) and calculating
the expressions in the limit hg «1, the following results
were derived: For the SS solution we find

I

Moreover, at the CTP the bifurcation to TW convection
is supercritical since R 4'0

' & 0; see Eq. (4.14}. Thus TWs
are stable near the onset. Furthermore, we find that the
corresponding frequency of the wave is not affected to the
order e, y . According to Eqs. (4.9b) and (4.15) the rela-
tion 2co00r0 '= —

(r0~2& ') holds, and both coefficients
contributing to the expansion (2.12b) compensate.

We insert all the calculated coefficients into the pertur-
bation expansion of the Rayleigh number [Eq. (2.12a)]
and solve for the amplitude e. The result is plotted in
Fig. 3. The diagram shows the bifurcations to steady-
state and traveling wave convection in the vicinity of the
CTP, where we have R,'"'—R,'"'~hf and 5/&&1.
Hatched curves indicate unstable branches of the solu-
tions. Increasing the Rayleigh number quasisteadily (cf.
the arrow symbols in Fig. 3} the basic state loses stability
at R=R,'"' with respect to T%'s. At a supercritical
value of the Rayleigh number, i.e., R =R,' ' and
R,'~ ' —R,'"'~(b,g}, the TW branch terminates at the
lower unstable branch of the SS solution. At this particu-
lar Rayleigh number the wave motion disappears
(~2~0) and a transition to the upper branch of the SS
solution occurs leading to stable steady-state convection
at large amplitudes. On the other hand, starting from a
supercritical point on the upper SS branch and decreas-
ing R in smal1 steps, at the limit point R =R' ' a transi-
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(LF)

R
(os) (TW)

Rc Rc

~ ~ ~ ~ ~ ~
~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ \MS 0 ~ \ ~ ~ ~ ~

(sl)

Rc

mohaline convection using numerical methods.
As stated before, the bifurcation to two-dimensional

convection is not affected by the non-Boussinesq number
to the first order. The evaluation of the effects at higher
order requires the calculation of the coefficients R22 and
cu22. However, this seems beyond the scope of an analyti-
cal procedure and numerical methods have to be em-
ployed. Thus the result of the present investigation does
not allow to confirm or reject the conjecture of Zimmer-
mann and Miiller [32], namely, that the observed
suppression of TWs in binary mixtures at low mean tem-
peratures is due to a strong nonlinear relation between
density and temperature.

FIG. 3. Qualitative sketch of the bifurcations from the basic
state to two-dimensional convection in the vicinity of the
codimension-two point showing the amplitudes c' of traveling
waves (TW) and steady-state rolls (SS) as functions of the Ray-
leigh number R. Hatched curves indicate unstable branches of
the solutions. Arrows indicate sequence of states which are tak-
en when increasing or decreasing R quasisteadily.

tion to the basic state occurs and convection dies out.
We find R,'"'—R' ) ~I.; thus the TW branch is com-
pletely overshadowed by the subcritical region of the SS
solution provided hg(L holds. Similar bifurcation dia-

grams were derived by Deane, Knobloch, and Toomre
[46,47] and Knobloch and Moore [48], who studied ther-

C. Three-dimensional finite-amplitude convection

We outline next the bifurcations of steady-state and os-
cillatory solutions reflecting hexagonal symmetry. The
evaluation of the solvability condition to the order c. y
yields vanishing coefficients since the nonlinearity in the
density profile is absent. We obtain

R10

co)o—0 .

(4.16a)

(4.16b)

According to Eq. (4.1) the spatiotemporal dependence of
the solutions x2O can be represented by a product of two
sums with the wave vectors yz and yL, respectively.

To the order c y' we have to consider

R11VH{(1+/)Tlp /Sip} RppVH{2(Z 2 )T2p Tlp}

M{x2,}
= lp'V) ll+( 11'V) 10+' lie 10

(Vlp'V)S11+ (Vl 1
'V )Slp+1&11VS10

x2& =0 at z =0, 1 .
(4.17)

I+/(1+L '+ 'L )—
R(st) 40 25

21m. {1+g(1+L ') }
(4.18)

The solvability condition of Eq. (4.17) indicates a non-
trivial coefficient R» for steady-state hexagons due to the
symmetry breaking effect on non-Boussinesq properties;
see Busse [35]. This is the case whenever the wave vec-
tors form an equilateral triangle, i.e., yz+yL+yz=0
holds. We find

mixtures at low mean temperatures. For so-called l-

hexagons [35], characterized by an upstream in the
center, AH & 0 and thus R '&,

' & 0. In this case the bifur-

cation is subcritical. On the other hand, for so-called g-
hexagons [35], with downstream in the center, the bifur-
cation is supercritical since AH &0 and R',

