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We discuss a "spherical model" of turbulence proposed recently by Mou and Weichman [Phys. Rev.
Lett. 70, 1101 (1993)] and point out its close similarity to the original "random coupling model" of
Kraichnan [J. Math. Phys. 2, 124 (1961)]. The validity of the direct-interaction-approximation (DIA)
equations in the limit N~+ ~ of the spherical model, already proposed by Mou and Weichman, is
demonstrated by another method. The argument also gives an alternative derivation of DIA for the
random-coupling model. Our proof is entirely nonperturbative and is based on the Martin-Siggia-Rose
functional formalism for vertex reversion. Systematic corrections to the DIA equations for the spherical
model are developed in a 1/&N expansion for a "self-consistent vertex. "The coefBcients of the expan-
sion are given at each order as the solutions of linear, inhomogeneous functional equations which

represent an infinite resummation of terms in the expansion in the bare vertex. We discuss the problem
of anomalous scaling in the spherical model, with particular attention given to "spherical shell models"
which may be studied numerically.

PACS number(s): 47.27.Gs, 64.60.Ht

I. INTRODUCTION

Kraichnan's "direct interaction approximation, " or
DIA equations, are a classic closure for two-point statis-
tics in turbulence. Originally the (Eulerian) DIA was
proposed on the basis of a hypothesis of "maximal ran-
domness" [1]. A few years later, in a very remarkable
work, Kraichnan showed that the DIA is the exact solu-
tion for N~+ ~ of a model problem in which N copies
of the Navier-Stokes dynamics are coupled together in
"collective coordinates" with quenched random interac-
tion phases [2]. (This subject is reviewed in [3].) Recent-
ly, Mou and Weichman have proposed an alternative
large-N model for the DIA equations, a so-called "spheri-
cal model" (SPM) [4]. Although no complete derivation
of DIA was given, arguments for its validity were ad-
vanced based upon earlier work of Amit and Roginski on
a similar large-N model of P field theory with threefold
Potts symmetry [5]. Furthermore, Mou and Weichman
proposed the spherical model as a suitable basis for calcu-
lating short-distance scaling exponents in high Reynolds
number turbulence by means of a 1/N-type expansion
based on the Eulerian DIA equations.

In this work we shall confirm the claim of Mou and
Weichman, establishing the validity of DIA for the
X~+~ limit of the spherical model by a self-consistent
argument. Our derivation employs nonperturbative func-
tional techniques developed by Martin, Siggia, and Rose
(MSR) [6] and gives also an alternative derivation of DIA
for Kraichnan's original "random-coupling model"
(RCM). In fact, we point out that the two models, SPM
and RCM, are remarkably similar. However, there are
important differences between them, and each has techni-
cal advantages in certain areas. In particular, it is much
easier to calculate systematic corrections (it turns out in
1/N) to DIA for the SPM. The functional technique
used to establish DIA is also applied to derive explicit

equations for the corrections. Remarkably, these are
linear equations at each order, with an inhomogeneous
term determined by the previous orders, and, therefore,
solvable in principle.

However, we disagree with the program advanced by
Mou and Weichman for calculating anomalous exponents
in turbulence based upon the Eulerian DIA. In fact, such
a program encounters difficulties of a fundamental nature
which occur already at the zeroth order (i.e., the DIA lev-
el) and have been fully analyzed there by Kraichnan [7,8].
To avoid the difficulties would require some sort of La-
grangian formulation of the SPM. We shall discuss this
issue carefully in the body of the text. On the other hand,
there are some model problems of considerable recent in-
terest, the so-called "shell models" [9-13], in which the
above-mentioned difficulties do not occur and the SPM
offers a reasonable hope to calculate anomalous scaling.
Even in this simplified context, however, we have not yet
solved the correction equations.

The contents of this paper are as follows. In Sec. II we
describe the spherical model and compare and contrast it
with Kraichnan's random-coupling model. We also dis-
cuss there the essential difficulties with the proposal of
Mou and Weichman to use Eulerian DIA as the basis for
calculating anomalous exponents. Section III is devoted
to study of the large-X limit problem. We first discuss
the standard derivations of DIA for the models, which is
based on a "skeleton" expansion of the self-energy involv-
ing a "line reversion" of bare propagators for full ones.
A great simplification is achieved, however, by perform-
ing an additional "vertex reversion, " and we review
briefly the functional formalism of MSR for this, particu-
larly their exact first-order functiona1-differential equa-
tion for the full vertex as a functional of the bare one.
Then we establish the validity of DIA for the large-X lim-
it of the SPM using the functional-difFerential equation
and an asymptotic formula for Wigner 6j coefficients heu-
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ristically derived by Ponzano and Regge [14 . Thereafter

the equations for the corrections in 1/ N are derived

and discussed. The DIA-level approximation to the

efFective action is explicitly evaluated and shown to yield

one-loop expressions for irreducible functions. Fina11y, in

Sec. IU we discuss the possibilities of calculating anoma-

lous scaling exponents by these methods, particularly for

spherical shell models. The DIA equations for the shell

models are introduced and outstanding questions

stressed, some of which can be addressed numerically.

lowing "energy function":

(9)

is conserved by the SPM dynamics. Except for the case
J=0, which is the usual Navier-Stokes dynamics, there is
no analog of the Galilei transformations under which
Navier-Stokes equations are covariant. If it were true
that wn(a, O, y )=wn5 r, with wN a function of
N =2J+1 only (i.e., independent of a, y), then it would
be possible to define such a set of transformations, as

II. THE SPHERICAL MODEL"

A. Definition and comyarison
mth the random-couyHng model

v'(r, t)=v (r —ut, t)

for a%0 and

(10}

J J J
=~N X( —) —a p y

(2)

with ((JJ)Jal(JJ)py) the Clebsch-Gordan coeScient
giving the spin-J component in the irreducible decompo-
sition of the product of two spin-J multiplets, and with
( &r) the associated Wigner 3j symbol. From the sym-

metry properties of the Wigner 3j symbols, discussed, for
example, in [15], follow the basic properties of the cou-
pling coeScients wz.

wn(a, P, y)=0 if aAP+y,

wx(a, p, y)'= wN(a, p, y),
w&(a, p, y)=( —) +rwN( y, p, —a) . —

(4)

(5)

Furthermore, for any element UE SU(2), it follows that

D . ( U ')Dtitr ( U)D rr ( U)wtt(a', P', y') =w„(a,P, y ),

where D are the usual Wigner D matrices [15]. As a
consequence of this property, the SPM dynamics is co-
variant to general SU(2} transformations of the fields:

v' =D &( U)v& .

