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Axisymmetric time-dependent flow in the Taylor-Couette system
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The experimental results reported in this paper concern a very slow time-periodic axisymmetric oscil-
lation of the entire Taylor vortex system with an azimuthal wave number m =0 appearing as a secon-
dary or higher time-dependent instability only. Therefore it is qualitatively different from other nonsta-
tionary states such as the wavy Taylor vortex flow or modulated wavy vortex flow. It is shown that this
flow state is caused by the coupling strength of the phases of the underlying wavy flow modes. The ob-
served oscillation frequencies range from 2X 1072 to 3X 10~ times the inner cylinder’s angular velocity.
Thus, we call this flow the very low frequency (VLF) mode. Up to now there has been no satisfactory
theory which can explain the appearance of this mode.

PACS number(s): 47.20.—k, 05.45.+b

L. INTRODUCTION

The Taylor-Couette flow, which is one of the classical
pattern-forming systems in hydrodynamics, consists of a
viscous fluid between two concentric cylinders with the
inner one rotating, the outer cylinder and end plates be-
ing held at rest. Increasing the inner cylinder’s angular
velocity ();, which is proportional to the Reynolds num-
ber Re, the flow undergoes a series of transitions (the
“main sequence”) which are characterized by changes in
the symmetry group that leave the flow invariant [1].
When the Reynolds number is very small, the Couette
flow for infinite cylinders is a good approximation of the
flow for long finite cylinders, except near the end plates.
However, when Re is increased to a quasicritical range
near Re,, the flow becomes centrifugally unstable and
changes to a regular cellular vortex structure in which
ring vortices alternating in flow direction enclose the axis
of rotation. The flow remains stationary and the vortex
structure is axisymmetric and periodic in axial direction
with wavelength A. This flow is called Taylor vortex flow
(TVF) after Taylor [2], who first described it theoretically
(for infinite cylinders) and experimentally. The lower sta-
bility limit for TVF in (A,Re)-parameter space can be ex-
plained by the Eckhaus mechanism [3,4]. The Navier-
Stokes equations linearized around Taylor vortex flow are
autonomous in the azimuthal coordinate © and time ¢, so
generically any mode which breaks these symmetries will
have the mathematical form of a rotating wave. In this
time-dependent flow regime (which we refer to as wavy
Taylor vortex flow or WVF) the motion becomes time in-
dependent when observed in a corotating frame [5].

Except for the experimental observation of solitary
waves propagating in axial direction in a counter-rotating
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system [6] until now, to our knowledge, exclusively time-
periodic flow modes with an azimuthal wave number
m =1 (breaking the azimuthal symmetry) have been
found in the Taylor-Couette experiment. The axisym-
metric time-dependent flow, observed by us, exhibits an
azimuthal wave number m =0 and thus breaks the axial,
but not the azimuthal, symmetry of the cylindrical flow
system. As a step towards understanding the appearance
of turbulent flows, it is important to understand what
determines the limit of stability for this preturbulent flow
regime. Therefore in the last section of this paper we
present a discussion of a mechanism for the onset of this
flow mode. In Sec. II we introduce the experimental set-
up. In the third section we give a short overview of the
time-periodic flow states found in the Taylor-Couette sys-
tem up to now (which appear as the underlying flow
states of the very low frequency mode in our experiment).
In the fourth section, which is divided into two subsec-
tions, we present (i) experimental results of the different
types of underlying wavy flow modes and (ii) the investi-
gation of the very low frequency (VLF) mode. In the fifth
section we give experimental evidence for a mechanism
that causes the appearance of the VLF mode, which is
discussed in the final section.

II. EXPERIMENTAL SETUP

The flow of interest is bounded by two high-precision
coaxial cylinders. The rotating inner cylinder of the
Taylor-Couette experiment is machined from stainless
steel having a radius of »;=12.5 mm. The stationary
outer cylinder is made of optical polished glass with a ra-
dius of r, =25.0 mm giving a radius ratio of =0.5. The
accuracy of the radii is better than 0.01 mm over the en-
tire length of 640 mm. We measured an eccentricity of
the cylinders of € <0.005 mm and therefore the power
spectrum of the local velocity distribution is noticeable
by the absence of (); at any location in the fluid.