&

')0. How-

ever, for the oscillatory pattern the distinguishing feature
of up- and downstream in the center is lost. Thus the
nonlinear density profile does not affect the bifurcation in

this case. Consequently for the OT solution we find

Especially near the CTP, where h%' «1, the correspond-
ing coefficient writes as R))=0, (4.20a)

Rl 1=——"A (1+L+L ) +O(hg) . (4.19) coi) —0 . (4.20b)

According to expansion (2.12a) and Eq. (4.19) the bifur-
cation depends on both the sign of the amplitude AH and
the sign of the non-Boussinesq number y. Here we only
discuss the case y &0, which is typical for binary liquid

Finally by applying the solvability condition to the
equations of the order s y [Eq. (4.5)], the following re-
sults are obtained. For both SS solutions, i.e., I-hexagons
and g-hexagons, we find
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—,
'dR'"'

7 X 36 1+ 1+L '+L
R = ' "{1+$(1+L '+L )]+ '"—

APL 1+ L
1+y(1+1,-') 37X139

(4.21)

Therefore the bifurcation is subcritical at finite ampli-
tudes. For the OT solution in the vicinity of the CTP we
obtain

R' '= —'' 'n'L '(1+L+L )+O(5$),
2~~(cT) 1 11257+L —1+O(gy)20 6 245o

(4.23)

(4.24)

Note that the branch of the OT solution bifurcates super-
critically (R '2ccT' & 0) and the frequency decreases with in-

creasing amplitudes (e)2p & 0).
By combining the results in the same way as in Sec.

IVB, the bifurcation diagram of the solutions in the vi-
cinity of the CTP can be given. The results are shown in
Fig. 4. Figure 4(a) illustrates the case @=0 while Fig.
4(b) shows the bifurcations in the presence of a nonlinear
density profile, i.e., for y & 0. For reasons of clarity both
graphs are limited to the first quadrant of the R-s plane.
We conclude (see [39—41]) that the subcritical portion of
the SS branches is unstable. In Fig. 4 the corresponding
curves are given by hatched lines. To evaluate the stabili-
ty of the OT solution we follow the ideas of Roberts,

(a)

In the vicinity of the CTP the result (4.21}simplifies to

R' '= ' '—"m——L '(1+L+L }+O(5$) . (4.22)

I

Swift, and Wagner [52]. They have shown that all other
oscillatory solutions bifurcating on a hexagonal lattice
are unstable if TWs are stable. In the present problem
the instability of the OT solution is inferred from the fact
that TWs develop the larger amplitude at the onset of os-
cillatory convection. Therefore in Fig. 4 the OT branch
is marked by hatched lines.

For y=0, it is easily shown that increasing the Ray-
leigh number towards the value R =R,' ', where
R,' ' —R,'"'~hf, leads to a termination of the OT
branch (t0 ~0) on the unstable SS branch representing
both I-hexagons and g-hexagons [see Fig. 4(a)]. In this
case the bifurcation is similar to that described in Sec.
IVB. However, in the presence of a nonlinear density
profile (y&0), according to Eq. (4.14) the single SS
branch is unfolded into a branch of /-hexagons and a
branch of g-hexagons; see Fig. 4(b}. On the other hand,
according to Eqs. (4.20a) and (4.20b) the bifurcation to
OT convection is not changed for y%0. As a conse-
quence, the branch of the OT solution terminates at
R =R,' ' at an isolated point in the parameter plane if a
nonlinear density profile is present.

In the experiments of Ziminermann and Miiller [32] at
low mean temperatures within the mixture a steady-state
three-dimensional convection pattern was observed.
They explained their observation by the efFect of a strong
nonlinear density profile of the basic state. This conjec-
ture cannot be strictly confirmed by the present analysis.
Since the perturbation expansion is truncated at third or-
der in c, at finite amplitudes only unstable hexagons are
predicted. A higher-order analysis is necessary to
demonstrate the existence of stable hexagons at larger
amplitudes.

~ I I I ~ I~l ~ ~ I ~ ~ ~ ~ l I III~ I I III I ~ I ~ I ~ I I ~ ~ f l I ~ l

V. SUMMARY

(b)

I~ll I I ~ ~ I I I I ~ II~ ~ f ~ ~ ~ ~ ~ ~ Il I I ~ ~ f ~ ~ I ~
(os) (OT) (It)

Rc Rc Rc

FICx. 4. Qualitative sketch of the bifurcations from the basic
state to three-dimensional convection in the vicinity of the
codimension-two point showing the amplitudes c of the solu-
tions as functions of the Rayleigh number R. Hatched curves
indicate unstable branches of the solutions. (a) Oscillating tri-
angles (OT) and steady-state hexagons (SS) for the non-
Boussinesq number y =0. (b) OT, steady-state I-hexagons (SS-I)
and g-hexagons (SS-g) for a non-Boussinesq number y & 0.