From the second relation on the w&'s it can be shown
that the Liouville theorem holds (by an argument exactly
analogous to that made for the RCM in [3]). Further-
more, the fourth relation on the w~'s imp1ies that the fol-

The Mou-Weichman spherical model [4] is based upon
an SU(2) symmetry realized by spin-J multiplets of (com-
plex) velocity fields v, labeled by the integer z component
J,=a obeying lal &J. Hence there are N =2J+1 total
components of complex velocities. The velocity fields are
subject to the condition v' =( —)~ v and J is restrict-
ed to even values. The dynamics of the model is taken as

B,v +g wN(a, P, a P)P (vti —V)v ti=vhv, + f
P

where wn(a, P, y ) is defined as

w (a P y ) = ( (JJ)J 1(JJ)Py }

In fact, it is easy to see by checking the tables of
Clebsch-Gordan coeKcients that the required property is

untrue and there is thus no true Galilei symmetry for the
SPM.

This model is actually quite similar to Kraichnan's
random-coupling model in its original 1961 formulation

[2]. In that model there were the same number of vari-

ables with the same labels as above, except that v'=v
without the sign factor. Furthermore, the dynamics took
also the sum form but instead with

1
w~(a p, y}=~0.,t,, (12)

where P &„was chosen as a completely random phase
over the indices a,p, y subject only to the restrictions

P + =0 if aAP+y,

&..t.r =&..r t

(13)

(14)

(15)

&,t, r &—r,t, —

The first restriction guaranteed that the model had an ex-
act Z(N) symmetry corresponding to the set of transfor-
mations v' =ez ' "~ v with n GZ(N}. Notice that this
symmetry is included as a subgroup in the SU(2) symme-
try of the SPM, associated with rotations about the z axis
in spin space by integer multiples of the angle 2m/N.
Like the SPM, the RCM enjoys a Liouville theorem and
conservation of the energy Eq. (9). An important
difference exists, however, with respect to Galilei covari-
ance of the RCM and SPM. It turns out that P &

=1
may be imposed in the RCM as an additional restriction
whenever apy=0, without afFecting the validity of DIA
in the limit. In that case the model is Galilei covariant as
in Eqs. (10) and (ll) with wN= 1/V N. [However, it has
been pointed out to us by P. %eichman that it is possible
to consider a spherical model based on U(N) symmetry,
with an extra "zero-spin" generator, giving a Galilei-1ike
symmetry. ] The resemblance of the SPM to the RCM is
made even more striking by noting a (semiclassical}
large-J asymptotic formula for the 3j symbols which has
been heuristically derived by Ponzano and Regge [see Eq.



3992 GREGORY L. EYINK

(2.6) in [14]],from which it follows in the SPM that

w~{a,P, y )- cos[Ng (k,p, q))
1

Nf (k,p, q)
(17)

1=G (1 p)G (1' q')+0
P (18)

holds only up to corrections of order 1/N. In the SPM,
of course, this problem does not occur, and, as we see, the
corrections may be obtained in a fairly explicit form.

B. The problem with Eulerian DIA

However, we strongly disagree with the program put
forth by Mou and Weichman in [4] to calculate high Rey-
nolds number scaling exponents —in particular the ener-

gy spectral exponent, which they denote as g—by an ex-
pansion around the solution of Eulerian DIA. To clarify
the disagreement, we quote them verbatim [4]: "The idea
we propose is that the DIA equations (8) represent an ex-
act solution in a special limit, which is continuously relat-
ed, via N, to the real turbulence problem. The equations
should thus be taken at face value. Previous work which
has concentrated on modifying them to obtain the —', law
thus appears misguided. We view the —,

' law as an amaz-

ingly accurate zeroth-order approximation in a systemat-
ic approximation for g(N)."

This point of view seems to us certainly wrong. In
fact, the diaculty with the Eulerian DIA, as discussed by
Kraichnan in [7,8] is not that it fails to produce —, law.
Instead the problem is that Eulerian DIA violates basic
physical principles and it is this violation which is, in
turn, responsible for the spurious g= —,

' law. The precise
point is that Galilei covariance of the Navier-Stokes dy-
namics implies that from any ensemble of solutions a new
ensemble of solutions may be produced by performing in-
dependent random Galilei transformations on the realiza-
tions of the original ensemble. It is easy to check that for

for N ~+ 00 with f,g fixed smooth functions of the vari-
ables k =a/J, p =P/J, and q =y /J. Hence the coupling
of the velocity spin components v for the SPM has the
same strength —I/~N as in the RCM and a sign which,
while not totally random, is very rapidly oscillating over
the values of a, P, y as N~+ ao.

The two models may indeed be analyzed by essentially
the same methods in the limit N ~+ ~, as we discuss in
Sec. III. Each model has some particular advantages and
disadvantages. Because the RCM is Galilei covariant, it
may be used to prove realizability of DIA equations for
inhomogeneous situations where the mean Qow does not
vanish [2]. It seems to be a somewhat more flexible
method than the SPM. On the other hand, the appear-
ance of the quenched randomness in the interaction
phases of the RCM is probably a liability for numerical
simulation of the model. Here the deterministic charac-
ter of the SPM is an advantage. Furthermore, a feature
of the RCM which greatly complicates the analysis of
large-N corrections to the DIA is that factorization of
averages of correlation functions over the random phases,

G (1 p)G (1' q')
P q

X
p

( [1 [v(r+1)—v(r)]]~) —(el)P~3
l

{20)

where x &0 is an "anomalous exponent" (see [16,13]).
P

Now, suppose one wants to try to calculate the anoma-

lous exponents x under the assumption that they have
P

an asymptotic expansion in 1/N of the form

CP( )

P + Nk
(21}

an initial homogeneous ensemble the single-time Eulerian
velocity cumulants (as well as multitime Lagrangian cu-
mulants} in the new ensemble difFer from those in the
original ensemble only by the addition of the correspond-
ing cumulant of the random boost velocity:

{(v(1). v(p))) =( (1) . (p)) +u', (19)

where (( )),( ) denote cumulant averages in the new

and original ensembles, respectively, and uP is the pth-
order cumulant of the random boost velocity. This addi-
tion affects the original velocity cumulants at zero blaue

number only, so that the transformation law Eq. (19) is
referred to as "random Galilei invariance. " Notice, in
particular, that equal-time velocity triple moments,
which determine the instantaneous rate of subscale ener-

gy transfer to small length scales, must be invariant (away
from zero wave number). However, the Eulerian DIA
expression for the triple moment is not invariant to ran-
dom Galilei transformations, because it is a closure in

terms of Eulerian two-time moments, which are not in-

variant. This noninvariance is a violation of fundamental
principles. It follows directly from this defect that the
rate of energy transfer in Eulerian DIA is set by an
overall convection time scale, determined from the rms
velocity of the large scales, rather than by an intrinsic, lo-
cal eddy-turnover time. It is this fact that leads to the =,

"

energy law rather than Kolmogorov's —,
' law. On the oth-

er hand, one may consider instead of Navier-Stokes dy-
namics a system like Kraichnan's "modified Navier-
Stokes system" [7], in which all wave number triad in-

teractions are removed such that the ratio of maximum
to minimum wave number exceeds some threshold value
and which gives a crude representation of a transforma-
tion to "quasi-Lagrangian" coordinates. Then the DIA
equations give a transfer rate which is determined by a lo-
cal turnover time and the —,

' law results. (There are some

difficult points in the above argument, which we will not
discuss here. )

There is another, but related, way to make the argu-
ment against the Mou-Weichman proposal, based on re-
normalization group (RG) ideas. If one sets up a natural
RG for fully developed turbulence, then one finds that
the fixed point contains as its only dimensional parameter
the mean dissipation e. Anomalous exponents associated
with intermittency corrections to Kolmogorov power
laws enter in as corrections to scaling associated to the
integral scale L. The form of the corrections may be
determined by the operator-product expansion, e.g., for
longitudinal structure functions, as
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FIG. 1. Factorization of two- and three-particle reducible
symbols.

Then, it is clear from the above expression in Eq. (20)
that the anomalous exponents will appear in a usual form
as logarithmic divergences in the 1/N expansion but only

if one expands around an N =+~ limit which has Eol-
mogorov scaling If, .on the other hand, one expands
around the solution of the Eulerian DIA, then additional
infrared divergences will appear which come just from
expanding around the "wrong limit. " These additional
divergences will only refiect convective "sweeping" and
shall be very difficult to disentangle from any divergences
which might be due to physical intermittency.

Therefore, we do not believe there is any hope of suc-
cess for the Mou-Weichman program applied to the
Navier-Stokes dynamics in its Eulerian form. A suitable
Lagrangian formulation of the spherical model would
have to be employed, which remains to be devised. On
the other hand, the tenability of the basic concept can be
tested on simple models like the "modified Navier-Stokes
system" [7] or the "shell models" [9—13], which lack the
previous dif5culties. Since these models seem to have the
same types of corrections to Kolmogorov scaling as the
Pavier-Stokes system and the simple DIA leads in them
to the Kolmogorov scaling laws, the spherical model
might provide a suitable basis for calculating the scaling
corrections. On the other hand, the failure of the idea
there would obviate the need to work out its (difficult)
Lagrangian extension to the Navier-Stokes system.
These matters are discussed further in Sec. III. We only
remark here that a simple 1/N expansion of the tradi-
tional type cannot be expected to hold for the SPM, be-
cause in addition to factors of 1/v N which appear in the
interaction, there is also the rapidly oscillating part. We
turn now to the study of the N ~+ 00 limit itself.

III. LARGE-N LIMIT

A. Arguments using line-reverted exyansions

The traditional argument for the DIA is based upon
the skeleton or irreducible expansion of the self-energy,
going back to Kraichnan's original derivation for the
RCM [2] (see also [3]). In this method the self-energy of
the model (formulated as a formal field-theory problem) is
expanded as an infinite series in the bare vertex and the

FIG. 3. Graph for the 6j symbol.

full propagators. The coefficients in this expansion for
the RCM, Kraichnan's "irreducible cycles, "are found all
to vanish in the limit N~+ ~ except for the lowest-
order term, corresponding to DIA, which has coefficient
1. This gives a formal derivation of the validity of DIA
for the RCM, although some delicate questions concern-
ing the convergence of the skeleton expansion and the
commutation of limit operations are begged.

The argument of Amit and Roginsky for validity of the
DIA equation in their large-N model of P field theory [5]
is essentially the same as Kraichnan's. The coefficients of
the skeleton expansion are now certain Wigner 3nj sym

bols [15]. These latter are exactly represented by the
(n+1)-loop vacuum graphs in a theory whose vertices
are given by Wigner 3j symbols and whose propagator
legs are given by Kronecker deltas ( —)J 5J~'5
The conventional 3nj symbols are the three-particle irre-
ducible ones, in terms of which all others may be written

(but note that all the two-particle irreducible symbols ap-

pear in the skeleton expansion of the SPM self-energy).
Indeed, a remarkable feature of the 3nj symbols is that
they have exact factorization properties for the two- and
three-particle reducible symbols, as shown in Fig. l.
Similar factorization properties hold for the P factors or
"cycles" in Kraichnan's RCM only in the limit N ~+ ao.
The lowest order symbol, with n =1, which is represent-
ed by the graph in Fig. 2, has the value l. It corresponds
to the DIA terms in the self-energy. The higher-order

3nj s mbols are expected to decay like some powers of
1/ N. For example, the 6j symbol I z z z], which corre-
sponds to the graph in Fig. 3, decays as N ~z according
to the semiclassical formula of Ponzano and Regge [14].
This formula may be stated more precisely in terms of a

geometric representation of the 6j symbol [I' &' I'], by a

tetrahedron with sides of length j&
+—,',j2+ —,',j3

+—,', I, +—,', 12+—,', i3+ —,', as shown in Fig. 4. If the faces

are indexed by h =1,2, 3,4, the length of the edge at the
intersection of sides h, k is denoted jzk, and the angle be-

tween outward normals of the faces is denoted as 8I,k,
then the large-J asymptotic (semiclassical) formula pro-

FIG. 2. Graph for the 3j symbol.
FIG. 4. Ponzano-Regge tetrahedral representation of the 6j

symbol.
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posed by Ponzano and Regge was

J& J2 J3

I, /2 li
1

cos g Jhk 8hk +
12~V 4

The famous paper of Martin, Siggia, and Rose [6]
achieved a field-theory formulation of classical stochastic
dynamics which systematized the previous perturbation
approaches of Wyld [17], Kraichnan [2], and Edwards