The top and bottom plates are at rest. The length of
the gap can be varied continuously by moving the metal
collar which provides the top surface of the flow domain.
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The aspect ratio I' =L /d used as a geometric control pa-
rameter is defined as the ratio of gap length L to gap
width d=ry—r;. As a working fluid we use silicon
oil with different viscosities v depending on the flow situ-
ation. The Reynolds number is then defined as
Re=(Q;r;d)/v, where v is the kinematic viscosity. The
temperature of the fluid is held constant to within 0.01 K
by circulating thermostatically controlled oil through a
surrounding square box. A phase-locked-loop (PLL) cir-
cuit controls the speed of the inner cylinder with an accu-
racy of better than one part in 10™* per revolution and
one part in 10”7 in the long-term average. The uncertain-
ty of the absolute value of the Reynolds number is small-
er than 1%.

To ensure that the measured phenomena are not
artificial and not due to inaccuracies of the experimental
equipment, we used three different experimental setups.
All effects we focus on could be found independently in
each device. The local velocity is measured by a laser-
Doppler velocimeter (LDV) and recorded by a PLL ana-
log tracker.

III. THE UNDERLYING FLOW STATES

Using Floquet theory one defines a rotating wave as a
solution for the Navier-Stokes equations with the symme-
try

Qw(r,0+680,z,t)=0y(r,0,z,t —80/c,) , (1)

where Qy is an arbitrary scalar flow quantity in the ro-
tating wave state and ¢, the dimensionless wave speed.
The flow is m -fold symmetric,

00+2" 2)

my

where m, is the azimuthal wave number (m 2 1). The ©
and ¢ coordinates are coupled and periodic, so the solu-
tion has the general form

ijm (©—c1)

Qw(r,8,z,t)= 3 b(r,z)e (3)

j=—e

In a power spectrum of an experimental time series there
is a set of equally spaced peaks at multiples of mc,, thus
one defines @, =mc, as the fundamental frequency of
the rotating wave [7]. The flow will be time independent
if observed in a frame rotating with an angular speed
¢ =c,. Defining the new variable

6=0—ct @)

the flow QW(r,é,z) becomes steady. The wavelength
dependence of the onset of WVF and some types of wavy
flow modes which arise have been investigated by Jones
[8], Pfister, Lorenzen, and Mullin [9], Mullin [10], and
King and Swinney [11].

Following the main sequence the primary time-
periodic rotating wave bifurcates to a doubly periodic
flow regime (which we refer to as modulated wavy vortex
flow or MWVF). Assuming that there is no change in the
axial structure of the solution, the flow goes through a su-
percritical Hopf bifurcation to modulated waves and tak-
ing into account that the fully nonlinear solution for the
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MWVF must contain all the modes that might be gen-
erated as products of the eigenmode with itself or the ro-
tating wave, the MWVF solutions can be written as a
spectral sum of these products, having the general form

A & d ijm, © ik(m,0—wy1)
QM(r,O,z,t)= 2 2 ajk(r,z)eljml el my Wyl

j=—w k=—0o

(5)

in the ¢, frame. w,, is defined as the modulation frequen-
cy observed in the corotating frame. The wave number
m, need not equal m, so the azimuthal symmetry of the
flow may be changed by the bifurcation [7]. Such flows
have been discovered by Gorman and Swinney (GS mode)
[12] and Zhang and Swinney (ZS mode) [13], occurring as
preturbulent flow regimes, and by King and Swinney (KS
mode), who found a different kind of modulated flow
which occurs as a result of the competition of at least two
WVF modes (with different azimuthal wave numbers) for
dominance [11]. Coughlin and Marcus have performed
numerical simulations of the stability of GS and ZS
modes, showing that several branches of quasiperiodic
solutions exist, and not all of them occur as direct bifur-
cations from rotating waves as the main sequence sug-
gests [14].