In this paper we have studied Benard convection of a
binary liquid in a porous medium. The mixture displays
negative Soret effects and shows a nonlinear dependence
of density on temperature, i.e., non-Boussinesq proper-
ties. The main parameters controlling both the stability
of the basic state and the bifurcation to finite-amplitude
convection are the Rayleigh number R, the separation ra-
tio g, and the non-Boussinesq number y.

Linear theory is examined for the case of permeable
boundary conditions. The stability of the basic state is
characterized by a codimension-two point at g=gcT and

ger &0. When /& /AT the basic state is replaced by os-
cillatory convection as R exceeds a critical value at
R =R,'"'. At an even higher, second critical value of the
Ray eigh num er, =," wit, "),", steady-
state convection is predicted. If a nonlinear density-
temperature relation is present, i.e, y%0, the critical
Rayleigh numbers and the value of gcT are decreased.
We find that the parameter range in which a bifurcation
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to oscillatory convection may occur is decreased. More-
over, we find the nonlinearity in the density profile to
have similar efFects as impermeable boundary conditions
[9—12, 15, 16]; at the CTP a wave number splitting and a
nonzero frequency of oscillations is predicted. %hen
/=0 or y=O the present results agree with those of
Busse [35,36] and Brand and Steinberg [29], respectively.

The bifurcations to finite-amplitude convection are ex-
amined in the vicinity of the CTP, i.e., PcT f—« 1. For
the case of two-dimensional convection the nonlinear
density profile does not afFect the bifurcation. Thus the
present results correspond qualitatively to those present-
ed by Knobloch [31], Deane, Knobloch, and Toomre
[46,47], and Knobloch and Moore [48]. A stable branch
of traveling wave solutions exists near the onset. At a
slightly supercritical Rayleigh number, R =R,' ' with

R,' '&R,'"', this branch terminates at the subcritical
unstable portion of the steady-state branch. There a
jump transition to the upper stable part of the steady-
state branch of large-amplitude convection is expected to
occur.

The bifurcation to three-dimensional steady-state con-
vection is afFected by the nonlinear density-temperature
relation of the mixture. If y=O there is only a single
branch of hexagonal solutions. If a nonlinear density
profile is present, i.e., yAO, this branch is unfolded into a
branch of I-hexagons and a branch of g-hexagons. In
single-component liquids (it =0) this unfolding
phenomenon was already predicted by Busse [35]. The
bifurcation to oscillatory hexagonal convection is not
influenced by the parameter y. Thus, if yAO we find that
the oscillatory branch does not terminate at the subcriti-
cal steady-state branch as for the case y =0, but ends at
an isolated point in the parameter plane. Using stability
considerations of Roberts, Swift, and Wagner [52] we
conclude that the oscillatory solution is unstable.

In experiments on Benard convection in binary mix-
tures Zimmermann and Miiller [32] observed that the
traveling wave solution was suppressed when the mean
temperature within the mixture was close to the
solidification temperature of the liquid. Instead they ob-
served a steady-state hexagonal-type pattern. They attri-
buted these experimental findings to the presence of a
significant nonlinearity in the density profile of the basic
state. The present analysis cannot conclusively confirm
their conjecture since the experimental range of ampli-
tudes is not fully covered by our perturbation analysis.
However, if the nonlinear density-temperature relation is

taken into account both findings, the shift of the CTP and
the unfolding of the steady-state hexagons support the
conjecture of Zimmermann and Miiller [32].

Xlo=
q (1+icooo)

—(L +icooo)

sinn. z . (Al)

The solutions Xio of the adjoint steady-state [co00=0,
r =(1+/(1+L '} ')] and oscillatory [coo040,
r =(1+L)(1+1() '] problem are

Xl =
10

rf(L —icooo—)

sinn. z . (A2)

To the order c'y' the steady-state and oscillatory solu-
tions write as

APPENDIX A: SOLUTIONS
OF THE LINEAR STABILITY ANALYSIS

To the order e'y the steady-state (cooo=0) and oscilla-
tory (co00%0) solutions are

X11

q (1+icooo}+3m

1

g +377

q (L +ico(g}+3m.

32q r L (q+3m)+i co'caq
sin2vrz

3 n' (2q+3n ) L (q+3n )+icoooq(1+L)

q(1+i cooo)+ 15~

1

q+15~
q (L +i cooo) + 15m.

64q 2r L (q + 15m ) + i co~q
sin4~z+ h. o.t,

15 n. (2q+15~ ) L(q+15n )+icoooq(1+L)
(A3)

where we have expanded terms proportional to (z —
—,
' )sinmz into a Fourier s series and h.o.t. represents higher-order

terms of the expansion.