[18] (although the MSR method itself is nonperturbative).
In this approach a "doublet" field was used

(23)

in which v is a "response field" whose correlators with

the usual velocity field, i~(v(0)v(1) . v(p) &, a«
higher-order (nonlinear} response functions. By formally

exact procedures, applicable to any canonical field

theory, MSR derived the following set of Schuinger-
Dyson integral equations for the self-energy X and full

vertex (or irreducible three-point function) I i:

The V appearing in the denominator is the (signed)
volume of the tetrahedron and the stated formula only
applies for V & 0. The expression is clearly reminiscent of
a WKB-type formula, and formulas also for V & 0 and for
the transitional region V=O were worked out by a con-
nection procedure None of the formulas are rigorously
derived, but they satisfy all known symmetry properties
of the 6j symbols. Furthermore, they asymptotically
satisfy ail known sum relations, certain subsets of which
are known to characterize the 6j coefEcients up to a
phase. The asymptotic expressions give amazingly accu-
rate values even for rather small J [14]. Therefore, the
expressions seem to be quite plausible, if not rigorously
proved. From the Ponzano-Regge formulas for the 6j
coefficient, upper bounds can be established on certain
other classes of 3nj symbols. The results are indicative
that all of the coefficients in the skeleton expansion of the
self-energy for the SPM, besides the DIA term, are van-

ishing in the limit N~+ 00. However, it does not seem
to be presently possible to show this directly by study of
the 3nj symbols.

It turns out there is an argument for validity of DIA
which avoids the difficult study of infinitely many 3nj
coefficients and is based on the Ponzano-Regge formula
for the 6j coeScient alone. The approach is entirely non-

perturbative, employing the MSR functional formalism
for vertex reversion [6]. We shall very brieffy review this
formalism here and refer to the original works for full de-

tails.
B. The functional formalism of vertex reversion

1.,=y, +(5rr56, )G,G,r, . (26)

This equation along with Eq. (25) can be used iteratively
to generate the skeleton expansions of X and I i.

For many purposes, however, such an expansion in the
full propagator but the bare vertex is inadequate. In fact,
as we argue elsewhere, any finite-order expansion in
terms of the bare vertex is inadequate to calculate inter-
mittency corrections to Kolmogorov scaling and some
sort of "infinite vertex resummation" is required [19]. It
is possible to develop an expansion for yi in terms of I 3

by a formal reversion of the skeleton expansion of I'i and,
then substituting the expression for yi everywhere the
latter appears, to elaborate a perturbation representation
of all statistics in terms of I &. In fact, however, the re-

version procedure is a nonperturbative operation. The
theory of the reversion is greatly simplified by the obser-
vation that there is a duality between bare and
full functions, since the full pth-order moment
M (I, . . . ,p)=(4(1) 4(p)) is obtained as the func-

tional derivative

M~(1, . . . ,p)=p!
)pp y ~ ~ ~ y p

of the generating functional

8'= ln +exp S 4
where

S[4]=24(l }io' '5, 4(1)

(27)

(28)

+ g (1, . . . , k)4(1) 4(k}
) kI

(29)

is the field-theory action defined in terms of bare interac-
tion vertices y&. This observation allo~s the reversion
between the y's and the M's to be accomplished by
Legendre transformation of IV [20]. Up to the third or-
der, this I.egendre transform is defined as

I"'(G, ,M, ,M, ) = IV —y(1)6, (1)——y, (12)M (12)1

Note that

gI(3)

5Mk(1 . k)

——yi(123)Mq(123) .
1

„,yk(1 . . k)1

ing vertex corrections, " i.e., with y3 replacing I 3 in Eq.
(25). Another equation follows from the fact that
f 3 5f 2/56 i, where I'z =y &6 i +X(Gi ) is the irreduc-
ible two-point function, and the fact that X depends upon

6& really only implicitly through Gz. The extra equation
1S

6 =[6',"]-'—y, G, —r for k ~ 3 whereas24}

and

(25)

gI (3)
Mk(1 k)

5y (1. k)
(32)

In these equations and elsewhere, 6 represents a pth-
order cumulant of N. As is well known, the DIA equa-
tions are the approximation to Eqs. (24) and (25} "ignor-

for k & 3. The same methods can obviously be used for
higher and lower order functions. Since the relations
hold that M2=62+G)G), M3=63+36~6, +G)G)6„
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and G& =I'&G, G, G, the first equation (31) formally ac-
complishes the reversion between y& and I &. In fact, the
"three-body effective action" I' ' may be shown to be of
the form

I' '(G, , G2 I 3)

=
—,
' Tr[io' '8, [Gz(11'}+G,(1)G,(1')]+lng2]

+ — 1
1

2
1

14

+—y)(123)M)(123),1
(34)

then the stationarity of 8' under variations of I'& gives
the equation

1

,
I'362gigil 3+0' '(G2, I'&)+const . (33)

(3)
2X3!

The functional 0' ' appearing here can be characterized
diagrammatically as the sum of all three-particle irreduc-
ible vacuum graphs in a theory with propagator legs G2
and vertices I'& [21] (although it is defined above by the
Legendre transform without any reference to perturba-
tion theory). This latter quantity is really a functional
only of the dimensionless "truncated vertex"
I

&
——I ~gz/ 62/ G2/ to which is attached one-half of the

propagator legs (see [6,20]). If one makes the inverse
Legendre transform

W:I'3'+ y—(1)G,(1)+—,y2(12)Mi(12)
1

+—3
4

FIG. 5. MSR functional difFerential equation for the full ver-

tex.

G, (al, P2) =5.,G,'"'(12) (3&)

C. Application to the large-N behavior of the spherical model

All of the previous formalism applies to the spherical
model just as well as to the original Navier-Stokes sys-
tem. An important fact which greatly simplifies the
analysis is that the full propagator 62 and vertex I'3 in
the SPM have a very simple dependence upon the spin-
projection indices. In fact,

I 3(123)=yi(123)+Xi(123;I'i), (35) and

in which y3 is the "truncated'* bare vertex
gl/2g1/2g I/2 and'V3 2 2 2

Ei(123;I'i) =3! 5n"'
51 (123)

(36)

Therefore, diagrammatically E& is the sum of all three-
particle irreducible three-point graphs with vertices given
by I 3 (and propagator lines 1) [21]~

For our purposes there is an even more useful result of
MSR, which is an exact first-order functional-difFerential
equation for the full "truncated" vertex I s as a function-
al of the bare one y&. This equation is easily derived by
substituting the Eq. (25) for X into Eq. (26) and then not-
ing that I 3 depends upon Gz only implicitly through its
dependence upon y&. The equation takes the explicit
form

5I',
r3=yi+ .'y, l,+ .'yi--

. y3.
(37)

The equation may be solved by iteration to yield I 3 as a
functional power series in y3. Diagrammatically the
equation may be represented as shown in Fig. 5. The
more compact expression in Eq. (37) does not distinguish
between difFerent contributions of the same order of
terms with difFerent structure, and it is difBcult to do so
without a confusing crowd of indices. The diagrammatic
representation is often most transparent and we shall use
it for convenience in our arguments.