IV. RESULTS

A. The underlying wavy Taylor vortex flows

In experiments one observes physically different modes
that have the symmetry of Egs. (1) and (2). The special
physical type of these rotating waves (which we refer to
as the time-dependent flow modes), each of them under-
going a supercritical Hopf bifurcation, depends on
geometrical boundary conditions. Figure 1 shows the
stability diagram for the normal four- to 16-vortex flow.
(The occurrence of the normal modes is caused by the
centrifugal force falling off towards the fixed ends of the
cylinders so there is inward-directed flow at the station-
ary end plates.) As a geometrical control parameter the
aspect ratio I is varied. By the number of vortices and
the size of T" the length of the vortices (A/2=TI"/N) can
be adjusted.

It can be seen from the diagram in Fig. 1 that the range
of stationary vortices is largest for a wavelength having
the same size as the gap width d (I' /N =1) independent
of the aspect ratio I'. The stability line (a) shows the
transition to the small-jet mode. This mode is an oscilla-
tion of the outward flow while the inward flow is almost
stationary. Adjacent outward flows oscillate in antiphase
[8,15]. It is remarkable that this line in the normalized
stability diagram is the same for all small-jet modes
occurring in six- to 16-vortex flow. That means that the
onset of this mode is independent of the number N of vor-
tices of the underlying flow pattern. For increasing Rey-
nolds numbers line (a) goes towards I' /N =0.96. Line (b)
displays the stability for the antijet mode, an oscillation
having the main amplitude in the inward flow [16,17].
The stability lines (c) for the wavy mode [18], an axial os-
cillation of the entire vortex occurring in eight- to 16-
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FIG. 1. Normalized stability diagram for the onset of time dependence in a Taylor-Couette system with 7=0.5 for the normal

four- to 16-vortex flow.

vortex flow, which can be identified with the classical
narrow-gap wavy mode [8], and the stability lines (d) for
the core modes, which are oscillations of the vortex core
occurring only in the four- and six-vortex flow as a pri-
mary time-dependent mode, are located in the large-A
range.

The antijet mode occurs as three subtypes exhibiting
different spatial distributions of their amplitudes [17].
The space dependence of the order parameter in Taylor-
Couette flow can be satisfactorily described with the
time- and space-dependent Ginzburg-Landau equation,
which was shown by Pfister and Rehberg [19]. For brevi-
ty we will call the first subtype the bell-shaped mode,
having its largest amplitude in the middle of the cylinder
length, “the bell mode,” and the second subtype, having
end-induced amplitudes, the “end modes.” The bell
mode occurs for smaller wavelengths (0.96<T'/N
<1.15) in the antijet regime, whereas the end mode
occurs in regions of very extended vortex length
(1.15<T'/N < 1.7). Both subtypes have a symmetrical
amplitude distribution relative to the midplane of the ap-
paratus (z =L /2). The third subtype which breaks this
symmetry occurs at higher Reynolds numbers and will be
discussed elsewhere.

The inset in Fig. 1 illustrates the dependence of the
transition point between antijet and wavy mode as a first
oscillatory instability as a function of increasing vortex
numbers. These transition points are plotted versus the
reciprocal value of the squared vortex number (1/N)?
showing a linear dependence. The intersection point of

this straight line with I'/N=0.96 gives a value of ap-
proximately (1/N)?=1.1X1073 which yields N =30.
This reveals that for N > 30 no antijet mode can be ob-
served as a first time-dependent mode any more. This
agrees with the L? dependence of the shift of the onset of
the wavy flow modes found experimentally in [19] and by
analyzing the Ginzburg-Landau equations.

One further oscillatory mode occurs in the Taylor-
Couette system for 7=0.5 appearing for wavelengths
A <2. Itis a second mode showing oscillations of the out-
ward flow, the large-jet mode, which can be identified by
a very large amplitude and, in contrast to the small-jet
mode, adjacent outward flows oscillate in phase [15].
Due to the fact that (i) adjacent outward flows of the
small-jet mode oscillate in antiphase, adjacent outward
flows of the large-jet mode oscillate in phase, (ii) the
large-jet mode occurs for Reynolds numbers slightly
larger than those for the occurrence of the small-jet
mode, and (iii) the wave speed in times of the inner
cylinder speed of the large-jet mode is a little larger than
for the small-jet mode, we conjecture that small- and
large-jet modes can be identified with the subharmonic
and the harmonic jet mode, respectively, found by Jones
numerically [8]. Table I gives an overview of the five
different time-dependent modes for a cylinder with radius
ratio 7=0.5. In this table we used the notation of
Demay and Iooss [20] for the classification of the symme-
try invariances. Table I includes a sixth time-periodic
flow mode, the VLF mode, which is a very slow time-
periodic axisymmetric shift of the entire vortex system
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TABLE I. Six time-dependent modes occurring in the Taylor-Couette system with n=0.5.