APPENDIX B: SOLUTIONS OF THE FINITE-AMPLITUDE ANALYSIS

To the order c y the solution can be written in the form

331

X2O
=SII127TZ

333

A» + g exp[ —ik(q„—qL).r] A» + g exp[ —[ki(q~ +q) ir2coqr]] 332.
X&L XWL

13 23

(B1)

where the components A;- are defined as follows:
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A, i=0,
C)

A)2=
1

C)
A, 3

= L—' A,2+ (L + icooo)
1

Aq) = —b2A22+c2,

A22 =C2
~z+~tt2ROO[1+4(1+L ')]

P

C2
A/3 L A22+ (L +icosa)

(82a)

(82b)

(82c)

(82d)

(82e)

(82f)

A 3 $ [63 2t coooq ]A 32 +c3

b 3 bH3(—L b 3 2i oooo—q ) 'Roof(L+ icooo)

h3(h3 2i t—oooq )+EH3R 00 [1+g(1+53[Lh3 2i c—oooq ] ') ]

C3
A33 = (L63—

2itoooq—) A 32+ (L+tcoso)

(82g)

(82h)

(82i)

and

c&
= ,'NrrqAH(1 —it000),—

c2 = ,'nqAtt(1 —iF000)—(1+ytvt ),
cq = ,'nqAtt(—1+it@DO)(1 y~t ) . —

(83a)

(83b)

(83c)

x,o= Ajt exp[ —i Ik(y, r) —toqt] ]

B
0 sin ~z

B&2

+ 832 sm3mz

b, = —4H,

b,~= —[4n +2k (1—
qrNL )],

b3= —[4m +2k (1+q&~L )],
~a2 = 2k'(1 q tvt.

—»—
tt3= —2k (1+t~t ) .

(84a)

(84b)

(84c)

(84d)

(84e)

In this general formulation rolls are given by %=1,
N =L, and Att=2 and hexagons by N =3, NAL, and
A H 3 To obtain the steady-state and oscil 1atory so1u-

tions we use co00=0, Roc=R0'c' and moo%0, ROO=R 0'0',

respectively.
To the order e. y the roll solution reads as

Here the b; and b H; correspond to the Laplacian and
horizontal Laplacian, respectively, of the different modes
of the solution x20, i.e., For the steady-state solution the components B; are

2
g
8

Bi3= L (1+L),
8

2

B3i =(q +8m. )B32—
8

q q+Str q~ L 3$(1+L)
128& q+4H (q+8~')' 1+y(1+L -~)

2

B33= L'B32 — — L (1+L) .
8(q+Sn' )

For TWs we find the following components:

(85)

(86a)

(86b)

(86c)

(86d)

(86e)

2

B» = (1+icosa)+ico20q,

B,3
= (L +oooo) . (1+L)+ico2O(L+icooo), 1+tcoso

~ ~ —2

8 L, +iso

(87a)

(87b)



CHRISTIAN KARCHER AND ULRICH MULLER

B2, = — (I+icooo)+ Iq(1+icooo)+8~ )B32,31 8
(87c}

&3Z =
128m

B q
33

q+ 8m.

q(L +icooo)+Sm L

q+8~2 tL (q+Str ) +coclq q—(1+L)(L —qicooo[q+Sm ] '))
( I+ icooo)

q+4m L (q+Srr ) +cotssq (1+L)+icoooq(q+Str )L

1+icoco)(1+L)(L +cocN)

I q(L +ico(N)+Str L I

(87e)

To the order c y the steady-state solution can be written as

1
X40 ~H4

4m

0

(q+4tr )B&2
—

—,'q

2 +4L '(—I+-L. ) (q+4 ')B„—q I —I -'q+
8 q+ 8~2

sin2mz+ n. r. t. ,

and for TWs we find

q (1 icon—o)B32 —(Bit
—B3i )

I l 6000
L '

q (1—i con)o(B 3+28, —
2 B22 )+(Bt ) Bs) )

—1+
L 2+~2

sin2mz+ n. r. t.

Here the components according to Eqs. (86a)—(86e) and (87a)-(87e), respectively, are used and the bar denotes the
complex conjugate. n.r.t. denotes nonresonant terms.

To the order e y the full dependence of the coefficients R4o on the parameters are as follows: For the SS solution we

find

4 ( t) ~~
—3 I+/(l+L '+L +L ) q (3q+16sr )

II+y(1+L ')]' 16~'( +4 ')( +8 ')

1 q+4m. gL gL (3q+16sr )(q+8~2)
2 q+Ssr 1+/(1+L '} 1+/(1+L ') 64sr (q+4sr )

For the T% using k =m we find

, ( I+cooo)(1+L)
a~ =

—,', ~4WH4R ~ '

25L +Q)00

25L2+co2 25(L2+L2co2 +co4 )+co2 (1 24L )2

24 t25L +coon(l+L)I +25L coco
(811)

Note that TWs bifurcate always supercritically since R4o )0.
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