J J J
I'&(al, P2, y3) =~N X( —) I'P'(123),

J J J
I',~'(123)= g ( —) I',(al, P2, y3} .

(40)

In applying the functional-differential equation Eq. (37)
to the SPM, however, it is crucial to note that it is an
equation for I'&(al, p2, y3) and not for I p'(123). In par-
ticular, the functional derivative which appears in that
equation must be defined so that

5y~(a 1,P2, y3)
=5(a1,P2, y3; a'1', P'2', y'3') .

5y 3(a'1',P'2', y'3') (41)

The right-hand side of this equation is the "totally
symmetric 5 function, " which is given by
5(123;1'2'3')=4',@35(11')5(22')5(33') with 4',zi a sym-
metrizer in its indices.

It is easiest to give the argument for validity of DIA in
terms of an equation for E3=I 3

—y3. By substituting

(39)

where numbers 1,2, 3, . . . indicate all other variables be-
sides spin projections. [The factor ~N is included in Eq.
(39) so that I ~&N'=0(1). ] These facts are due directly to
the SU(2) transformation properties of the functions: see
[15]. The function I'P' can be obtained by "contracting"
the full vertex with a Wigner 3j symbol:
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= ~N 1a

1a1

2 + 1N

1
1 1cx

FIG. 7. Linearized equation for the lowest order vertex

correction.

FIG. 6. Functional differential equation for the vertex
correction.

E3.gI'3=y3+ & (42}

satisfying I 3(y3=0)=0, and if the Eq. (37) has a unique
solution subject to that condition, then this series must
represent the full vertex of the statistical problem. (The
latter is guaranteed to be one such solution. )

Equations for the corrections terms to DIA in the as-
sumed form may be obtained by substituting the expan-

I 3=y3+E3 in Eq. (37), it is straightforward to derive
the equation shown in Fig. 6. All of the terms in this
equation are proportional to the Wigner 3j symbol
( ~r ), which may be factored out along with the overall
3/N factor associated to the vertex function E3 on the
left-hand side. Notice that the first two terms on the
right-hand side are then proportional to the Wigner 6j
symbol I~zz~z) times a factor N=N ~ N '~, which
comes from the overall ~N's in front of the vertex func-
tions. The total coefficient, which is O(1/3/N ), multi-
plies a term which now depends just upon the functions

y3 '(123) and I'3 '(123). The next term on the right-
hand side is a "DIA-like" term proportional to 1, as may
be seen by using the two-particle factorization property
to give a factor 1/N, which exactly cancels the factor N
from the overall ~N's The final t.erm has a much more
complicated X dependence through all possible 3nj
coeScients. However, it is not necessary to elucidate this
to verify that F3=0, i.e., I"3=y3, satisfies this equation
to leading order. Indeed, substituting K3=0, one finds

that the equation is satisfied to terms of order O (1/3/N )

(coming from the first two terms on the right-hand side).
This provides a self-consistent proof of validity of DIA,
in the sense that it is consistent with the exact Eq. (37) to
assume a solution of the form I 3 y3[1+O(1/3/N )]. If
a solution of the functional-differential equation can be
constructed in the form of a series,

sion for K3 into its functional-differential equation and
keeping only the leading nonvanishing terms. One finds
the linear equation for E3., (shown in Fig. 7). Essentially
this equation was obtained by linearizing the full
differential equation around the zeroth-order solution
E3 0, or I 3

=y'3, with an inhomogeneity determined
from the solution of the zeroth order (DIA). Notice it
follows from the order of its inhomogeneity, O(1/~N ),
that it would not be consistent with uniqueness to have a
slower decay of the first-order correction, e.g.,
EC3 1=0(1/N .), a( —,'. Indeed, the linear equation for
E3.

&
would then be homogeneous and therefore have im-

mediately E3., ——0 as one solution. However, if K3 ~ i%0
were the leading-order correction, as assumed, then this
linear equation would have at least tao distinct solutions,
either of which could be used as the basis of an interative
construction of a solution of the full equation perturba-
tively in 1/~N —violating the assumption of unique-
ness. Therefore, if this assumption is correct, no 3nj
symbol may decay slower than O(1/~N ), or else the
summed contribution to I 3 from such symbols must van-
ish identically. On the other hand, the solution of the
linear equation for E3.

&
will contain not only terms

O(1/3/N ), but also higher order terms as well. The
sense in which it is the "first correction" is that it is
guaranteed to give a/I of the O(1/3/N ) contributions.
The procedure may be continued to higher orders. At
each stage one has a linear equation (with structurally the
same linear operator at each stage} and with an inhomo-
geneity determined by the solutions of the previous
stages. The solution at the kth stage will give 13 '

correct up to terms of order O(N "~ ). The propagator
G2 which is correct to order O(N "~

) may be obtained
by solving the Schwinger-Dyson equation Eq. (25} with
the vertex function I 3 to that order.