Wave speed (in

Wave times of the inner Reflection
number cylinder speed) (about the Axial
Label Characteristics Subtype(s) 1n=0.5 n=0.5 outflow boundary) translation
Small jet wavy outflow boundary bell mode m =1 0.46-0.52 - -
Large jet wavy outflow boundary bell mode m =1 0.54-0.60 - +
bell mode 0.90-0.93
end mode m= 0.87-0.89
Antijet wavy inflow boundary asymmetr. 0.91-0.93 + —
bell mode m = 0.70-0.76
end mode
Core wavy core flow end mode m =S5 1.10-1.12 0 0
Wavy wavy vortex flow bell mode m = 0.09-0.125 — +
axial symmetric long-
VLF wave modulation of the bell mode m= <2X107? 0 0

entire vortex system

with an azimuthal wave number m =0. Due to the fact
that the VLF mode does not have the mathematical form
of a rotating wave [Eq. (3)], it appears only as a secon-
dary or higher instability.

B. The VLF mode

The VLF mode was observed for flow systems with
vortex numbers N =4, 8, 10, 20, 30, and 40 in three
different experimental setups with three different oil
viscosities. For the eight- and ten-vortex flow it was in-
vestigated systematically.

All experimental observations support the conjecture
that there is a causal connection between the appearance
of the VLF mode and the presence of one of the (m+0)
modes, because the VLF mode occurs as a secondary
time-dependent mode only. The VLF mode appears in
the entire measured range as shown in Fig. 2 for the ten-
vortex flow. The Reynolds number is plotted versus as-
pect ratio I' normalized to the number of vortices N. The
onset of the VLF mode is marked with the lines including
the triangles whereas all other measured stability lines in
this diagram are marked with circles. The lines denoting
the transitions to the first oscillatory instability are the
same as in Fig. 1 for the ten-vortex flow (marked with the
diamonds in that figure). On the left-hand side one finds
the small-jet mode, on the right-hand side the wavy
mode, and in midrange the antijet mode, which is divided
into two subtypes, the bell mode (marked with B) and the
end mode (marked with E), respectively. “N-—8”
denotes the transition to the eight-vortex flow.

The VLF mode shows very large characteristic periods
compared to the other time-dependent modes apparent
from Fig. 3, which shows three different time series
recorded for different aspect ratios. In these plots the ax-
ial displacement Az of the vortex system in the middle of
the cylinder (z =L /2) is recorded versus time ¢. The
time series are filtered with a low-pass Bessel filter of
fourth order having a cutoff frequency at 0.2 Hz to make
the structure of the VLF oscillation visible, because oth-
erwise it would be partially hidden by the underlying
wavy flow mode. The measured oscillation frequency

ranges from 2X 10”2 in Fig. 3(c) to 3X 107> times of the
inner cylinder’s angular velocity in Fig. 3(a). Further-
more, the VLF mode shows quite different dependence of
amplitude A and eigenfrequency w; on Re, depending on
the underlying time-dependent flows. The amplitude 4 is
the maximum displacement Az, from its average value.
In one example it occurs with an eigenfrequency starting
from @, =0 and a finite amplitude 470 at onset, and in
another with an eigenfrequency having a finite value
®,70 and an amplitude increasing with a square-root law
from the value 4 =0. The first case, which is illustrated
in Fig. 4, was observed only when the underlying flow is a
WVF [Eq. (3)]. The second case, which is shown in Fig.
5, corresponds to a Hopf bifurcation and was observed
only when the underlying flow is a MWVF [Eq. (5)]. The
examples shown in Figs. 4 and 5 are recorded for
'/N=0.8 below and above the hatched region that
marks a gap in the VLF mode domain in Fig. 2.
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FIG. 2. Stability diagram for the onset of primary and higher
oscillatory modes in the ten-vortex flow in a Taylor-Couette sys-
tem with n=0.5.
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FIG. 3. Three VLF mode oscillations. (a) Slightly after its
onset for N=10, I'/N=0.8, Re=356.4; (b) for N =10,
I'/N=1.18, Re=711.3; and (¢) for N=10, T/N=1.04,
Re=1047.

The amplitude and form of the VLF oscillations vary
with the cylinder length L. They are symmetric relative
to the midplane in the antijet bell-mode regime
(0.96 <T' /N < 1.15) [Fig. 3(c)] and asymmetric for small-
er aspect ratios when the underlying wavy flow mode is
the small-jet mode (I' /N <0.96) [Fig. 3(a)] and for larger
aspect ratios in the antijet end-mode regime
(1.15< T /N) [Fig. 3(b)].

In Fig. 6 a bifurcation diagram of the asymmetric VLF
mode with the small-jet mode as an underlying wavy flow
mode is shown for the ten-vortex flow for I' /N =0.84.
Here the axial displacement of the flow pattern Az was
recorded versus the Reynolds number which was scanned
quasistatically from Re=325 to 530 with ARe/At
=0.025 s~ !. The LDV measurement volume was placed
in the midplane (z=L /2) of the apparatus near the inner
cylinder. Thus it is suitable to characterize the deviation
from the symmetric state. The bifurcation diagram was
filtered with a low-pass Bessel filter of fourth order hav-
ing a cutoff frequency at 0.2 Hz like the time series in
Fig. 3. The bifurcation diagram shows the onset of the
small-jet mode at Re~ 335 via a Hopf bifurcation exhibit-
ing a simultaneous axial symmetry-breaking bifurcation,
which leads to an asymmetric distribution of the axial
wave vector. In Table II the measured values for the
wavelength of each vortex pair for increasing Reynolds
number are given. As expected, the wavelengths of the
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ten-vortex flow for I'/N=0.8.
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FIG. 6. Bifurcation diagram of the axial displacement of the
flow pattern Az for the ten-vortex flow for I'/N=0.84. The
Reynolds number was scanned quasistatically from Re=325 to
Re=530 with ARe/At=0.025s"".

end-vortex pairs A; and As show a decay for increasing
Reynolds numbers going along with an increase of the
vortex pairs in between [21]. The inner vortex pair corre-
sponding to A, shows a stronger increase than the one
corresponding to A, leading to a distribution of the axial
wave vector which breaks the axial symmetry relative to
the midplane (z =L /2). The VLF mode oscillations ap-
pear on each branch at Re~390 with an eigenfrequency
starting from very small values and a finite amplitude
AF#0. Recording time series near the onset of the VLF
mode starting from a slightly higher Reynolds number re-
veal that the eigenfrequency goes to zero at onset as
shown in Fig. 4 for '/N=0.8. The phase relation—
neighboring outward flows oscillate in antiphase—
remains in the asymmetric small-jet mode till the asym-
metric shifting of the vortex system reaches a certain
threshold at Re =390 where the VLF mode appears. Fig-
ure 3(a) shows the oscillation of the asymmetric VLF
mode in the small-jet regime slightly above its onset with
an eigenfrequency of approximately ws=0.1 mHz corre-
sponding to a period length of about 2.5 h. The vortex
system needs almost the whole period length to shift into
the end position where |Az| reaches its maximum while
the shifting back to the opposite end position needs only
about 15 s. Increasing the Reynolds number the eigenfre-
quency wg grows rapidly (Fig. 6). Comparing time series
shortly after onset of the VLF oscillations and slightly be-

49

fore the onset of the weakly turbulent flow one observes
that the steep flank of the oscillation is nearly unaffected
by a change in Reynolds number whereas, increasing the
Reynolds number, the flat flank of the oscillation curve
becomes steeper. In Fig. 3(a) the system needs about
9200 s to rise whereas slightly before the onset of the
chaotic flow the rising only lasts about 50 s. The fact
that the elongation back towards Az =0 needs about 15 s
independent from the Reynolds number points to a
universal mechanism like a diffusive equalization of the
differences in the axial wave vector. The transition to
weakly turbulent flow occurs at Re=465 (Fig. 6). Due to
small imperfections in the Taylor apparatus the two
branches show small differences. The chaotic flow is res-
tabilized by the onset of the large-jet mode at Re =~ 525.