The remarkable simplifying feature of the equation Eq.
(37) is that it reduces the whole proof of the DIA to the
asymptotic decay O(N ) of the 6j coefficient, which
follows from the Ponzano-Regge formula. Furthermore,



49 LARGE-N LIMIT OF THE "SPHERICAL MODEL" OF TURBULENCE 3997

( ia

0' '(I 3) to the same order by a "line integral" in func-

tion space

(43)

2

FIG. 8. Two reducible vertex contributions in the iterative

solution.

the same proof works for Kraichnan's random-coupling
model and is completely nonperturbative. [However, for
the RCM the factorization property Eq. (18} is also re-
quired and the only proof we know of that still refers to
the perturbation expansion. ]

An important point is that the solution of the linear
equation for K3.i sums an infinite class of diagrams in the
expansion of I 3 in terms of y3. In fact, solving the linear
equation for K3., by iteration generates an infinite set of
terms. After the O(1) term proportional to the 6j sym-
bol which appears explicitly, the first few terms generated
in the iteration process (shown in Fig. 8) are actually
O(1/~N ) (using the three-particle factorization proper-
ty, their spin parts are just a product of two 6j
coefficients) and another one (shown in Fig. 9) is propor-
tional to a 9j coefficient and therefore possibly an O(1)
contribution to K2. i (see Appendix I in [5]). The appear-
ance of inSnitely many terms in the solutions is very im-
portant, since only approximations to I 3 involving an
"infinite vertex resummation" can succeed to calculate
anomalous scaling exponents [19]. (However, we have
not shown that there are infinitely many contributions to
I'3 ', which are —1WN in this solution. The calcula-
tions of Amit and Roginsky in Appendix I of [5] give an
indication, on the other hand, that there may be infinitely
many terms contributing —1/N in the next stage. )

Our method here is not actually a perturbation ap-
proach in the sense of Feynman-type diagrams, althou h
we make an expansion in the small parameter 1/ N.
The idea instead is to generate a sequence of successive
approximations to I 3. In principle, all statistics may be
obtained from a knowledge of the full vertex I 3 as a func-
tional of the bare one y'3 to a given order. In fact, know-

ing the functional E3 to a given order gives the function

~N
2

+—,y3(123)M2(123)
1

(44)

gi~~~ the usual one-body effective action I'", which is the
generating functional for the irreducible functions I by
taking p functional derivatives with respect to Gl

D. Evaluation of the elective action
and irreducible functions at the DIA level

For an explicit evaluation of the effective action I'" to
a given order in 1/~N, however, the above procedure is
not the most convenient. For one thing, the iterative
solution for K3 gives it a function of y3 rather than of I'3
as required above. This problein can be avoided and one
Legendre transform step eliminated by observing that the
expansion of I

&
in powers of 1/~N also gives immedi-

ately the expansion of the self-energy X through the
Schwinger-Dyson equation Eq. (25). Furthermore, the
two-body efFective action I' ' can be written directly in
terms of the self energy X. In fact, since
—

—,'y2(12) =5I' '/5G2(12), it follows from the other
Schwinger-Dyson relation Eq. (24) that

1(2)
,'[lo' ''d, 5(—1,2)+y3(123)G, (3)

2
1

+62 '(12)+X(12;G2)] .

Therefore, integrating with respect to G2 gives

I' '(G„G2,y&)= —,
' tr(io' '8, G2)+ —,

' tr(y3G, G2)

(45)

+—,
' tr( lnG2)

G2
+ ,' J dG—2(12)X(12;G2}+4(Gi,y3) .

0

(46)

The 62-independent term 4 is evaluated by a standard
argument (see Sec. V 8 of [20]},with the result that up to
a constant term it is the classical action with @2=0,

4'(Gi 1'3)=S(Gi 1'2 0 )'3)+4'0

where

g(G„y„y,) =-,'G, (1)io'"8, G, (1)

and this gives an approximation to the three-body
efFective action I' ' when substituted into Eq. (33). From
this functional all correlations can be obtained. For ex-

ample, making a twofold inverse Legendre transform

I'"(Gi ) =I' '(Gi, G2, I 2)+ —,y2(12)M2(12)
1

&&G. 9. An irreducible (9j) contribution in the iterative solu-
tion.

+—y2(12)Gi (1)Gi(2)1

+—,y3(123)Gi(1)Gi(2)Gi(3) .1 (48)
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The constant may also be found, but it is not important
for our purposes. It is easy now to perform the inverse
Legendre transform

1I"'(61,yz, y3)=I' '(GI, Gz, y3)+ —,yz(12)Mz(12),

2 ~ 1 2

(49)

in which 62 is evaluated everywhere that it appears as
the solution of the first Schwinger-Dyson equation Eq.
(24). The result

=S(G, , yz, y, ) ——,
' trln[(6', ') ' —y361 X(62)]

62—
—,
' tr(XGz)+ ,' I—dGz(12)X(12;Gz)+const

(50)

is straightforwardly obtained, in which 62 '

=( —io'2'8, 1 —yz)
' is the bare propagator. It is help-

ful to introduce the two-point irreducible function
I 2 $36]+X and to use

FIG. 10. Leading approximations to functional derivatives of
two-point cumulant and irreducible functions.

These leading terms are all -E and corrections are of
lower order 0 (~N ).

This effective action may be used to evaluate the irre-
ducible functions I, calculated by pth-order functional
derivatives of I'D&A with respect to 6&. Recalling the ex-
act relations 5I z/5GI =I'3 and 56z/561=6zl 3Gz, we
see that within the same level of approximation

5I 2(12)
(57)

and

tr(GzX)=X(12)+ tr Gz
X

2 2

(51)
562(12)

=y3(123)62(11)62(22) .
1

(58)

to combine the last two terms, with the final result

I"'(GI,yz, y3) =S (G, , yz, yz) —
—,
' tr in[1 —62 'I 2(Gz)]

5X(34;Gz )—
—,
' I dGz(12)Gz(34)

o 56z(12)

Graphically, these relations may be expressed as shown
in Fig. 10. The corrections to these equations are of rela-
tive order 0 (1/3/N ). In general we shall denote equali-

ty of two expressions up to terms of such relative order
0 (1/~N ) by =. Consider the term in the effective ac-
tion

+const . (52) II'I'„~(61)=——,
' trln[1 —Gz 'I'z DIA(Gz)]

5XD,A(34; 62 )
62(34) =2XDIA(12;62) .

562 12
(53)

This form of the exact I"' is especially useful for approx-
imation.