Figure 7 shows the bell-shaped amplitude distribution
of the symmetric VLF mode oscillation depicted in Fig.
3(c) versus the axial position over the entire cylinder
length. In Fig. 8 the wavelength distribution versus the
axial position over the entire cylinder length for both end
positions of the VLF oscillation and in Fig. 9 the corre-
sponding wavelength difference AA, calculated from the
differences of both curves in Fig. 8, are plotted. AA is
zero in the middle of the cylinder (z=L /2) having its ex-
trema at about z =L /4 and 3L /4. Neglecting the wave-
length differences of the end vortices, the measured
values in Fig. 9 can be fitted by a sine curve. Physically
this corresponds to an inert coil spring embedded in a
viscous fluid and fixed at its ends, which is elongated
periodically at its middle winding.

The wave vector modulation interacts with the under-
lying (m#0) modes. The small-jet and the antijet modes
occurring by themselves have a fixed phase relation till
the onset of the VLF mode. At the onset of the VLF
mode the fixed phase relation is lost and the phase runs
through multiples of 27 during a VLF period. In regions
of the parameter space, where the VLF mode has disap-
peared and the vortex system is symmetric again, the
phase relation of the underlying fast mode becomes fixed
again. Such a domain can be found in Fig. 2 marked with
the hatched region, where the chaotic flow is restabilized
by the onset of the large-jet mode (see also the bifurcation
diagram in Fig. 6).

V. THE MECHANISM FOR THE VLF MODE

The fast (m+0) modes, which we refer to as the “fast
modes,” cause a change of the wavelength of the vortices

TABLE II. Wavelengths (in units of the gap width d) of a ten-vortex flow with aspect ratio
I'/N =0.84 and 7=0.5 for increasing Reynolds numbers. The values correspond to one branch in Fig.
6. The measurement error amounts to +0.002.

Reynolds
number 274 338 365 384 388
Wavelength

A/d 1.827 1.814 1.771 1.750 1.749
Ay/d 1.581 1.590 1.615 1.634 1.637
Ay/d 1.583 1.594 1.635 1.654 1.655
Ay/d 1.578 1.584 1.603 1.608 1.608
As/d 1.830 1.818 1.775 1.753 1.751
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FIG. 7. Amplitude A of the VLF-mode oscillation in Fig.
3(c) versus the axial position z over the entire cylinder length.

in the flow [8,18]. Therefore there is a coupling between
these modes and an axial phase diffusion [22-24]. Fur-
thermore, the frequencies of the fast modes depend on
the wavelength of the vortices [8,18,25,26]. Due to this a
local disturbance of the wavelength leads to a change in
the frequency. A displacement of the phases between the
oscillations of neighboring vortices occurs. These phase
differences are presumably the driving forces for the VLF
mode.

The above considered measurements give no informa-
tion whether the propagating phase causes the VLF mode
or the occurrence of the VLF mode leads to a disconnec-
tion of the phases of oscillations in neighboring vortices.
We give an argument for the former assumption.

Observing the antijet end mode one realizes that this
mode shows a very weak phase relation between oscilla-
tions of the end vortices. This is easy to understand be-
cause the end vortices are separated by the vortices in the
center of the flow having very small amplitudes. There-
fore the oscillations in the end vortices have only a weak
coupling of their phases. If the propagating phase causes
the VLF mode, the latter has to occur nearly simultane-
ously with the antijet end mode. In fact this is shown in
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FIG. 8. Wavelength A versus the axial position z over the en-
tire cylinder length for both positive (0) and negative (+) end
positions of the VLF-mode oscillation in Fig. 3(c).

z (mm)

FIG. 9. Wavelength difference AA versus the axial position z
over the entire cylinder length calculated from the VLF end po-
sitions in Fig. 7.

Fig.2 for 1.15<T'/N < 1.7 [27].

The small-jet mode and the bell-mode subtype of the
antijet mode exhibit a stronger coupling of the phases in
the neighboring vortex pairs. Due to this one observes a
larger Reynolds-number range between the onset of the
VLF mode and these primary oscillatory modes than for
parameter ranges where the core mode or the end-mode
subtype of the antijet mode occur as the primary time-
dependent flow mode. This is shown in Fig. 2 for
0.7<T'/N <1.15.

Considering the wavy mode one observes an oscillation
of the entire vortex. Due to this the coupling of the
phases of neighboring oscillations is very strong. There-
fore, the phases do not propagate when the wavy mode is
exclusively present and the onset of the VLF mode be-
comes impossible. In fact it has never been observed that
the VLF mode occurs while the wavy mode is exclusively
present. Except after the onset of a second time-
dependent flow mode showing a weaker phase coupling
such as the antijet or the core mode one observes the on-
set of the VLF mode as shown in Fig. 2 for
1.35<T' /N <1.7. Due to this fact, to our knowledge the
VLF mode has never been observed in the classical
narrow-gap experiments by Swinney and co-workers
[11-13,26,28-31].

The oscillations of the core mode are separated by the
inward and outward flows of the vortices, which are
unaffected by the oscillation of this mode. Therefore,
neighboring oscillations of the vortex cores cannot couple
their phases. Due to this the VLF mode occurs simul-
taneously with the core mode. In fact the core mode
shows no tendency to couple the oscillations of the
different vortex cores. Therefore in parameter ranges
where the core mode appears—opposite to regions where
the antijet and the two jet modes appear—the onset of
the VLF mode is not time periodic but chaotic [27]. The
onset of the chaotic VLF mode will be discussed else-
where [32].

VI. DISCUSSION

We have shown that the onset of the VLF mode is
caused by the strength of the coupling of the underlying
wavy flow modes. On one hand, the fast modes cause a
change of the axial wavelength of the flow pattern and,
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on the other hand, the frequencies of the fast modes de-
pend on the wavelength of the vortices. Therefore we
have an interaction between the wavy flow modes and the
wave vector of the underlying Taylor vortex pattern [22].
Local disturbances of the wavelength lead to a change in
the frequency of the wavy flow mode. These frequency
differences disappear if the oscillations in neighboring
vortex pairs are coupled strongly, otherwise, due to the
interaction between wavy flow modes and the axial wave
vector, they lead to an amplification of the local distur-
bance of the wavelength of the underlying Taylor vortex
pattern.

Now the system tends to equalize these disturbances by
an axial phase diffusion, because there is a coupling be-
tween the underlying Taylor vortex pattern and the wavy
flow modes [22,23,27]. If the coupling between spatially
separated oscillations of the underlying wavy flow mode
becomes weak, the amplifying mechanism described
above may exceed this diffusive equalization and the un-
derlying Taylor vortex flow pattern becomes unstable at a
certain threshold against an undamped oscillation of the
entire vortex system in axial direction.

The conjecture that axial phase diffusion processes play
an important role for the onset of the VLF mode is sup-
ported by the following argument. The axial phase shift
8 of the VLF oscillations, which is defined as the dis-
placement of different vortices normalized to the wave-
length, was measured for the ten- and 30-vortex flow for
several Reynolds numbers, revealing that it has a linear
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dependence on the axial position. To determine the
phase shift of the VLF oscillations of different vortices,
the radial velocity component of the flow was measured
simultaneously at two different locations, a half and two
wavelengths separated in axial direction [33,34]. In both
flows the shift per wavelength difference is approximately
5°. That means for the ten-vortex flow that the phase
shift between the two end vortices sums up to approxi-
mately 25°. This is similar to the results of the phase
diffusion measurements of Wu and Andereck [see Fig.
2(b) in Ref. [23]].

In summary, careful measurements have shown that
the VLF mode (a destabilization of the underlying axial
wave vectors) occurs as a secondary or higher instability
in the entire A range of the control-parameter space ac-
cessible to experiments. Though the temporal behavior
and the amplitude may be quite different, we think that
the VLF mode displays a universal behavior in Taylor-
Couette flow.
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