For example, within the ap roximation scheme
developed above based on the 1/ N expansion the self-

energy may be written as X=XDIA+0(l/~N ), where

XDIA 2 y 3Gz 6z y 3. This latter is a quadratic polynomial

in 62, so that

1= X «[(Gz '12;DIA)"] .
n =i 2'

Using Eq. (57), it follows that

5II'1'„p(6,)
=-,'y3(123) g [Gz '(I'2. DIAG2

' ](23)
1 n=0

(59)

y3( 123 )Gz.DIA( 23 ) (60)

While the terms 5S/561(1), 5I11111 /561(1)-v'N, note
that

On the other hand,

5+DIA( 62 )
XDIA( 12;Gz ) —2

5G ( 12)2

1
+DIA(62)

31
Y3626262 Y32 3!

(55)

(2)

=—'X(graph in Fig. 11)
5+DIA

56, (1)
(61)=0(1),

so that it may be neglected at this level. In fact,
we see from the above that retaining only

Hence the leading-order DIA-level approximation to the
effective action is

IDIA(61 y2 Y3)
(&)

=S(G„yz,y3) —
—,
' trln[1 —Gz 'I z.DIA(Gz)]

—2QDIA(62)+const . I,'56)
FIG. 11. Leading approximation to functional derivative of

the irreducible 0-point function.
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a

X 2 1 2 1 3 FIG. 13. One-loop vertex correction in the spherical model.

X4 4~ 3 4

FIG. 12. One-loop contributions to the three- and four-point
irreducible functions.

ck
( )

x =T
Nknk&1

(62)

—yi(1) =5S/56, (1)+5I",i'„/5Gi(1), one obtains the
exact relation —y i

= —( G2 ' ) 'Gi +—,
'
y 36 i + g ) 36$

correctly up to terms of relative order O(1/v N ). Now
from the functional derivatives of S(Gi ) one obtains the
bare contributions to the irreducible functions. Using
Eq. (58), one can see further that successive functional
derivatives of I'i'i'00& with respect to Gi simply insert one
extra external line into a one-loop graph with bare ver-
tices y3 and internal propagator lines given by Gz. D,„.
Therefore, 8'Ii'i' /56i(1) 56i(p) is just the sum of
all such one-loop p-point graphs. For example, the three-
and four-point contributions are shown in Fig. 12. (No-
tice by the same argument that successive derivatives of
the term we have neglected, 2QD,'~, generate a series of
two-loop contributions. ) Therefore, within the approxi-
mations we have made, the leading contribution to each
irreducible function I', which is —1/')/¹, is just the
bare term plus the one-loop contributions with bare ver-
tices y& and internal propagator lines Gz.Di~.

We should stress again the nature of our approxima-
tions. We have expanded the efFective action in terms of
1/ N and kept only the leading-order term -N. There-
after, we evaluated functional derivatives, neglecting all
terms of relative order O(1/~N ). Although one might
hope that these approximations should suffice to give all
the leading-order contributions —1/')/N~ to I', we
have found no proof of this. Let us also note that at the
DIA level of approximation as calculated above, all
correlation functions have a finite-order expansion in
terms of the bare vertex and DIA propagators. There-
fore, the general arguments in [19] imply that for the
modified Navier-Stokes system (MNS} or shell dynamics
there will be no divergences whatsoever at this order.
Any divergences which might be the signature of correc-
tions to Kolmogorov scaling must appear —if at all —at
higher orders in the expansion. We now give some dis-
cussion of this problem.

IV. "SPHERICAL SHELL MODELS"
AND ANOMALOUS SCALING

then they should show up as logarithmic infrared diver-
gences in the pth power velocity correlator evaluated at a
given order in 1/~N. Of course, as we have already dis-
cussed, it would be ill advised to attempt such an evalua-
tion for the true Navier-Stokes dynamics, since the prob-
lems which already plague the Eulerian DIA will show
up at every order. However, it would be reasonable to at-
tempt such an evaluation for Kraichnan's MNS or for the
shell models. So far we have made no serious attempt in
the spherical versions of either of these models to analyze
the divergence structure of the series of higher successive
approximations generated above. It is actually not at all
clear to us that any simple asymptotic expression like Eq.
(62) should be valid for the models. In fact, the N depen-
dence of velocity correlation functions in the models will
certainly be much more complicated than simple power
series in 1/~¹Notice, for example, that one of the first
terms contributing to the triple correlation (v v&vr)
(with fixed a+P+y =0) in the subleading order 0 (1/N)
following the DIA term of order O(1/~E) is (Fig. 13)
proportional to ( &r)XN i X Iz~z~zj =O(1/N). Even
ignoring the Wigner 3j symbol, which is common to all
terms and may be factored out, the expression contains
the 6j symbol which is also rapidly oscillating as
N ++ ~. In-fact, according to the Ponzano-Regge for-
mula

J J J
J J J

1/4

N-'"cos 3Ne+—

where 8 is an irrational number defined by cos8= —
—,'. It

seems that this type of rapidly oscillating behavior is the
price one must pay for validity of the DIA in a deter-
ministic model. However, it does not seem likely that
such an oscillation, particularly with rapid changes of
sign, could appear in the exponents x . (This would be
very strange behavior in the shell model, since the
dimerence there between relevant and irrelevant variables
in the RG sense is just associated to the sign. } On the
other hand, a behavior like

A. Considerations on anomalous scaling
(p)

x — cos (3NH)+ .
N

(64)

An important uestion is whether successive approxi-
mations in 1/ N beyond the DIA level, like those dis-
cussed in the preceding section, are adequate to calculate
anomalous scaling exponents. If, for example, the anom-
alous exponents x in Eq. (20) had an asymptotic expan-
sion of the form x -c'p'e "

p (65)

would be odd, but not inconceivable. The variation of
the x with N could also be such that it would not show
up at all in the above approximations, which amount
essentially to an expansion in 1/~N. For example, if
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then the exponents have an essential singularity at the
origin in the variable 1/&N and the previous approxi-
mations would yield a null result at every order. It is
therefore a quite important question for judging the
1/&N expansion as an approximation technique to the
exponents x (N} to understand their variation in N.

However, the question has a significance beyond that
of evaluating the 1/~N expansion idea. In fact, the
SPM (or RCM) versions of the MNS or the shell dynam-
ics are the only models we know in which the 1941 Kol-
mogorov theory (K41) demonstrably becomes exact in a
limit. Considerable thought has been expended on this
question without coming up with other clear examples of
this sort. For instance, it has been speculated that K41
may become exact for Navier-Stokes dynamics in infinite
dimension [22]. However, there is not even a clear
heuristic argument that this should be true, let alone a
proof. Therefore, the present models are the only "labo-
ratory" presently available in which the deviations from
K41 can be tuned to zero at will and in which the exact
mechanisms restoring the K41 behavior can be studied.
The spherical shell models are particularly convenient for
this purpose because they can be studied by direct numer-

ical simulation at high Reynolds number with relative

ease. Therefore, we will say a few words about these

models here.

~nml kn m —n I —n (67)

u„'(t)=e "~ u„(t), 7=0, 1,2 (69)

as an exact stochastic invariance (since the force may be
redefined as f„'=e "~ f„with the same distribution).
Hence the steady state of this dynamics will be invariant
under these Potts transformations, as will the time evolu-
tion of any initial distribution which is Z(3) invariant.
This has the implication that the only nonvanishing two-
point functions will be the covariance

U„(t,t') = ( u„(t)u'(t') ),
the response function

(70)

with &„=O(1)and "local," i.e., vanishing outside a
finite range or even nearest neighbor. The models are
also defined so that energy E ( t }= ,' g—„~u„~ is con-
served. A Liouville theorem holds always since
Q„Re[Bu„/Bu„]=0is automatic. The term f„is a
force which is nonvanishing only in shells with n = —H,
providing an input of energy at small wave number. It
may be conveniently chosen to be Gaussian with a co-
variance

(f„(t)f '(t') ) =E„(t- t') . (6&)

An interesting feature of these models is that they possess
a threefold "Potts symmetry" under the transformation

B. Syherical shell models

A class of models which have recently been studied are
the comp/ex shell models, of a type represented by the
Okhitani-Yamada model [9]. These models have the gen-
eral structure

5u„(t)G„(t,t')=i(u„(t)u*(t'))=
(t')

and the "anti-response function"

G„(t,t') = —i (u„(t)u"(t')),

(71)

(72)

((),+vk„)u„(t)=i g A„,u'(t)u;(t)+ f„(t),
m, l

(66)

in which n ranges over an interval of integers [ 0, +K]—
and the wave number of the nth shell is k„=2"ko.The
interaction coeScient A„~Iis real and

which obeys G„(t,t')=[G „(t',t)]'. (Notice that the

three-point functions (uuu ) and (u "u'u") can be non-

vanishing and indeed give the mean energy transfer
through the chain. ) It is easy to write down shell DIA
equations as approximate closure equations for the mod-

els. These have the explicit form

I I

(8, +v(tt)U„(tt')=x f ,dsF t(ts)Gt (s, t')+ —,
' z A„t„A,f ds Ut (t s)Us (ts)G'(s, t ), '

A„tkAz,„dsU&~(t, s)Gq~(t, s)U„(s,t')
lk, pqr

(73)

n nm s ) fin II(5(t t )+ g A tk A
„ I dS UI (t S)G„(tS)G (S t')

lk pqr
t' (74)

These equations may be directly verified to have some im-
portant properties, such as conservation of energy and
existence of solutions obeying the fiuctuation-dissipation
relation for zero v and f„,as well as "integrability condi-
tions" which guarantee that the results of integration are
the same along any path in (t, t') space. Furthermore, a
scaling analysis which is not reproduced here implies that
with fixed input of energy e by the external force the

equations have stationary solutions with K41 scaling.
By our preceding discussion these same equations arise

as the exact solutions for X~+ao of the following
spherical shell model (SSM) equations:

(a, +vk„')u„.(t)

A„~tweed(asP, y }u'p(t)utq(t}+f
mP, ly
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with now

J J J
wN(a, P, y )=~N (76)

As before, the variables a,P, y range over integers from
—I to I and u„' =(—1}u„ is imposed. Hence there
are N=2J+1 real modes per shell. Notice that this
model does not coincide with the previous one for N =1:
observe the missing factor of i and the fact that the im-

posed complex-conjugation symmetry implies that the
zero modes u„oare real. It is better to think of these
SSM as a class of complex shell models in their own right
which reduce at N =1 to a real-valued shell model:

(t},+vk„)u„(t)=gA„ tu (t)ut(t)+f„(t) . (77)

The important point here is that the previous DIA equa-
tions become rigorously exact for the SSM when
N~+ ao (with the additional feature that the functions
U and G appearing there are all real and the complex
conjugations may be dropped). The previous observed
consistency properties now all follow automatically from
the existence of a model representation with the same
properties. Furthermore, we see also that the two-point
statistics of the SSM will obey K41 scaling in the large-N
limit. In particular, the —,'energy law will be observed.

Even stronger agreement with K41 appears in that lim-
it. In fact, since wz =0 (1/~N ) and each L loop con-tri-

bution to a pth-order cumulant G~ has V =2L+p —2
vertices, it follows that

1Gy(a„l,. . . , a~p)=0
Ny

(78}

with a&, . . . , a a fixed set of modes, at every order of
perturbation theory. The point here is that the L loop
summations over initial indices exactly balance the 2L
factors of 1/~N from the vertices [2]. Therefore, any
fixed set of modes tz„.. . , tz should have Gaussian
statistics in the limit N~+ ac. In particular, for a fixed

a in the SSM,

& lu..l"&(N)~C, (& lu. l'INDIA}' (79)

with C =(2p)!/p!2y the number of ways of pairing 2p ob-

jects. Note that the left-hand side of Eq. (79) is really in-

dependent of a by the SU(2) invariance of the steady state
and the fact that the u„ transform under an irreducible
(therefore, cyclic) representation of SU(2}. Equivalently,
the "inertial-range Satnesses"

& luteal
(80)

and are independent of n, in the limit N~+ ao. There-
fore, the "intermittency exponents" gy (N) defined
through

F„'t'(N}-k„
should all vanish in the large-N limit.

An interesting problem which we have already
raised —and which is probably feasible to study by direct
numerical simulation —is the rate at which gy (N) ~0 for
N-++ac. Another question of physical interest is the
exact dynamical mechanism by which the K41 scaling is
restored in the limit. As discussed by Kraichnan in Sec.
2 of [23], the K41 theory can only be consistent for
Navier-Stokes equations if there is strong enough spatial
difFusion of energy to suppress fluctuations of energy
transfer on inertial-range scales. Similar considerations
apply to the shell models. In fact, the strong deviations
from Kolmogorov scaling there are observed to be ac-
companied by large temporal fluctuations in the energy
transfer. A conspicuous feature in simulations of the
shell dynamics is an intermittent "bursting" behavior of
the energy flux [24,9]. Presumably these phenomena
should disappear in the limit N~+ ac. The mechanism
must be very analogous to that considered by Kraichnan
for the Navier-Stokes system, in which the sharp pulses
of energy in the SPM are dispersed and smoothed out by
complicated scattering and back-scattering among the
very many, weakly interacting modes in adjacent shells.
It would be worth verifying these theoretical considera-
tions by direct numerical simulation of the SSM.
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